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Abstract

Investigating the behaviour of a dyon moving in the field of another dyon 1t has been demonstrated that angular momentum for this

swiem 1s modified and it carnies an extra residual angular momentum Study of scattering of a dyon from a dyonium has also been undertaken and 1t has
heen demonstrated that scattering cross sections are modificd from the usual scattering cross sections of quantum clectrodynamices due (o the presence

of magnetic charge on dyon.
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. Introduction

Physicists have long been interested in existence of magnetic
monopole. The early historical interest in monopoles was due
to the symmetry between clectric and magnetic ficlds in
Maxwell's cquation. However, due to lack of abundence of free
magnetic charge compared to electric charge, they were not
ncluded in the final formulation of those equations. In 1931,
Dirac [1] showed that existence of free magnetic charge (Dirac
nmonopole) could provide reason for quantization of clectric
charge [2]. This work motivated renewed interest in searching
for monopoles. Although there was no guidance as to the mass,
size, etc of these monopoles, several experimental consequences
were apparent. It was assumed that the monopolc mass would
not be very much different from other clementary particles (e.g.
protons) and would be highly relativistic. As such, these would
produce a great deal of ionization while passing through matter
but none of these effects were observed casting doubt on
existence of these particles. A fresh interest in the subject was
cnhanced when 't. Hooft [3] and Polyakov [4] demonstrated
separately that monopoles exist as solutions in many non-
Abelian gauge theories. The possibility of these GUT monopoles
provides stimulus for much recent interest in the subject. These
monopoles have enormous importance in connection with the
problem of quark confinement [5] of quantum chromodynamics,
C.P. violation {6], proton decay [7] and baryon number non-
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conservation processes |8]. Inspite of potential importance of
these particles, the theories to describe them suffered from many
paradoxes such as Dirac's veto and wrong conncction between
spin and statistics [9]. Schwinger |10] showed that some of
these problems can be resolved by taking electric and magnetic
charge on the same particle known as dyon. Morcover, Wittcn
has shown that monopoles are necessarily dyons [6]. The
theories to describe thesc particles were also clumsy and
manifestly non-covariant. In order to develop a theory for these
particles which will be conceptually as transparcnt as the usual
quantum clectrodynamics, we [11-13] started with the idea of
two four-potentials to avoid the use of singular potential by
taking generalized charge, generalized four potential and
gencralized four-current associated with these particles as
complex quantities with their real and imaginary parts as electric
and magnetic constituents. With the help of this theory, we
have undertaken the study of bound states and scattering of
dyon-dyon | 14] and dyon-fermion [15, 16] systcms and it has
been demonstrated that exact solutions of bound states for these
systems in relativistic framework is not possible due to presence
of a term vanishing more rapidly than r~! in the potential of such
systems. To overcome this difficulty, we studied the Pauli
equation for dyon-dyon and dyon-fermion [17] system by ad
hoc introduction of spin in thc Hamiltonian of the system and
obtained bound state solutions in Abelian and non-Abelian
gauge theories. We have further, studied the bound states of
three and four dyons [18,19] and have demonstrated that the
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bound state solutions arec modified from the bound state
solutions of quantum electrodynamics due to the presence of
magnetic charge on dyon. Extending this work in the present
paper, we have undcrtaken the study of scattering of highly
energetic dyon from a dyonium.

2. Generalized field associated with generalised charges
Let us introduce the generalized charge g as a complex quantity

g=e-1ig, 2.1
where ¢ and g are the clectric and magnetic charges on dyon.
Assuming the gencralized field y(x), generalized four- potential
V, and generalized four-current J u s complex quantities in a
similar manner, the equation of motion of generalized charge g
in the generalized ficld may be written as [ 14]

mi=e{E+vxH}+g{H~-vxE}, (22)

where v is the velocity of particle and ¥ is the generalized field
defined as

wx)=E-iH 23)

in terms of clectric E and magnetic H fields. Using the cquation
of motion (eq. (2.2)), we obtain the following expression for the
angular momentum vector J of the j-th generalized charge g,
moving in the field of k-th generalized charge g, which is
assumed to be at rest :

