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Abstract ; The study of behaviour of a fermion in the field of non-Abelian dyon has 
been undertaken in Lagrangian and Hamiltonian formulation. Solving Dirac equation, expression 
for energy eigen value has been obtained and the Hamiltonian of this system has been shown to 
involve spin as well as contribution of massive fields associated with these particles. By 
introducing suitable spinors, the Pauli equation for a dyon moving in the field of fermion 
has been solved in non-Abelian gauge theory and it is shown that introduction of massive 
fields perceptibly modifies the energy eigen -'aluc and eigen function of bound slates of the 
system.
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1. Introduction

The renewed interest in past few years in the theory of monopole and dyon is partly due to 
the work o f ’t Hooft [1] and Polyakov [2] who embedded U(l) electromagnetic field into 
SU(2) gauge theory and obtained the numerical solutions of canonical finite mass 
monopole in the whole space through spontaneous symmetry breaking due to Higg’s field 
which leaves behind unbroken U(l) gauge symmetry. Julia and Zee [3] obtained the 
corresponding numerical solutions for a dyon and Prasad and Sommerfield [4] derived the 
analytic stable solutions for the monopoles and dyons of finite mass by keeping the 
symmetry of vacuum broken but letting the self interaction of Higg’s field approaching 
zero. At present, it is widely recognized [5] that SU(5) grand unified model [6] is a gauge 
theory that contains magnetic monopole solutions and consequently, the question of 
existence of monopole and dyon has gathered enormous potential importance in connection
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w ith  th e  p ro b le m  o f  q u a rk  c o n fin e m e n t [7], p o ss ib le  m ag n e tic  co n d e n sa tio n  o f  v acu u m  [8], 

th e ir  ro le  in  c a ta ly z in g  p ro to n  d ecay  [9 ,10 ] an d  th e  p o ss ib le  e x p la n a tio n  o f  C  P  v io la tio n  

[11 ]. K e e p in g  in  v iew  a ll th e se  fac ts  an d  o b se rv a tio n  o f  C a b re ra  [12 ], w e h av e  c o n s tru c te d  

[1 3 ,1 4 ]  th e  m a n ife s t ly  c o v a r ia n t  q u a n tu m  f ie ld  th e o ry  o f  d y o n s  e a c h  c a r r y in g  th e  

g e n e ra liz e d  c h a rg e  c o m p le x  q u a n ti ty  w ith  e le c tr ic  an d  m a g n e tic  c h a rg e s  its  re a l and  

im a g in a ry  p a rts , fo rm u la te d  n o n -A b e lia n  th e o ry  o f  d y o n s  [1 5 ,1 6 ] an d  in v e s tig a te d  bound  

s ta te s  o f  d y o n  an d  fe rm io n  [1 7 -1 9 ]  in n o n -re la tiv is tic  as w ell as in  re la tiv is t ic  fram ew o rk . 

W e  h av e  a lso  sh o w n  th a t [17 ,18 ] re la tiv is t ic  b o u n d  s ta te s  o f  a sy s tem  o f  a  fe rm io n  m o v in g  

in  th e  fie ld  o f  d y o n  a re  n o t p o ss ib le  d u e  to  th e  p re se n c e  o f  a  te rm  v a n ish in g  m o re  rap id ly  

th an  in  th e  p o te n tia l o f  th e  sy s tem . In  o rd e r  to  u n d e rs ta n d  th e  b e h a v io u r  o f  re la tiv is tic  

d y o n s , w c  h a v e  in tro d u c e d  th e  sp in  in  th e  H a m ilto n ia n  o f  th e  sy s tem  o f  tw o  d y o n s  in  an 

a d  h o c  m a n n e r  [20] an d  sh o w e d  th a t so lu tio n s  fo r  P au li e q u a tio n  e x is t fo r  d y o n -d y o n  and 

d y o n -fe rm io n  [21] b o u n d  sta te s  in re la tiv is tic  P au li th eo ry .

