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A b s tr a c t  * U sing the ‘p re a v e ra g e d ’ p a ir p o ten tia l m ethod , we d e riv e  an e ffe c tiv e  
L ennard-Jones (ELJ) (12-6) potential, which includes the influence o f the angle-dependent 
part o f  potentials through the expressions o f the effective diameter Gr and well depth € t Wc 
em p lo y  th is th eo ry  to c a lcu la te  the th erm odynam ic  p ro p erties , c r itic a l p o in t lo ca tio n , 
surface tension and therm odynam ic behaviour along the liquid-vapour coexistence curve o f 
N , and O , The theory is further applied to calculate the transport properties such as the 
shear viscosity  and therm al conductivity o f TV, . In all these cases, the agreem ent w ith the 
experim ental data is good
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1. Introduction

Aim of the present paper is to compute the thermodynamic and transport properties of molecular 
fluids. A theoretical approach developed to deal with the thermodynamic properties of the 
molecular fluid is the perturbation theory in which either a spherically symmetric potential or 
non-spherical potential is taken as a reference potential and effect of electrostatic interactions 
is considered as a perturbation [ 1 ]. The spherically symmetric reference potential is suitable for 
weakly anisotropic pair potential. On the other hand, for strongly anisotropic pair potential, the 
non-spherical reference potential gives good convergence. In many molecular fluids such as 
nitrogen-like fluids, the repulsive core is slightly non-spherical. For such molecular fluids, a 
perturbation theory is employed in which the central potential is taken as a reference potential 
and the angle-dependent part of interaction as a perturbation [1-6], The perturbation series for 
free energy is summed up using the Padc’ approximant given by Stell et al [7].

Another method for calculating the thermodynamic properties of molecular fluids is the
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‘preaveraged’ potential method [7-9]. This method can be employed to estimate the 
thermodynamic properties of molecular fluids of weakly anisotropic potential.

Transport properties (TP’s) of molecular fluid have aroused considerable interest in 
recent years [10,11]- However, this is confined to the Gaussian overlap (G.O.) model [ 12]. No 
attempt has been made to calculate the TP’s of molecular fluid, whose molecules interact via a 
pair interaction potential of the form

w(r, a) ], (0 2) = «0(r) + ua ( r , Q) ], (02), (1)
where u0( r ) is a spherically symmetric potential and ua (r, col , co2) is the angle-dependent part 
of pair interaction. Here r = I r ] -  r 2 I is the centre-to-centre distance and 6) represents the 
orientational coordinates (0, 0r) of molecule i.

In the present work, we employ the ‘preaveraged’ potential method [9] to derive the 
effective pair potential, which includes the influence of the angle-dependent pair potential and 
may be a function of temperature T. This effective pair potential is used to calculate the 
thermodynamic and transport properties of molecular fluids.

In Section 2, we discuss the theoretical basis for obtaining the ‘preaveraged’ pair 
potential for a molecular fluid. This ‘preaveraged’ potential is expressed in the effective Lennard 
Jones (12-6) form. Section 3 is concerned with the evaluation of the thermodynamic properties. 
The critical point location, surface tension and liquid vapour coexistence curve are discussed 
in Sections 4,5 and 6, respectively. Section 7 is devoted to calculate the transport properties of 
the system. The concluding remarks are given in Section 8.

2. Theoretical basis

We consider a molecular fluid of rigid linear molecules interacting via pair potential given by 
eq. (1), where w0(r ) is the central potential and ua is the angle dependent potential. For the 
central potential, we take the Lennard-Joncs (LJ) (12-6) potential

U0{r) = 4 e[{a /r )n - ( a / r f ], (2)

where e and a  are, respectively, the well depth and molecular diameter. For angle dependent 
part, we take

M perm ^dis (3 )

where uperm is the interaction between the parmanent multipole moments of the molecules, um 
is the interaction of the induced multipole moments in one molecule with the permanent multipole 
moments in other molecule and udis is the anisotropic dispersion potential. These interaction 
potentials can be expressed as an expansion in spherical harmonic [ 1 ]. For numerical calculation, 
however, we take the explicit angle-dependent form of interaction [1,13].