J=rxP+ Imiq,q)%. (24)

dr . .
where P =m "--. But this angular momentum is not acceptable
. t . .
in the presencc of magnetic charge because it is not gauge
invariant. A gauge invariant and rotationally symmetric angular
momentum operator has been derived in the following form
: r

J=r><(P—chV’)+u,, -, (2.5)
where V7 is the spatial part of gencralized four potential {Vu }
The gauge invariant lincar momentum operator of j-th

generalized charge ¢ interacting with the field of k-th generalized
charge g, has the folllowing form

n=P-ReqV'. (2:6)

Eqgs. (2.5) and (2.6) lead to the following expression of gauge
invariant as well as rotationally symmetric Hamiltonian operator
for the interacting generalized charges 4;and g, (sce Appendix)

. #? Re(g,g) Im(q,qp)°
n 9,49 q,49k
H=— - it + 2.
2m 2mr? 27
where the first term corresponds to the kinetic energy term while
the second and third terms give the interaction potential energy
of generalized charges i.e.

* - 2
Vir)=— Re(q;q4) . Im(q;q;)
r

2mr? @8)
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Eq. (2.5) directly gives the scalar

".,’ *
— - =1Im(g;q,) (29,

which commutes with all the observables and shows that i eq
(2.5) there is aresidual angular momentum

Jow =1m(g, ;) : 210,
carricd by the gencralized ficld of the generalized charge beuc,
the orbital and spin angular momentum of each particle Ty,
angular momentum can be identified as Wilson [20] type f
angular momentum. It arises due (o the rotation of the systen of
two dyons in the charge space around the line joining them |
may also be described as extra spin of the system which cun ny
be associated with either particle alone. Furthermore, 1f e
generalized angular momentum given by eq. (2.5) is quantized
along the linc joining the generalized charges g, and ¢, . we
obtain the following quantization condition for gencralizey
charges

lm(q, q;) =n, 21

where n is an integers. It reduces to the following chuahn
quantization condition for clectrodyons

Im(q, g5 )=, =ex8, —gye, = 0,212, (21

Similarly, the real part of (q , qZ) may be shown to have the
following form

Rcal (q, qZ)-—: a, =, =88 @1

3. Scattering of a dyon from a dyonium

In order to undertake the scattering of a dyon from a dyonum
we assume that the dyonium has infinitc degrees of freedom. so
that it can be excited during the scattering process. The incident
dyon may change place with the dyon of dyonium and hence
exchange effects may occur 1n the collision. The incident dyon
produces generalized clectromagnetic field which may polarize
the target dyonium and hence polarization effects are also
involved.

If we consider the energy of incident dyon as very high, the
exchange and the polarization effccts are unimportant and can
be left out of consideration.

The Hamiltonian for describing the scattering of a dyon by
a dyonium may be written as

3.h
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jescribes the internal motion of the dyonium together with the
\ \netic cnergy of the relative motion of the incident dyon and

k
the scatterer dyonium and
. 2 .
Re(4,4))  Im(g q;)" _Re(s 4i)
i N2 2m "122 r

Im(q, 4 )’

32
2mr} G2

represents the interaction between the incident particle and
the scatterer, while g, . q; and q, are the charges of
dvons i, j, k respectively. If we consider thc dyons as
dentical ie. |q,|=|q,l=|qkl=|q| or |e,]=|ej|=|e,‘|=[ei and
o= "g,! = |gkf = |g| , the Hamiltonian (3.1) may be written as
h' 2 hz 22

o Mg B g et te
= om " 2m 2 n ha r

s T ST

The eigen functions of H, are specificd by two parameters o
«nd u through the equation

H()¢uu(rl'rl)=E(m¢aa(rl~rz)- (3.4)

Here. ¢ specifies the initial quantum state of the incident dyon
and a specifies that of the dyonium. We can write

¢(I a (rl g )= Wy (rl ) ¢rx (7'2 ) (35)

where w (r)) is the unperturbed wave function for the dyonium
and @, (r,) = exp (iky, r,) is the free particle wave function for
the mcident dyon.

Eq,=Ey+e€, (3.6)

where, K, is the kinetic energy of the incident free dyonand €,
18 the unperturbed eigen values of the dyonium.

