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Abstract : The study of behaviour of a fermion in the field of non-Abelian dyon has
been undertaken in Lagrangian and Hamiltonian formulation. Solving Dirac equation, expression
for energy cigen value has been obtained and the Hamiltonian of this system has been shown to
involve spin as well as contribution of massive fields associated with these particles. By
introducing suitable spinors, the Pauli equation for a dyon moving in the field of fermion
has been solved in non-Abelian gauge theory and it is shown that introduction of massive
ficlds perceptibly modifies the energy eigen “alue and eigen function of bound states of the
system.

Keyvords : Fermion-dyon dynamics, non-Abelian gauge theory, bound states.

PACS No. : 1115

1. Introduction

The renewed interest in past fcw years in the theory of monopole and dyon is partly due to
the work of 't Hooft [1] and Polyakov [2] wko embedded U(1) electromagnetic field into
SU(2) gauge theory and obtained the numerical solutions of canonical finite mass
monopole in the whole space through spontaneous symmetry breaking due to Higg’s field
which leaves behind unbroken U(1) gauge symmetry. Julia and Zee [3] obtained the
corresponding numecrical solutions for a dyon and Prasad and Sommerfield {4] derived the
analytic stable solutions for the monopoles and dyons of finite mass by keeping the
symmetry of vacuum broken but letting the self interaction of Higg’s field approaching
zero. At present, it is widely recognized [5] that SU(5) grand unified model [6] is a gauge
theory that contains magnetic monopole solutions and consequently, the question of
existence of monopole and dyon has gathered enormous potential importance in connection
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with the problem of quark confinemcnt [7], possible magnetic condensation of vacuum [8],
their role in catalyzing proton decay [9,10] and the possible explanation of C P violation
[11]. Keeping in view all these facts and cbservation of Cabrera [12], we have constructed
[13,14] the manifestly covariant quantum field theory of dyons each carrying the
generalized charge as complex quantity with electric and magnetic charges its real and
imaginary parts, formulated non-Abelian theory of dyons [15,16] and investigated bound
states of dyon and fermion [17-19] in non-relativistic as well as in relativistic framework.
We have also shown that [17,18] relativistic bound states of a system of a fermion moving
in the ficld of dyon are not possible due to the presence of a term vanishing more rapidly
than r~! in the potential of the system. In order to understand the behaviour of relativistic
dyons, we have introduced the spin in the Hamiltorian of the system of two dyons in an
ad hoc manner [20] and showed that solutions for Pauli equation exist for dyon-dyon and
dyon-fermion [21] bound states in relativistic Pauli theory.

Extending this work in the present paper, we have undertaken the study of Pauli
equation for a fermion moving in the field of a non-Abelian dyon. It has been shown
that the interaction of spin and the generalized potential leads to an extra energy which
is expressible in terms of generalized spin momentum of the particle concerned. It has
also been demonstrated that massive fields play a major role in determining the
interaction of spin and generalized potential. Analyzing Dirac equation, the problem
of interaction of spin and orbital angular momentum of this system has been
investigated ana the expression for Hamiltonian has been derived. We have also undertaken
the study of Pauli equation for a dyon moving in the field of fermion by introducing
suitable spinors and it has been demonstrated that bound statc energy cigen values and
eigen functions are perceptibly modified from the bound states thus formed in Abelian

gauge theory [17].

2. Behaviour of an extended dyon in the field of fermion

In order to study the behaviour of extended dyon moving in the field of a fermion, we have
considered the extended dyon as an isomultiplet intcracting with the field of a fermion. The
Lagrangian density for such a system is written (in natural units, i=c = 1) as

£=2£+iyy,D,v-GKyTe¢ y, @.1n

where K = ¢; g; and ¢; is the electric charge of fermion and g; is the magnstic charge on
dyon. £, in eq. (2.1) is the 't Hooft-Polyakov Lagrangian {1,2] and

iD, =i5, - KV, T". 2.2)
Vi in eq. (2.2) is the matrix form of generalized potential of the dyon and 7 are the
matrices given by

(T(: )au = ieab( . (2’23)
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The third term in eq. (2.1) carries the mass of incident dyon in terms of Higg’s scalar field,
G is the coupling constant between Higg's triplet and iso-spintriplet. Using minimal
replacement (2.2) the Lagrangian takes the following form :

£=£,+iVy + Uy (6, —KVET)y
~VYKVET Yy - GKYTa ¢ . (2.3)

Defining the conjugate momenta as 7 = 6£/ (d 1;1) and by using the definition H =
T g;/ — £, for Hamiltonian, the wave equation for multiplets of spinor field y is written as,