The configuration integral ZN is defined in this case as [ 1]

Z N =£2~n J ..Jex p [-/?£ ,< ; u(x,. , (4)

where the vector &(r. G ) ( )  represents both the position of the centre of mass and orientation 
of molecules j, dxt = drt d(Of Q  = An for linear molecule and j3 = (kT )-1. Using eq. (1) in



eq. (4), we follow the method of Shuklae/a/ [9] and express the configurational integral in the 
form
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Z N = J .J e x p [ - j8 I 1<y V/(^ )]n ,= i dr, , (5)

where '¥(rlJ) is the orientation-independent ‘preaveraged’ pair potential expressed as

tf '(r )  =  uu (r) + V(r), (6)

where uu  is the LJ ( 12-6) potential and

V(r) = V} (in) + V2(perm) + V,(anis -dis) + V2(dis - in) + V2(perm -dis)

+ V^(perm) + V4(perm). (7)

The explicit expressions of these terms are reported elsewhere [9]. Using these 
expressions, eq. (6) can be expressed in a compact form

W )  = 4e (a ,2(ct / r)'2 - [ a6(CT / r)6 + Ag«7/ r f  + A|0«7 / r)10])

+  4e ( A , , (cx /  r)"  + A, ,«x /  r)13 -I- A, 5(ff / r ) , s ) . (8)
The explicit expressions of the coefficients >4m arc given in Appendix A in terms of the 

following reduced quantities

T* = k T l e ,

jt/*2 = / i 2 /£<t \

Q n  r . Q 1  ! e o \

a  * = a  / <r3 .

In the present calculation, we neglect the terms appearing in the second bracket of the 
right hand side of eq. (8), as their contributions are found to be relatively very small. For 
example, these coefficients at T* = 1.0 are reported as for N2

A„ = -9 .7 7 5 x l0 '3, A,3 =0, A|5 = -7.731 x 1(T*,

and for

A,, =-1.787x1 O'3, A,, = 0. A(j = — 0.753 xlO-6.

This shows that their contribution to the effective potential may be neglected. Thus, we 
obtain an expression for the effective ‘preaveraged pair potential as

•P(r) = 4 e (A n (cr / r)12 - [ a6((T/ r)6 + Ag ((T / r f  + A ,0 ((T / r)10]) . (9)

The coefficients Am given in the Appendix A, may be expressed in the forms

*2 (10a)
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Ag = b*2 / T* + (3 / 2)e* , (10b)

A10= (7 /5 )c*2 / T \ (10c)

A,2 = 1 + (14/ 225)a*4 / T*3 -  (4/5T*)K2(l + 1.9K 2). (lOd)

They are expressed in terms of reduced quantities 

a " = j i212 s o 3 = \ i 212, 

b * = / i { ? / 2 a r 4  2 ,

c* - Q 2 / 2e a 5 = Q'2 12, 

d ' =ap.2/2eab = a *  /t*212,

e* = a  Q2 /2 e o s = a*0*2 12. 0 0

Here,/i is the dipole moment, Q the quadrupole moment, a  the polarizability and K is the 
anisotropy in the polarizability of the molecule.

The ‘preaveraged’ pair potential given by eq. (9) can be expressed in the form of the LJ 
(12-6) potential (eq. 2) by simply replacing

a  o r ( T * )

and

s —*e t {T ) .

Thus, the angle-dependent part of potential modifies the values of crand £. In order to 

obtain expressions forc^andSy., we approximate a  / r « a  / rm = 2*,/6 f 14] and write eq. (9) as

n r )  = 4e ((a / r)12 A|2 -  (o r  / t)6[a6 + A82~l/3 + A102‘2/J] ) . (12)

E£q. (12) can be expressed in the LJ (12-6) form

«P(r) = 4£T [((Tr / r ) l2- « J 7. / r ) 6], (13)

where

o *  & o T / o  = F~m  , (14a)

e A & eT / e  = A n F2 (14b)

and

F = [A6 +A%2-'li + Aw l - 2n) l \ 2 . (15)

Thus, the effective pair potential can be expressed as the ‘modified’ LJ (12-6) form in 
terms of oT and £ j. Then the molecular fluid can be treated as the U  (12-6) system.
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3. Thermodynamic properties of molecular n-H s

We apply our theory to calculate the thermodynamic- properties of molecular fluids. In our 
approach, we consider the reduced density p* = p cP and reduced temperature T* = kTIc for 
the LJ (12-6) fluid and replace p* by p* = p V  'and 7* by 7'r* = T' I e a . Then the free 
energy and pressure of molecular fluid can be given by

M p \ T ' )  = Au (p],T ;  ), (16)

P ( P , t ' )  = Pu (Pt , t; ) ,  (17)

where Au (p r ,TT ) and Pu (pT,TT ) are, respectively, the free energy and pressure of the 

LJ(12-6) fluid at the reduced density p* and reduced temperature T’ .