We can write the wave function y (") of the total Hamultonian

H i the Born approximation as follows

(+)

Vaal )= ¢au("l~"2)+h J'C"M("l”z”'n"z)

H(rl e w el r)d d ), 3.7)

where G\\)(r,, r,; 7/, r;) is the Green's function for the solution
(3.

If the velocity of the incident dyon is very high, we can use
the Born Approximation (replacing v/“’ inside the integral sign
n (3.7) by the free particle function @,, and hence, we can

) a5 follows :

write the asymptotic behaviour of ")

Vaalr.n)- 3Paa(ry,ry)

Z ) sl ik,
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where the scattering amplitude f(kﬂ biky, a) is given by

f(kﬁ.b k., a )——G -"—Qlﬂcxp(lkﬁ r,)u,,(r,)H . r)

XPoo(rlvr)d rd'r

2 .
'—-4”:2 [ exp (—ikl,. r{)n',,(r,’)H'(r,', ry)
xexp (ik . r3)w, (r)d rd*r; (3.8)

Im

51§ exp(ik. vy )wi, (W)YH' (), 1))

or P(kﬂ’b;kaﬂ): “Z

* 3 3
xw, (r)d rd'r;

E S

(39

wherg k = (k, —ky )
or, deleting primes on the variables of integrations, this can also
be written as

f(k/,.b k, a)=-—-4~-;r—-”cxp(lk r)wi(rH (r/.13)

X w,(r)d rd'r,. (3.10)

Now for considering dyon scattering from a dyonium, we start
with the following Hamiltonian

) Re(qq*) Re(qq*)
Hrory==" o 3.11)
Thus, the scattering amplitude (3.10) can be written as
> * o *
fe- 2m ] exp(ik. r,)[— l}{»(l](l ‘) _ Re(gg*)
amn’ 2= h n
X wy(r)w,(r)d ' 'nd’r,. (3.12)
Solving this equation in the usual way, we get
2m R oAl
f= —'ll—h—(—:,{?q-q ){f I —exp (lk. r )} wp(rw,(n )d‘r, - (3.13)

For clastic scatting, the initial and final state of the dyonium are
same i.e. w, =w, and |[k,|= lkﬂl follows trom the energy
conservation. Therefore, we may write the scattering amplitude
as

2m Re(_qq ) i {
n’k?

If we consider the ground state of dyonium, the scatiering cross

section is given as

fu = 1=exp (ik. )} wa(n)w, (). (3.14)

2m Re(qg* , 2
f‘,(9)=—--—;l-z—k-zl‘z—2 1-| l+-'—a,2,k' (3.15)
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In the high energy case where Born approximation is valid, the
scattering amplitude is

2m Rc(qq"‘)

—————
frl h /\"

316
Klargc ( )

For inclastic scattering, w is diffcrent from w, and hence the
first term in cq. (3.13) is zero because of the orthogonality of the
unperturbed states of dyonium; so we have

2m Re(gg*)
nk*

Iet us consider the case when the ground state of dyonium (1S

state) is excited to the state 2S (first excitation) duc to collision

with an incident dyon. The scattering amplitude for this
scattering is given by

f;nel =- chp(ik'rl)w;(rl)Wu(rl)d"rl - (3.47)

2m Re(g4™)

Juet(18S = 285) =~ e

Jexp(ik. ) was(r)

x Wis(r)d 'r. 3.18)

For a dyonium, we have [21]

1 ( r
exp| ———

Wis = ==
\l”“()

Wyg = —= 2—— [exp| -~ ——
42 ay do 2aq

(3.19)

Therefore,

2 1
fumlus —2285)=---

aok- ao 4 J-

:cxp[-—-;—-ai-]d‘r.
0

The above integral gives us the following valuc of scattering
amplitude for the case of inelastic scattering

f(.xp ik.r) [2— -—

(3.20)

f;'nel =--

9 2 '&)"
+k“a;
(4 °

4. Exchange scattering of dyon from a dyonium

We have to consider this possibility due to indistinguishability
of dyons i.e. it is not possible to distinguish the two dyons after
scattering, or in other words, we can not say whether the dyon
which is scattered, is the initial incident dyon or it is the dyon of
dyonium.