Hy = [&-(i’- KVIT,)+ BGK9, f,, +KVOT,
+(KV,‘}T”)2]w= Ey. (2.4)

In the above equation, we have substituted the matrices y* = a and y° = . In the first
term of this equation V7 is transverse vector potential of dyon field and the term KVOT,,
under a suitable gauge transformation when the operator 7. T in iso-spin space goes to an
operator T3, represents the Coulombian type of scalar potential e, e, /r which is the first
term of interaction potential between fermion and extended dyon [17]. The observation
made in non-relativistic formulation that the symmetry of Hamiltonian requires an
additional potential term [18] ¢;e ; /(2mr2) in case of interaction of a fermion with dyon
justifies the presence of an additional term (K'V27,)? in the wave equation, which under
suitable gauge transformation takes the form K2/(2mr?). This potential has been
introduced in eq (2.3) in an ad hoc manner.

Introducing the dyon-fermion ansatz

K6,T, = §(NT-F; KVIT, = (___‘”f(’));x T;
’ @.5)
KVOT, = V,(NT-r; KVT, = V,(NT-r;
the wave equation takes the following form
[&.(i’ - ”;T) + &-(”:T)k(r) +BGO(NT -7 + V()T -}
a2
Vo(nNT-r _ 26

This is a very complicated equation, however, we can simplify it by making following short
distance simplification as the distances involved are very small
k( rH=1, 2.7
Go(r)T - = my,
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where myg is the mass associated with a particular component of Higg’s triplet. Eq. (2.6)
then takes the following form for free particle Dirac equation (i.e. when V,(r) and V(r) are
Z€ero);

[&-ﬁ«rﬂmo]w:Evr, (2.8)

where my is the mass of dyon. The completc plane wave solution for bispinor y(x) may be

wrilten as

a

y(x) = (i) = {(p*,0") exp {-7';-17“ X,,}, (2.9)

where {'is a function and the suffix P is to tell us that we are dealing with plane wave of
momentum P and the suffix o* is to identify four solutions of y, while éand 1 are two
component functions. In order to dcrive the wave equation of an extended dyon moving in
the field of a fermion, let us consider the four-potential of field as {V{,} = {A{, - iB{;}
with A} and B] as electric and magnetic four-potential as:ociated with dyons carrying the
generalized charge g, = e; - ig; with ¢, and g; as clectric and magnetic charges. The wave
equation in this case may be obtaincd by using the following transformation [22]

vV, =(6,-iKV,X), (2.10)

where vector sign (bold) and cross product (x) arc demonstrated in internal group space;
v=0, 1, 2, 3 are indices rpresenting external degrecs of freedom. In presence of dyons, the
introduction of second four-potential is actually compensated by an enlargement of the
group of gauge transformation [16]. SU(3) gauge symmetry spontaneously broken by an
octad Higg's field exihibits SU(2) x U(1) symmetry with the non-zero vacuum expectation
value of the Higg’s field. According to general topological argument [22], the very
presence of the U(1) factor in the unbroken gauge group guarantecs the existence of
smooth, finite energy stable particle like solutions with quantized magnetic charges and
chirality quantised dyon. With the help of prescription given by cq. (2.10), we get the
following eqtiation for the two component spinor £ and 7;

[&.(ﬁ-xv‘gf,,)]r‘; =[e- V&7, -m]é. @.11)
[&.(ﬁ_xv,fjf,,)]é = [e- VioTu - m]i. (2.12)

Restricting our-self to the case of non-relativistic motion in a weak field and considering
only positive energy solutions

e=E+m; |E-KV,T,|({(m, (2.13)

we get the following energy eigenvalue equation in term of &

N A 12 k A a\lg o N
[ﬁ{p-xvgjn} +KV,oT, - -215,%(0~g)]€=55- @2.14)
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) «

where g:éx{K/ll(] vgi,,}:éx{e-”vTi‘,}.

