IJP A

an international journal

On determination of phase fun¢tion from phase shift

adani
ing Abdulaziz Umiversity,

! jdian J. Phys. T5A (2),201-204 (2001)
I Ahmad¥* and Jamal
Departinent of Physics, Faculty of Science,
Jeddah, Kingdom of Sau@ Arabia
Received 19 April 2000, acceptgd S May 2000
Abstract

: The accuracy of the phase function y(b) as determined from the phasc shift 8, using the relation Z(”)=281‘;=u,-,5 has been studied

raking the example of '2C-"*C system in which case the phasc function so obtained has been used recently to determine the optical model potential by
mersion in the cnergy range of about 0.14 — 1.0 GeV We find that the phase function as determined from the above prescription, differs significantly

trom the realistic one at lower side of the energy range.
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Recently, some authors [1-4) have determined the heavy-ion
opical model potential (OMP) at intermediate energies by
mversion using the expression for the potential in terms of the
phase function y(b) derived by Glauber [5] in the eikonal
approximation. The same approach was earlier applied to study
proton OMP [6] and the a-particle OMP [7,8] at intermediate
energies. In these studies, the required phase function y(b) is
obtamed from the diffraction model phase shift §, using the
relation x(b)=28,1 ¢=kh-}» Where k is the incident momentum
in the center of mass system and ¢ is the orbital angular
momentum quantum number. On the other hand, in some
calculations of the heavy-ion elastic scattering, differential cross
section (e.g. Refs. [9,10]) based on Glauber multiple scattering
model but using the partial wave expression for the scattering
amplitude (presumably to enlarge the angular domain of validity),
the required phase shifts are obtained from the Glauber phase
function from the relation 28 ¢ = Z(b) y_r, k.

Needless to say, the procedure of determining x(b) from
the phase shift (or vice versa) using the correspondence
kbes 0+ %) , is approximate and is expected to be valid only at
sufficiently high energy. Therefore, care need be exercised in
4pplying the above correspondence at the lower side of the
Intermediate energy region, especially if the y(b) as determined
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from the diffraction model phase shift is to be used for the
determination of the optical potential by inversion as in
Refs. {1, 3.

In this work, we calculated y(b) and the Glauber S-function
[S(b) = e*® ] exactly from the diffraction model phase shifts
and compare them with those obtained from the correspondence

(¢+4) & kb for '2C-12C system in which case, diffraction
model phase shifts are available over the widc energy range of
140-2400 MeV and have been used to determine OMP by
inversion [1]. Significant differences between the cxact and
approximate calculations are found at lower energies.

The partial wave decomposition of the scattering amplitude
Sf(g) for the scattering of a spin-zero particle is given by

f(q)=-2112-2(2/+l)(1—e2’5')l’,[|—2k1 M

=0

where g(=2 k sin8/2) is the momentum transfer, k is the
incident momentum and £, is the Legendre polynomial of degree
¢. Using the integral representation [11]

2 ‘ oo
P,(l - 5‘%) =2k jo Jo(qb) Jpy0y(2kb) db ,

(¢* < 4k?) )
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and substituting it in eq. (1), the scattering amplitude may be
written as

fl@) =ik J’(;'db b Jo(qb) T'(b), 3)
where
l - 2
rby=- Y 20+ l)Jz,+|(2kb)[l —e¥® ] @
=0

Next, using the relation

3 2041 Jy,0(2)=+ ®)

=0

in eq. (4), the scattering amplitude as given by eq. (3) may be
expressed as

f@=ik [dbb Jo(qb)[1-5b)], ©)

where S(b) (= ¢'*") is given by

l < 1
S(b)=—- 3 20+1) 0y, (2kb)e™ . D

=0

The Fourier-Bessel representation of the scattering
amplitude as given by eq. (3) is an exact expression valid
throughout the whole angular domain 0 €(0, x). It was
introduced by Blankenbecler and Goldberger [12] who took it as
the starting point to study high energy diffractive scattering.
Later, starting from the partial wave expansion, it was derived
using the integral representation for P,(cos@) as discussed
above [13]. An exact expression for S(b) in terms of &, has been
derived by Wallace also using a different approach [14].

From the properties of Bessel function [11}, it follows that
the first maximum of J,,,,(2kb) occurs at £ = kb—4. For
£<kb-1%,J,,,/(2kb) has oscillating behaviour and assumes
positive and negative values, while for £ > kb -—i- , it assumes
negligible values for ¢ >> kb . Thus, when large number of partial
waves are involved, the most significant contribution to the
sum in eq. (7) is expected to come mainly from the term for which
£=kb -—-‘2-. Hence, taking e2'® ‘ rmtb—4 out of the sum in eq. (7)
and using eq. (5) we have

SORT] P ®

which is the commonly used prescription for obtaining S(b)
from § = ¢2184 .