(3.21)
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Let us label the incident dyon as g, and the dyon of dyony,
g, Ifthe dyon g, is scattered, then the scattering is called iy,
scattering; however. if dyon g, replaces dyon ¢, and 4
scattered the scattering is known as exchange scatieriny ',
this process, the coordinates of incident dyon r, (as showy ,
Figure 1) and the coordinates of dyon of dyonium 4,
interchanged after scattering, and hence the final state ¢, 1,
the exchange scattering can be written as

¢ex«.h( n .r_{)=CXP(ikﬁ-rl)“';(r2)‘ @

Figure 1. Indices | and 2 reter to two dyons of scatterer dyoutum ang
index A refers to the mmadent dyon

Also, the asymptotic behaviour of y& /(r, . r,) is given Iy

xpliky.r
valnn) (hn)

x kg, b kg a)wy(ry). (12
Therc is no scattered part here, because the dyon ¢, is captured
in the dyonium. The scattering amplitude g(kg.bik,.a) i
exchange scattering is given by

2 \ ’
glhkg.b:k ,,‘a)——~m [ogs" (r .r)H (1)

(+) LI 3.
x W:lu(rl ‘rl)d Ul d p)

4 f2 Hc.xp(rkl, r,) e H (rom )Wl (r ) d r d

43

Now due to identical nature of dyons, it is not possible to labe!
them and according to Pauli's exclusion principle, the totl
wavefunction ™ (r,r,,5,.5,) should be propetly
symmetrized. Since we are assuming here that the incident dyon
is a fermion, so the total wave function must be antisymmetric
In non-relativistic limit, the wave function can be written as

)(sl’sz)' (44)

v nrs s =y ()
where ¥ (r, r,) is the space part and x**'(s;, 5, ) is the spin

part of the wave function. Since ¥ *)(s,, 5, ) describes two spin
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12 dyons, we can either have a singlet state or a triplet state.
The wave function for the singlet state is

x:.*.,’.<s|,s:>=-}5- {a() B2)-a(2) (1} 4.5)

which is antisymmetric. Thus to make total wave function
insymmetric, we symmetrize the space part as

wi;,’,‘(r,‘r;)=W}I(,’(n»rz)*r%ﬁf(rz,n)- (46)

The {irst function on the right hand side corresponds to the
Jnect scattering and second onc corresponds to exchange
\attering. Asymptotic behaviour of the symmetrized wave
(unction (4.6) can be writien as

+) >
w(tym(rl‘rZ) ¢au(rl‘ '2)

e
2

h h

exp (ikg

)
(f+g)wy(r). %))

Thus. the scattering amplitude in the singlet state is the sum of
the direct and the exchange scattering amplitudes and hence
the scattering cross section for singlet state is given by

k 2
6smg = ;Cq ‘f+gl (48)

The triplet state is given by

a(h)ya(2)
B B(2)

“JI"E {a() B(2)- a(2) B(D}

Xon(81.82) =
p= ! 4.9)

i e all the triplet states are symmetric. Thus to make the wave
function anti-symmetric, we write

(+) +

Wnnusy(rl ’ "z) = W:za’(rl' rl)_ Wt;a)(rb n ). (4.10)

Inthis case, scattering amplitude will be | f~ g | and hence the
scattering cross section in triplet state is given by

K
2
Cump =;”~lf-gl . @l1n
a

Egs. (4.8)and (4.11) give the differential scattering cross section
including exchange effect. Total differcntial scattering cross
sec‘tmn is the sum of Ssing and 0 with their proper statistical
weight factor

do 1 3
(E)Im - :l.a"ﬂg + Z' top ¢ @12

ll_\ order to evaluate eq. (4.12), we should calculate fand g. The
direct scattering amplitude f has already been calculated and is
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given by eq. (3.13) while g is given by
o 2m [fe ) ) ,
g= —-;;—’;3- pr(-—lk”- . )w,,(rz YH'(r), ry)
xyilr. r)d nd'r, . 4.13)

We uge Born-Oppenheimer approximation, In this approximation,

we replace y ' (r,, ry ) by the sate @4, (ry. 7y) . the unperturbed

wave function before scticring. Hencee,

‘ l 2 . » ’

; g= “in -;:;!'JICX])(—lkI‘ .rl)w,,(r., YH(ry. ry)

1,

% x explik, ry)w, (ry)d ‘ryd'ry . (4.14)