E x te n d in g  th is  w o rk  in  th e  p re s e n t p ap e r, w c h a v e  u n d e rta k e n  th e  s tu d y  o f  P au li 

e q u a tio n  fo r  a  fe rm io n  m o v in g  in  th e  f ie ld  o f  a  n o n -A b e lia n  d y o n . I t  h a s  b een  sh o w n  

th a t th e  in te ra c tio n  o f  sp in  a n d  the  g e n e ra liz e d  p o te n tia l le a d s  to  an  e x tra  e n e rg y  w h ich  

is  e x p re s s ib le  in  te rm s  o f  g e n e ra liz e d  sp in  m o m e n tu m  o f  th e  p a r t ic le  c o n c e rn e d . It has 

a ls o  b e e n  d e m o n s tr a te d  th a t  m a s s iv e  f ie ld s  p la y  a  m a jo r  ro le  in  d e te r m in in g  th e  

in te ra c t io n  o f  sp in  a n d  g e n e ra l iz e d  p o te n t ia l . A n a ly z in g  D ira c  e q u a tio n , th e  p ro b le m  

o f  in te r a c t io n  o f  s p in  a n d  o rb i ta l  a n g u la r  m o m e n tu m  o f  th is  s y s te m  h a s  b een  

in v e s tig a te d  a n a  th e  ex p re s s io n  fo r H am ilto n ian  has b een  d e riv ed . W e  h av e  a lso  u n d ertak en  

th e  s tu d y  o f  P a u li e q u a tio n  fo r  a  d y o n  m o v in g  in  th e  f ie ld  o f  fe rm io n  by  in tro d u c in g  

su i ta b le  sp in o rs  and  it h as  b e e n  d e m o n s tra te d  th a t b o u n d  s ta te  e n e rg y  e ig e n  v a lu e s  and  

e ig e n  fu n c tio n s  a re  p e rc e p tib ly  m o d if ie d  fro m  th e  b o u n d  s ta te s  th u s  fo rm e d  in  A b e lian  

g au g e  th eo ry  [17].

2. Behaviour of an extended dyon in the field of fermion

In  o rd e r  to  s tu d y  th e  b e h a v io u r  o f  ex te n d e d  d y o n  m o v in g  in  th e  f ie ld  o f  a  fe rm io n , w e  have  

c o n s id e re d  th e  e x te n d e d  d y o n  as an  iso m u ltip le t in te rac tin g  w ith  th e  fie ld  o f  a  fe rm io n . T he  

L a g ra n g ia n  d e n s ity  fo r su ch  a  sy s tem  is w ritten  (in  n a tu ra l un its , ft =  c =  1) as

£ = £o +i\pY^iD^y/-GKlpT^(l>^\i/, (2.1)

w h e re  K  =  e , gj a n d  e, is  th e  e le c tr ic  c h a rg e  o f  fe rm io n  a n d  gj  is  th e  m a g n e tic  c h a rg e  on 

d y o n . £ q in  eq . (2 .1 )  is  t h e ' t  H o o ft-P o ly a k o v  L a g ran g ian  [1 ,2 ] an d

iD^ (2.2)

V" in  e q . (2 .2 )  is  th e  m a tr ix  fo rm  o f  g e n e ra liz e d  p o te n tia l o f  th e  d y o n  a n d  a re  the  

m a tr ic e s  g iv en  by

(2.2a)
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The third term in eq. (2.1) carries the mass of incident dyon in terms of Higg’s scalar field, 
C is the coupling constant between Higg’s triplet and iso-spintriplet. Using minimal 
replacement (2.2) the Lagrangian takes the following form ;

£ = £ q + i ^ \ l f  + (5^ -  KV^ T“)yf

-\irKV^T<‘ \F -G K \F T “^‘‘ ^ . (2.3)

Defining the conjugate momenta as ; r=  5 f/(d jjjr) and by using the definition H = 
7 1 ^  -  £ , for Hamiltonian, the wave equation for nmltiplets of spinor field V'̂ is written as,

f/Vr = [ a  • (P  -  K V l T„ ) + T, + T,

■{KVOT»f]y f=Eyf. (2.4)