This equation looks very complicated but it may be simplificd by using dyon-fermion
ansatz given by eqs. (2.5) and (2.7). As such eq. (2,'14) may be written as follows

1 n T 2 lKI - 2 " r g
[W{P_KV } + KV, - mo-(q.g) & =EE. (2.15)
1
Now = éx{l_l’%l VT} = ax{Ke® v} (2.16)
B ,
with tan @ = § = —A-}‘-:-, , (2.17)

where A, and B, are electric and magnetic four-potentials respectively. Eq. (2.15) is
analogous to Pauli cquation for a dyon moving in the electromagnetic field of a
fermion [18,21]. It has the following modification in the energy gained by a non-
Abelian dyon moving in the field of a fermion :
, K| (1~ 4
g = MKl (6-2). (2.18)

2m,

This cquation can also be written as

E'=fp-g=~fi,(68) (2.19)
where T py = o—

is Bohr magneton for a dyon moving in the field of a fermion and

Hp=fpy- O (2.20)
is generalized spin moment of dyon. Egs. (2.18), (2.19) and (2.20) show that massive field
plays major rcle in describing the dynamics of non-Abelian dyon moving in the field of a
fermion. Consequently, extra cnergy term in the Hamiltonian may be interpreted as the
interaction of massive ficlds associated with non-Abelian dyon with a vector field resulting
from the spatial rotation of gencralized four potential. The third component of the
generalized spin moment operator for dyon may be written as

K -
2.21
2m° 03’ ( )

(ﬁo)s =

the cigenvalues of which are
|X]
e T
mo
Its value is very large as compared to the value of ordinary Bohr magneton of Abelian
electromagnetic theory mainly due to the presence of massive fields assogiated with non-
Abelian dyon and magnetic charge present in the dyon.

= tp,. (2.22)
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3. Spin-orbit coupling for spin-1/2 non-Abelian dyon moving in the field of a fermion

Let us consider the motion of a spin-1/2 non-Abelian dyon moving in the field of a
fermion retaining the terms up to order of v (where v is the velocity). Putting V7 =
and Vy(r) = V(r) = KV} in eqgs. (2.11) and (2.12) and applying monopole dyon ansatz given
by egs. (2.5) and (2.7) we get

[E-V,(n)& = (6P, G.1)

[E+2m - V()7 = (6 PYE, (3.2)
where we have used € = E + m. These equations, in the first approximation, yield the
following energy eigenvaluc equation in terms of spin function & :

(6-P)

[E - KVo]¢ = 2my

1 - A
[1 ~ T {E-uyvo} x (o-P)] (33)

which on further simplification, gives the following expression for energy operator
(Hamiltonian) under first approximation :

i, L P2 L[5 Ikdv, x P
H=KV,+ [1 ~ e (E-KVo} 5 + £ [a {Kv, x P}]

! [Kév -13] 34
4m} 0 G4
In order to derive the expression for Hamiltonian in second approximation, we use the
following function ¢ in place of & in eq. (3.3)

¢ =it 3.5)

the normalization of which up to second order leads to the following value of factor u

- p?
us1l- m; (3-6)

Using this value of it (and hence of $), we get the following relativistic expression for
corresponding Hamiltonian in second approximation

H = aHi
or A= _‘?f_mvoq'-—-‘—[s-xvo]- L (Kdivyp)
my Zmy 8md

-#[&'KVZ,X[’] =f{o+ﬁ]+ﬁ2+ﬁ3
=ﬁo+ﬁ|, (3-7)

where ¥, = —9Vy = ~ge (eis the field strength)
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and Ho corresponds to the non-relativistic term of the Hamiltonian while ﬁ, is the
relativistic correction term to the Hamiltonian various parts of which arise due to different
relativistic interactions.

4. Pauli equation for an extended spin-1/2 dyon in the field of a fermion

In order to deal, more accurately, the motion of sﬁin-l/Z extended dyon in the field of a
fermion with the inclusion of spin effect we start with following Lagrangian density
” :

. . . 1 "
£=£,+iyty - m(Vw\‘)(Vw)«o-KV}}T,, vty

1
+ 5 (KVIT, ) vy, @1

where £, is the 't Hooft-Polyakov [1,2] Lagrangian and the remaining part of this
Lagrangian density corresponds to the Schroedinger field in which the interaction with the
scalar generalized potential has been written in terms of last two terms and interaction with
the vector generalized potential could be obtained by writing

V# = ViTe,
Gpv = G;‘:v T4, 4.2)
DH = M + [KVarTa,

where matrices T satisfy the commutation relation given by eq. (2.2a) and G, is the ficld
tensor associated with dyons [22]. In this Lagrangian, the term KVOT,y"y is the non-
Abelian gauge form of the Coulombian type of interaction dcpending upon clectric
coupling parameter e; e, and the term 1/2m) (K VIT, )2 y*y is thc non-Abelian gauge
form of scalar interaction depending upon magnetic coupling parameter (e; g;) which is
introduced in the Hamiltonian of dyon-fermion system to maintain the higher symmetry of
the Hamiltonian.