The iftitial and the final states of the dyonium are not orthogonal
1o each other. Due to this, a number of defects are incorporated
into Born-Oppenhcimer approximation. To overcome these
difficulties, we use another approximation which is due to
Ochkur. In this approximation, g is expanded in the inverse
powers of k, and only the leading term s retained. We write

g = gm’ +<‘$’(':’ A (4.‘5)

where g is the contribution due to dyon-dyon interaction and
8, is the contribution of another dyon of dyontum. We have

Re(gq*) . . !
. = _.2,,,-.4”") ”CXP{""(I"r'}"'l.(rl);:

X exp(—iku L4 )Wa(n )d‘r,d"rz,

Now
cxp (iS(ry =)
L:—-—’,I——————-—*Lp( ,,3 ~—l--2sz,
rn, 2 S
and hence,
2mRe(gq™ | . .
o = ﬁq——)”,‘?—exp{t&(q —r)+ikg(ry ~n)

+ik,r - ikpr,} wy(ry)w, (n yd rd’rd's

1 2mRe(gg™) | , .
iy DR S j”gz exp{i(S+ky).(r, =r) +ik.r}
xwy (1, ), (r)d rd*rd'S. (4.16)
Solving eq. (4.16), we get
2mRe(qq*) 1 )
8(0chkur)=—‘—mﬁzqq -;yfexp(:k‘rz)
X wy(ry)w,(r)d’n. @1n
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With the help of this equation from the direct scattering amplitude
(3.13), we get

_2mRe(qq*)

hlkz 6”“ l

k 2
8(ochkur) = ( (4.18)

kg

For inelastic scattering a # b. Therefore, §,, =0 and hence
we have

2

&(Ochkur) = ;y-f : (4.19)

For elastic scattering, = b and hence §,, = 1. Therefore,

KZ

Re (4q*)
8(Ochkur) = ‘k_z'(f"zm‘”—‘q—q—'—') .
o

hk?

Now for elastic scattering of dyon with a dyonium,

. Re (gq*) P
f =2m'-;-5—f:2—"[1 —(l + 2(1(2) k")
2a(,(8 +ka} )
C(aek@) *:20)
Therefore,
32
8(Ochkur) =~ T3
chkur) K;(4+k"a6), @21)

Hence, the elastic differential scattering cross section for dyon-
dyonium scattering in the exchange cffect is given by

do 1 2 3 2
( ) = _lf + g()chkur' +-— |f - g()chkml . 4.22)
o 4 4

dQ

5. Discussion

Eq. (2.1) gives the generalized charge of dyon. Eq. (2.2) is the
equation of motion of dyon in the GEM ficld of another dyon.
Eq. (2.4) describes the angular momentum of dyon moving in
the field of another dyon which is neither rotationally nor gauge
invariant. Eq. (2.5) is the rotationally as well as gauge invariant
angular momentum operator. Eq. (2.6) is the equation of linear
momentum associated with a dyon moving in the generalized
clectromagnetic field of another dyon. Eq. (2.7) is the Hamiltonian
for adyon moving in the generalized electromagnetic field while
eq. (2.8) is the interaction potential of the system. Eq. (2.12) is
the chirality quantization condition for a system of dyons.
Hamiltonian (3.1) describes the dynamics for scattering of a
dyon by a dyonium which reduces to eq. (3.3) when identical
dyons are considered. Eq. (3.7) is the wave function for the total
Hamiltonian under Born approximation and scattering amplitude
for this case is given by eq. (3.10). Eq. (3.11) describes the

Hamiltonian for scattering of a dyon by dyonium and cq, ( KT
describes the scattering amplitude under Born approximaty,
for elastic scattering. The scattering amplitude for nelayy,
scattering is given by eq. (3.17). Eqgs. (4.8) and (4.11) gjv, the
differential scattering cross section including exchang effeg
i.e. where dyon of dyonium is replaced by the incident dyqy,
the scattering process. Total diffcrential scattering cross secy,
is given by eq. (4.12). Eq. (4.22) describes the total Scaltering
cross section for scattering of a dyon by a dyonium wy,
inclusion of exchange effect. All of these scattering croy,
sections are modified from the usual scattering cross section
scattering of a fermion from the atom due o the presence (o
magnetic charge on dyon. These scattering cross seenon,
reduce to usual scattering cross sections of scattering of
fermion from an atom in the absence of magnetic charge
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Appendix