In the above equation, we have substituted the matrices y* = a  and y® = In the first 
term of this equation V j is transverse vector potential of dyon field and the term KV^T^, 
under a suitable gauge transformation when the operator r. T in iso-spin space goes to an 
operator represents the Coulombian type of scalar potential e,€j/r  which is the first 
term of interaction potential between fermion and extended dyon [17], The observation 
made in non-relativistic formulation that the symmetry of Hamiltonian requires an 
additional potential term [18] ei€jf(2mr^) in case of interaction of a fermion with dyon 
justifies the presence of an additional term (KV^Tf,)^ in the wave equation, which under 
suitable gauge transformation takes the form This potential has been
introduced in eq (23)  in an ad hoc manner.

Introducing the dyon-fermion ansatz

K0^T,=^(P(r)T?\

KV2T„ = V , ( r ) T h  

the wave equation takes the following form

K vTT,  = [ ^ - ^ y r x T ;  

K K n  = V 2 i r ) T h
(2.5)

+ a-^ -^^^ jA :(r) + PG0{r)T ;  + V ',(r)r-r

(2.6)

This is a very complicated equation, however, we can simplify it by making following short 
distance simplification as the distances involved are very small

k{r) = 1,

G^{r)T r -  m̂ .
(2.7)
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where mo is the mass associated with a particular component of Higg’s triplet. Eq. (2.6) 
then takes the following form for free particle Dirac equation (Le. when V,(r) and V2(r) are 
zero);

Ja P + /9 /« o j V'^= (2.8)

w.here mo is the mass of dyon. The complete plane wave solution for bispinor y/{x) may be 
written as

yf{x) = = f ( p ^ a ' ' ) e x p { - i p > ‘ X^}. (2.9)

where f  is a function and the suffix is to tell us that we are dealing with plane wave of 
momentum P  and the suffix is to identify four solutions of y/, while ^ and fj arc two 
component functions. In order to derive the wave equation of an extended dyon moving in 
the field of a fermion, let us consider the four-potential of field as ~
with a I and b I as electric and magnetic four-potential as:;ociated with dyons carrying the 
generalized charge gj =  ej -  igj with €j and gj as electric and magnetic charges. The wave 
equation in this case may be obtained by using the following transformation [22J

(2 . 10)

where vector sign (bold) and cross product (x) arc demonstrated in internal group space; 
V = 0, 1,2, 3 are indices r^ipresenting external degrees of freedom. In presence of dyons, the 
introduction of second four-potential is actually compensated by an enlargement of the 
group of gauge transformation [16]. SU(3) gauge symmetry spontaneously broken by an 
octad Higg’s field exihibits SU(2) x U(l) symmetry with the non-zero vacuum expectation 
value of the Higg’s field. According to general topological argument [22], the very 
presence of the U (l) factor in the unbroken gauge group guarantees the existence of 
smooth, finite energy stable particle like solutions with quantized magnetic charges and 
chirality quantised dyon. With the help of prescription given by cq. (2.10), we get the 
following equation for the two component spinor ^ and 77;

[ a ( P - K V r j f , ) ] f i  = [ e - v r o t „

\ c \ P  -  K V r f , ) ] k  = [e-VroTu->»i

(2.11)

(2.12)

Restricting our-self to the case of non-relativistic motion in a weak field and considering 
only positive energy solutions

£ = £ + /« :  \E-KV„oT^\{{m,  (2.13)

we get the following energy eigenvalue equation in term of | ;

(2.14)
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where g = 5 x { /f / |A r | v r f „ ]  = dx{e~>« v r  f,,} .

This equation looks very complicated but it may be simplified by using dyon-fermion 
ansatz given by eqs. (2.5) and (2.7). As such eq. (2.14) may be written as follows

Now

with

4 =

tan 0 = 1  =

(2.1.5)

(2.16)

(2.17)

where and arc electric and magnetic four>potcntials respectively. Eq. (2.15) is 
analogous to Pauli equation for a dyon moving in the electromagnetic field of a 
fermion [18,21]. It has the following modification in the energy gained by a non- 
Abelian dyon moving in the field of a fermion :

1^1
Into { a .g ) .