Using field theoretical method to obtain complex conjugate of Schroedinger field
and the Hamiltonian, the non-relativistic wave equation for i-th dyon in the field of a
fermion with charge ¢; in non-Abelian gauge form may be written as

1 . 2
3 [(-1V - KVIT,) + (26K4,T,)-(KVET,)
+K(V, T, )2] v =Ey 4.3)

which can be simplified in the following form with the help of dyon-fermion ansatz given

by egs. (2.5) and (2.7) :
5—',; [(—i V) + 2moV (r) {T -7} + V(1) {T‘F}Z] v=Ey, 4.4

where V,(r) is the scalar potential depending on the electric charges of the dyon and
fermion while V,(n) is the scalar potential depending upon electric charge of the fermion
13A4)-18
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and magnetic charge of dyon. Under a suitable gauge transformation where the operator
r.T in isospin space goes to an operator T3 ie. T.r— T, and the matrix T3 is given as :

Ty = ((1) —01)
$0 (T.f')2 = (i'3)2

which is a unit matrix. We can write eq. (4.4) as follows

1 0 1 0V Alw
-i];[(-iV)2+2m0V,(r)(o _l)+V2(r)(0 -—l) +F(r)L-O'}(w;)

o(3)

This equation splits in to the following equations
5= [(=i)? + 2meVy () + V5 () + F(OL-6]w, = Eyw, (4.6a)
and 2 [(=iV)? = 2mV, () + Vo () + F(OL- 6w, = By, (4.6b)

buth of these equations are same except for a negative sign which occurs due to the
structure of matrix T, implying that energy eigenvalues are further degenerate due to the
internal degrees of freedom of non-Abelian dyons.

For solving these equation we shall treat spin-orbit interaction F(r)L.G as small
perturbation. Though the non-relativistic Pauli equation (4.6) are not sufficiently complex
to yield precise values for the fine structure of energy levels of dyon-fermion bound states
yet these can be safely taken as a useful guide to an understanding the role of spin in bound
states of dyon and fermion.

The unperturbed Hamiltonian
= - L
Ho = - 2mV + V(r) (4-7)
e e
where V() = - Sty + ik for (4.6a)
r 2mr?
e;e e.g.
and Vi = + 2L+ ZB gorasb)
r 2mr

represents central force problem for fermion-dyon dynamics in non-Abelian gauge theory
due to the structure of matrix T and the spin-orbit interaction energy H is given by H;
of eq. (3.8) which may also be written as [21];

~ €;€; 1 A A €;8; 1 A A
H] = - -2—’;'-:?<—-—>L-S+ —-—’-<-—;—>L-S, (4.8a)
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A, _ e,ej ] A A e,'gj 1 A A
and A =+ ot \77)E5+ m(—f;}us; (4.8b)

where the symbols have their usual meaning. Since J2 =1§2+§2+2i,.§, the Pauli
operator for H’, is given by :

N o2 (NG - () (5
(”l)p T T am2 <‘;3'> [(JZ)P - (L‘)P - (Sz)P]
* 4m¢ <-;'T> [(Jz)p - ( 2‘)P - (Sz)p] (4.92)
’ - eiej .L a _ A, a
wi )y = g ()0, - (B), - ()]
€8 /1 - - A
* amd (7?)[(”)p - (), - (S’),] (4.9b)
and the Pauli equation becomes
[’}IP]V’P = [(ﬁo)P + ( “1'),,]'/’ =W (P, (4.10a)
[ ] v = [(Ho)p +( Az’)i,]w= W,(P)y., (4.10b)
s H, 0
h H) =] |
et )
- _2_1__62 + f.':!_. - _e'_..g./_'z_ 0
=| " T 2mr @.11)
0 _—l—_ez—eie"' _ e,'gj
2Zm r 2mr2 P
and (vp) = ("’*) (4.12)
v_)p
represents the Pauli wave function. The Pauli wave equation for unperturbed Hamiltonian is
given as :
7 A
Ho 0 (v _ ol ¥) @.13)
L0 Hy ¥ v
or Hoy® = wOy©®, (4.13a)

Hyy VSO) =W 'I’fm, (4.13b)

e,ej e,'gl'

wh g o= - Ly2
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~ _ L A 2 _ e,-ej _ e,g,
Ho = = 3m v r 2mr?’
or Hoy® = WOy, (4.13¢c)

This wave equation can be solved by introducing the total angular momentum operator as
vector sum of the orbital angular momentum and the gauge field isotopic spin and spin as
follows

J=L+S,
L=M+(T.;');', (4.14)
M=rx|P- rle
)
which satisfy the following eigenvalue equation for the angular momentum eigenfunction
J? JJ+1)
2 I(0+1)
= Yerw(6,9) = Yerm(6:0) (4.15)
J3 m,
72 1(t+1)

Uir) = R(r) satisfy

where Y,",,,,,,(e,.p) are dyon harmonics [23] and the radial function

the equation

V= Uf‘r) Yk.l'.m'(o' ¢) (4.16)

Solving equation (4.13a) and (4.13b), we get the following cnergy eigenvalue for the
system of an extended dyon spinning around another fermion.