(a) Derivation of angular mementum operator for dyons [14]

In order to construct a suitable angular momentum operator {0
a dyon in generalized electromagnetic field, we consider il
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qcnerahzed charge g, (e, — ig,) in the field of another generalized
_harge q,(e,~ ig ) which is assumed to be atrest. In the absence
of any charge, the angular momentum vector of mass particle
would be given by J=r x P, where P is the linear momentum of
the particle. But in the presence of charges, such an angular
nomentum vector is unacceptable because the linear momentum
j not gauge-invariant. The gauge-invariant angular momentum
vector in the presence of particles carrying the generalized
charges, may be written as [11]

J=rx(P-u,; V'), (A)

where

My =(e[gl —e;g,) (A2)
»» the magnetic coupling parameter for two generalized charges
and V! 1s the transverse part of the generalized four-potential of
dyons. The angular momentum vcector given by eq. (A.1) is not
rotattonally symmetric because it Icads to the following
.ommutation relation :

[‘Il ’ JI] = iEUm (’lm - }.l,lﬁ), (A-3)
where £, 15 the usual Levi-Civita Symbol and 7 = r/Ir|; but
fur the system endowed with rotational symmetry, we must have

~

[j‘,]/]= € I -

Therefore, we can write the gauge-invariant and rotationally
symmetric angular momentum for a dyon in the generalized field
as| ]

(A4)

J="><(P—M,,VT)+IJ,-,-E- (A5)

(h} Derivation of eq. (2) [14] :

The Hamiltonian of the dyon of mass m, carrying electric and
magnetic charges e, and g, respectively, in the field of dyon of
mass m, and charges e, and g may be written as

2

. 1 1 L
(e (R KON LGl I LA ORI

(eigj -816'1) V( |r|"|"2‘)'

rer (A6)

Where V(r) is an arbitrary additional potential interaction. The
Justification for this Hamiltonian is that for the Heisenberg
¢quation of motion for r, and T =[P,. - (e,-g i~ 8i€j )VT] (if i,j
= 1,2) it yields the Newtonian equation of motion

F=i

m, (A7)
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Upon introducing the usual relative and center-of-mass

coordinates
niry +msry
=p — - et M B
r=n-=r. m, +ni
= mbtmb
m, +m, P=P +P,, (A.8)
one obtains
: A= -~l~[l"3]+ : [P VT]: + 22 1 vir)
y B 2m M Ha = (A9

whee r is the separation between two dyons, M = m, + m, and
m

-1
-1 -1 .

(’"1 +my ) are the total and reduced mass respectively.
i

and’

oy =~(e1e; +£182) =~Re (g 42).

iz = =(e18, —gi¢2) = Im (g, q3). (A10)

From now onwards, we sct the total momentum P equal to zero
and express the Hamiltonian n eq. (A.6) in the following
manifestly gauge invariant and rotationally symmetric form

H=T_ %2, V(r),

A.ll
2m r ( )
wherc
It=[P—y|2VT]

It is quite recasonable to expect the additional potenual term V(r)
with its form and magnitude to be described by the symmetry
requirement of the system. Using eq. (A.5), the value of J? may
be calculated in the following manner :

J’=17117 .—:[(r x7‘r)+/,1,,?].[(r xir)+u,,i~] (A.12a)

= (PXR) AP XE)+ 7+ 20, F(rXT). (A.12b)

The third tcrm in e¢q. (A.12b) 1s zero because of the reason
F.(rx@)= (rxr).w and hence we may wrile

n* Hi P’

. _._‘,.. + —

2m 2mr:  2m

It is quitc obvious that thc Hamiltonian given by eq. (A.11)

possesses the same higher symmetry as the pure Coulomb

Hamiltonian, provided the additional potential V(r) incq. (A.13)
takes the following scalar form

A.13
2mr? ( )

#122
V(’)=m- (A.14)
Thus, the Hamiltonidn given in eq. (A.11) may be written as
,q=_"5i_9‘..!2_+,£fz.i. (A15)
2m r 2mr

which is the required Hamiltonian.