This equation can also be written as 

E' = f J DM=

(2.18)

(2.19)

where 2niQ

is Bohr magneton for a dyon moving in the field of a fermion and

Âd (2.20)

is generalized spin moment of dyon. Eq$. (2.18), (2.19) and (2.20) show that massive field 
plays major role in describing the dynamics of non-Abelian dyon moving in the field of a 
fermion. Consequently, extra energy term in the Hamiltonian may be interpreted as the 
interaction of massive fields associated with non-Abelian dyon with a vector field resulting 
from the spatial rotation of generalized four potential. The third component of the 
generalized spin moment operator for dyon may be written as

the eigenvalues of which arc

(2.21)

(2.22)

Its value is very large as compared to the value of ordinary Bohr magneton of Abelian 
electromagnetic theory mainly due to the presence of massive fields associated with non- 
Abelian dyon and magnetic charge present in the dyon.



3. Spin-orbit coupling for spin-1/2 non-Abelian dyon moving in the field of a fermion

Let us consider the motion of a spin-1/2 non-Abelian dyon moving in the field of a 
fermion retaining the terms up to order of (where v is the velocity)« Putting = 0 
and Vo(r) = Vj(r) = KVq in eqs. (2.11) and (2.12) and applying monopole dyon ansatz given 
by eqs. (2.5) and (2.7) wc get
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[ £ - V j( r ) ] | = ( a  P)»7.

[£ + 2« i-V rf(r)]T 7  = (CT P ) ^ .

(3.1)

(3.2)

where we have used £ = £  + m. These equations, in the first approximation, yield the 
following energy eigenvalue equation in terms of spin function ^ :

I® - ^  X <*■ ̂ >]
which on further simplification, gives the following expression for energy operator 
(Hamiltonian) under first approximation :

H = ArVo + f  1

!]■4m^
\ fCdVaP

L [ a . { w v . x p } ]
4mg

(3.4)

In order to derive the expression for Hamiltonian in second approximation, we use the 
following function 0 in place of ^ in eq. (3.3)

0 = (3.5)

the normalization of which up to second order leads to the following value of factor u
A

1 -
o9Hq

(3.6)

Using this value of ft (and hence of 0), we get the following relativistic ejcpression for 
corresponding Hamiltonian in second approximation

/ / '  = affu

or

-  4 ^  [ f f -  H0 + Hf + H2 + Hj

where s  - ^ V q = ~qe (e  is the field strength)

(3.7)
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and Ha corresponds to the non-relativistic term of the Hamiltonian while H, is the 
relativistic correction term to the Hamiltonian various parts of which arise due to different 
relativistic interactions.

4. Pauli equation for an extended spin-1^ dyon |n the field of a fermion

In order to deal, more accurately, the motion of siin-1/2 extended dyon in the field of a
fermion with the inclusion of spin effect we start with following Lagrangian density

c
£ = £o + «>^ r  -  ^ (V v^+ )(V v^j + / r v " r „ v 't ^

^ ( A r v i ? r , ) W . (4.1)

where £q is the 't Hooft-Polyakov {1.2] Lagrangian and the remaining part of this 
Lagrangian density corresponds to the Schroedinger field in which the interaction with the 
scalar generalized potential has been written in terms of last two terms and interaction with 
the vector generalized potential could be obtained by writing

G = T"* » (4.2)

where matrices 7" satisfy the commutation relation given by eq. (2.2a) and is the field 
tensor associated with dyons [22]. In this Lagrangian, the term is the non-
Abelian gauge form of the Coulombian type of interaction depending upon electric 
coupling parameter e, ej and the term l/(2m) (KVP,Tf,)  ̂ is the non-Abelian gauge 
form of scalar interaction depending upon magnetic coupling parameter (^, j?/) which is 
introduced in the Hamiltonian of dyon-fermion system to maintain the higher symmetry of 
the Hamiltonian.