Here, we present results of our calculation of y(b) and S(b)
for 12C-'2C system using eqs. (7) and (8) at 139.5, 240 and 1016
MeV lab energies. The required phase shifts have been taken
from the work of Eldebawi and Simbel [ 1] who made a diffraction

model analysis of '2C~'2C elastic scattering data in the ehergy
range 139.5-2400 MeV using Ericson's parameterization of (,
phase-shift :

S, =-

l+e 4 O

where §, =% ;and £, 4 and A are the parameters

In Figures (1-3), we show calculated 1.S(b)I,Re y(b), anq

v ]
10} T
08  E,=1395MeV
_ o8
P [
= o4l

02r

Re(x)

Im(x)

b A " 1

b(fm)

Figure 1. The phase function y(b) and | S(b) | at 139.5 MeV Continuou
curve : exact calculation. Dashed curves : approximate calculation
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Figure 2. Same as in Figure 1 but for 240 MeV.
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jmy(hat 139.5, 240, and 1016 MeV respectively. The parameter
calues which have been used in the calculation are [1): ¢ =26,
=22 =26.at 139.5MeV; ¢, =34, A =3.02, 4 =3.63,a1240

MeV:and £p =59.5, 4 =64, A =7.0, a1 1016 MeV. Calculations
wcre made at other cnergies also, but are not shown for brevity.
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kigure 3. Same as in Figure | but for 1016 MeV

The solid curves in the Figures (1-3) show the results of
¢xact calculation using eq. (7), and dashed curves show the
results of approximation calculation using eq.(8) at 139.5, 240,
and 1016 MeV respectively. It is scen from Figure 1 that the
predictions of the approximate expression given by eq. (8) differ
wgnificantly from those of the exact expression (7) at 139.5 MeV
in the region around the interaction radius R, (defined by

v . oy

25} so)

Ejeo™139.5 MoV

15

10

diffi

A i A

b

b (fm)
:;rg"‘g:b"-'i’emem difference between exact and approximate calculations
)

IS(Ryp )= ¥4 ) to which the scattering is the most sensitive. The
percentage difference between the results of approximate and
cxact calculations are shown in Figure 4. It is seen that the
maximum disagrecment in | S(h) | occurs around R, and is about

26%.

Not unexpectedly, it is seen from Figures 2 and 3 that the
situgtion improves as the cnergy increases. The maximum
deviation of the approximate calculation from the exact one for
IS(bj laround R is about 14% at 240 MeV and less than 5% at
101§MeV. At 1440 MeV, our calculation (not shown here) shows
it tode about 1%.

uring the course of cafculation, we noted that the goodness
of tl? approximation being studied here, depends not only upon
the encrgy but also upon the rate of change of le2® ) with ¢.
To Highlight this point we show 1n Figure 5, the results of our
appgoximale and exact calculations of | S(b) | at 360 McV for the
parameter values £y =39, A =0.9, and A = 0. The choice of the
paramelter values is such that the parameterization (9) is almos!
the sharp cut-off model of nuclcar diffraction theory of early
days. It is seen that large disagreements between the exact and
approximate calculations are present {1t may be pointed out that
1 S(b) | being greater than unity as is seen to be the case for some
values of b in Figures 5 and 1 is not the violation of the unitarity
which applies to S, and not to S(b) }.
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Figure 5. Absolute value of S(b) at 360 McV corresponding to the
parameter values £, = 39, 4 = 0.9 and A = O Continuous curve exact
calculation Dashed curve - approximate calculation

From above discussion, it is evident that the prescription of
determining x(b) from 28, by the correspondence
(£+ Y) «> kb does not work well at the lower side of the energy
range considered in some carlier works | 1, 4] for the determination
of the optical potential by inversion. However, for a reasonably
smoothly varying S, gencrally used in the nuclear diffraction
model analysis, the prescription works quite well at sufficiently
high energies. The present study suggests that the lower energy
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limit above which the approximation %(b) =2/, could
be applied with confidence, is about 85 MeV/nucleon.

In this work, we have calculated the phase function y(b)

exactly in terms of the diffraction model phase shift &, for '%C-
12C system in the energy range of about 140-1440 MeV. A
comparison with approximate phase function calculated using
the relation x(b) =24, t=ks-y; Shows that the approximate
phase function differs significantly from the exact one at the

lower side of the energy range. This suggests that the heavy-
ion OMP as determined by the method on inversion using the

phase shifts &, by applying the correspondence kb & (¢ + 1)
should be viewed with caution at the lower side of the
intermediate energy region.
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