]

-1/2 72
Ey = -—2(m3/m)(e,~ej): (2N+1) + {(21+1)’+(5§L) } . (417)

where N=0, 1,2, ...

and 9 are wave functions simplified to R,,(r)Y, ,-(6.,9), wherc Y, , .(6,¢) are dyon
harmonics. Thus, the Pauli wave function for spin up and down states are given by

(Wg)p = V’(n,I'.m,.m, =+1/2) = Rnlyk,l'.m.IT>

- Rnl Yk.m'l'
= ( 0 ) (4.18)

. V] —
and (W- )p - ll,(n.l'.m, my=~1/2)

= RMY&.M'.I'I’L>

0
= ( ) (4.19)
Rlll yk.l'.m'
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In the absence of spin-orbit interaction both the wave function correspond to the same
energy. In order to determine splitting due to spin orbit interaction, we should choose a
representation in which H, is diagonal :

(¢1)P = ¢(n.l:j= 1+Y2.m;)

,l+mj + 1/2 ;
= 21+ 1 W(""'m’:’"l QIIZM,=+1/2)

I—m; +1/2
2l+1 V’(n.l.-, =m, +2,m, = -1/2)

I+m;+1/2
Y Do RuYiim, -1p2
I-m; +1/2

2/+1 Ry Yk.l',m,n/z

Similarly, we can write (§,)p = ¢ (n, [, j = 1 ~ 1/2, m)). Then the first order perturbation due
{o spin-orbit interaction would be given by

+

(4.20)

w = [daeg* (fi))p ¢
- 7:%]41-";& [(F2)r - (2)p - (52, ]0
¥ % Jar oo [0 - d)p - 23, ]6 “21)
or w® = ;i"‘;:é. [{j(j+l) —I(1+1) - 3/4}jd1(1/r3)
[Em 2

I¥m,+1/2 2
+"—(2lj+' D lR"llzlykJ-"'l"'llzl ]

L Itm; +1/2
T l{f(.i+1)—l(l+l)—3/4}Idr(l/ﬂ)[.__ﬂ’.ﬁ_.
8my

2 1Fm;+1/2 2
XIRnllzlYk.l.m,—lﬂl + =517 IRnllzlyk.l.m,-H/.Zl ] (4.22)




582 P C Pant, V P Pandey and B S Rajput

where the upper and lower signs corresponds to j = I + (1/2) and j = I - (1/2) respectively.
After integration we get

S (L) 4 S8y (L j =
o g <r3>+ 8md l<r4> forj = 1+(1/2)
1 - l 220 - 1 L
where <r3> 1,3 Ryl r*dr i+ D} +1) @’
AN C (iR Pregr = 3-5n3{1+(2)}ad
(%) = [lral = ety e o 429

The splitting of energy levels corresponding to equation (4.13a) is

W= WO 4 W

'E Eyee; Ex(e;8,)1[3-5n3{1+(1/2)}] a}

N"2mm3+1) I+ 1)ag ~ mEnS21-1)2I+1)(21+3)ad

forj = 1+(1/2

We . J (1/2)
- Eyee; _ Ey(e;g))1[3-5n3{1+(1/2)}|a}
N7 2mgnl2l+1)a  mdnS21-1)(21+1) (21 +3)ad
forj=1-(1/2)

(4.25)

Similarly, we get another set of cquations describing splitting of energy levels
corresponding to eq. (4.10b) with the sign of e; e; reversed. Ey for both the cases is given by
eq. (4.17) and Bohr radius ay for system is given as

_ (elgj)2 + 1

e (4.26)

Eq. (4.25) gives the splitting in the energy levels corresponding to quantum number
nforj=1+1/2andj=1-1/2 respectively. It shows that ad hoc introduction of
spin modifies the usual energy eigenvalue and eigenfunction of bound state of a dyon
and fermion [20,21]. The bound state of an extended dyon and fermion is further
modified due to presence of massive field which play major role in forming the bound
state. The ad hoc introduction of spin becomes important since the relativistic Dirac
equation for bound state of a fermion and extended dyon can not be solved exactly due to
the presence of a term vanishing more rapidly than r-! in the interaction potential of
the system.
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