Using field theoretical method to obtain complex conjugate of Schroedinger field 
and the Hamiltonian, the non-relativistic wave equation for /-th dyon in the field of a 
lermion with charge cj in non-Abelian gauge form may be written as

1
2m [ { - i V  -  K V j T . f  +  { 2GK<I >„T„) { KVS T, )  

+  K { V , T „ f ] y r  =  Eyr (4.3)

which can be simplified in the following form with the help of dyon-fermion ansatz given 
by eqs. (2.5) and (2.7):

^ ^ ( - i V f + 2 m a V , ( r ) { T ? }  + V , ( r )  { T  ■ ] v  =  < (4-4)

where Vj(r) is the scalar potential depending on the electric charges of the dyon and 
fermion while V2 (r) is the scalar potential depending upon electric charge of the fermion 

73A(4)-I8
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and magnetic charge of dyon. Under a suitable gauge transformation where the cu ra to r
^ ^  ^ A A
r . r  in isospin space goes to an operator Le. and the matrix is given as :

so ( r ; f  = ( 7 , f

which is a unit matrix. We can write eq. (4.4) as follows

(-jF )^+ 2 m o V ,(r)^*  ^ l ]  [o  .^i]
1

2m
¥i^
¥2J

This equation splits in to the following equations

^  [ ( - i 7 ) ^  +  2 m o V ,(r )  +  V^{r)  +  F ( r ) L  a ] ¥ i  =  ^iV^i

and ’ [ i - i v f  -  2moV, (r) + V'j (r) + F(r)L • ff]2m

(4.5)

(4.6a)

(4.6b)

both of these equations are same except for a negative sign which occurs due to the
A

Structure of matrix implying that energy eigenvalues are further degenerate due to the 
internal degrees of freedom of non-Abelian dyons.

For solving these equation we shall treat spin-orbit interaction F(r)L,a  as small 
perturbation. Though the non-relativistic Pauli equation (4.6) are not sufficiently complex 
to yield precise values for the fine structure of energy levels of dyon-fermion bound states 
yet these can be safely taken as a useful guide to an understanding the role of spin in bound 
states of dyon and fermion.

The unperturbed Hamiltonian

- V(r) i^n)

where V(r) =
r 2mr^

for (4.6a)

and V'(r) =
r 2mr^

for (4.6b)

represents central force problem for fermion-dyon dynamics in non-Abelian gauge theoryA ^
due to the structure of matrix Tj and the spin-orbit interaction energy H' is given by Hj 
of eq. (3.8) which may also be written as [21];

(4.8a)
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and (4.8b)

where the symbols have their usual meaning. Since P  = 1? + Ŝ  + 2L.S, the Pauli 
operator for H ', is given by :

and

^ - (̂ *1 - (̂ ’l ]

(4.9a)

4m^

and the Pauli equation becomes

[Hxp] vp  = [(^o)^ + W',(P)vr,

[h 2p \ wp = [(Wo)^ + ( ^ i ) . ] v '=  '^riP)V,

(4.9b)

(4.10a)

(4.10b)

where {"•I = "lo  0 
. 0

1 V2 +
2m 2wr^

1 V2 _ £ ifi
2m 2mr^ Jp

and I'-I ■(;:),

(4.11)

(4.12)

represents the Pauli wave function. The Pauli wave equation for unperturbed Hamiltonian is 
given a s :

f/,0 0

. 0
r :

\ y -  j
= 1V(0)

or " lo v ^ r  = ŵ ‘" v r -

(4.13)

(4.13a)

(4.13b)

where //,o = -  +L y 2  + f i f i  _
2m r 2mr^
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= - 1-V2 -  ^

or

2m r
^jgj 

2mr^ '

(4.13c)

This wave equation can he solved by introducing the total angular momentum operator as 
vector sum of the orbital angular momentum and the gauge field isotopic spin and spin as 
follows

J  = L + S,

L = Af +  ( r . r ) r ,

;x_r'^

(4.14)

A / =  r x  P -

which satisfy the following eigenvalue equation for the angular momentum eigenfunction

V (7  + l)

/(/ + 1) 
m

£2

h
f2

7
t ( t+ \ )

(4.15)

U (r )_where  ̂„,<(0.0) are dyon harmonics [23] and the radial function ——  = R{r) satisfy 

the equation

(4-16)

Solving equation (4.13a) and (4.13b), we get the following energy eigenvalue for the 
system of an extended dyon spinning around another fermion.

e jli
m= -2 {m l lm ) (e ie j )  (2 ^  + 1) + (2/ + l ) '+ . (4.17)

where Â = 0, 1 .2 ,...

and wave functions simplified to where are dyon
harmonics. Thus, the Pauli wave function for spin up and down states are given by

and

0 ^

(4.18)

Rnty^r.
(4.19)

m J
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In the absence of spin-orbit interaction both the wave function correspond to the same 
energy. In order to determine splitting due to spin orbit interaction, we should choose a 
representation in which is diagonal:

i^i)p  “  I +  I / 2 . m y )

/ + ttij + 1/2
V 21+1 ^(n. l .m,  =ntj *1/2 mj = +1/2)

jl  -  mj + 1/2
V 2 / +  1 + 1/2, (By =-1/2)

jl + mj + 1/2
V 27T1
jl — mj + 1/2

,V W + 1

^nl ^k. /, (By - 1/2

^(il ^k.l'.mj + 1/2

(4.20)

Similarly, we can write (^)/> = ^ (n , l , j  = ] -  1/2, wiy). Then the first order perturbation due 
to spin-orbit interaction would be given by

+ ^  j d r - ^ < l i * l ( P ) p  - { L^) p  - ( 5 ^ ) / . ] 0  (4.21)

^  +1) -  /(/ +1) -  3/4} JdT (l/r3  )

 ̂kJ.mj - 1/2|

{ H i + 1) -  « /+ 1) -  3/4)f i£ i .
8m^
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where the upper and lower signs corresponds toy = / + (1/2) and j  = I - (1/2) respectively. 
After integration we get

M,(i) =

f { /  +  ( l / 2 ) } ( /  +  I) a § '

/ 1 \ _ f 1 i» <2 3-5nn/ + (l/2)}flg
( ̂ 4 /  I  4̂ I »/1 '' „5 {/ _ (,/2)} {/+(1/2)} {/ + (3/2)} a  ̂ • ^

The splitting of energy levels corresponding to equation (4.13a) is 

W = W'(0) + 1V<»

En -
EN^jej £^(e,g,)f[3-5/»3{f + (l/2)}]fl2

2mg«3(/ + i)(2 / + i)o2 m ^/|S (2 /-l)(2 / + l)(2 / + 3)a^

for; = / + (l/2)

£^(e,gp/[3-5n3{/ + (l/2)}]ao2 
(2 /-1 )  (2/+1) (2 /+  3)

fory = /-(1 /2 )
(4.25)

' '  2 m g n Z (2 / +  l )o g

Similarly, wc get another set of equations describing splitting of energy levels 
corresponding to eq. (4.10b) with the sign of er, ej reversed. for both the cases is given by 
eq. (4.17) and Bohr radius for system is given as

Oo = ----- -̂-------- (4 .26)

Eq. (4.25) gives the splitting in the energy levels corresponding to quantum number 
n for y = / + 1/2 and y = / -  1 /2  respectively. It shows that ad hoc introduction of 
spin modifies the usual energy eigenvalue and eigenfunction of bound state of a dyon 
and fermion [20,21]. The bound state of an extended dyon and fermion is further 
modified due to presence of massive field which play major role in forming the bound 
state. The ad hoc introduction of spin becomes important since the relativistic Dirac 
equation for bound state of a fermion and extended dyon can not be solved exactly due to 
the presence of a term vanishing more rapidly than r~' in the interactirul potential of 
the system.
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