3.1 Virial equation o f  state for dipole molecular fluid :

We may express the pressure of the molecular fluid in the virial form

p P I  p = l + I ~ 2 Bn (T * )/V n-' , (18)

where Bn is the nth virial coefficient which is given by

B„ (T*) = (2k No ' /3)"~‘ B*n(T*) (19)

with

Bmn(T*) = C AV" " BnU(T'T ), (20)

where BnLJ(TT ) is the reduced nth virial coefficient of the LJ(12-6) fluid at the reduced 

temperature Tr , which can he evaluated numerically and is available [ 15].

For example, wc calculate the reduced second virial coefficient for the dipolar
LJ( 12-6) fluid as a function of / = jJ “ / V? for different values of 1*. They are compared with 
the exact results [15] in Table 1. The agreement is found to be good for low value of f j*2 (/<  1.0). 
The deviation increases with decrease of T* and / or increase of r.

Table 1. The reduced second virial coefficient B *  for dipolar L J0 2 -6 )  fluid as a function o f  
/ =

T *
t = 0 1 t =0 3 it p VI t = 1 0

P re se n t E x a c t P resen t E x ac t P resen t E x ac t P re sen t E x a c t

0 .7 5 -  4 .2971 -  4 2871 -  5 2407 -  5 2364 -  7 4836 -  7 5043 -  2 8 .8 4 9 0 -  30 .4

1 .0 0 -  2 .5 9 1 9 -  2 .5 8 8 9 - 3 .0 1 3 0 -  3 .0102 -  3 9348 -  3 .9 4 0 6 -  9 .3 3 1 0 - 1 0 .5 4

1 .5 0 -  1 .2204 -  1 .2197 -  1.3736 -  1.3728 -  I 6940 -  1.6931 -  3 4332 -  3 .4903

2 .0 0 -  0 .6 3 7 7 -  0 .6 3 7 5 -  0 .7172 -  0 .7 1 6 9 -  0 .8 8 0 0 -  0  8799 -  1 7173 -  1 .7265

2 .5 0 -  0 .3 1 9 0 -  0 .3 1 8 7 - 0  3 6 7 9 -  0  3658 -  0 .4 6 7 0 -  0 ,4 6 7 0 -  1 .9839 -  0 .9 8 5 8

3 .0 0 -  0 .1 1 9 5 -  0.1 194 -  0 .1529 -  0 .1 5 2 7 - 0.2201 -  0 .2201 -  0 .5 5 1 6 -  0 .5 5 1 7
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3.2 Thermodynamics for dense molecular fluid

This approach can be used to calculate the thermodynamic properties of dense molecular 
fluids. These properties can be calculated using the Vcrlet-Weis [16] version of the Weeks- 
Chandler-Andersen (WCA) [ 17] perturbation theory. However, we are interested here to calculate 
the thermodynamic properties such as Gibb’s free energy G, enthalpy H and molar volume V at 
zero pressure using expressions due to Grundke etal[  18].

We use this theory to calculate the thermodynamic properties of fluids N2, 0 2 and Ar at 
zero pressure. The force parameters of these systems are given in Table 2. The values of aand 
£for N2 are used by Stephan etal [ 19]. The other force parameters are those used by Singh and 
Sinha [20]. The calculated values of G, H and V are compared with the molecular dynamic (MD) 
values [21] in Table 3 for N2, 0 2 and Ar at P = Oand T = 83.82°K. The agreement is found to be 
good.

T ab le  2. Force param eters used in present calculation .

S ystem a  ("A) £ / k
(K )

a  x  I024 Q  x  1026 
(C m ’ ) (esu C m 2)

K

N 2 3 6 5 0 1 0 0 .0 1 7 1 7 3 0  -  1.40 0 .1 7 6

3 .3 8 8 1 2 2 .4 4 0 1 .6 0 0  -  0 .3 9 0  2 3 9

A r 3 .4 0 5 1 9 9 .8 0 0

T ab le  3. G ibb’s free energy G, enthalpy H and volum e V for fluids at P = 0 and T = 83,82 K

S ystem -  G/  (J m o r 1) -  H (J m o l ') V (Cin^ -m o l-1)

n 2 T h e o ry 2 8 7 2  50 4 8 4 4 .8 9 35 .91

M D 4 9 0 8 .0 0 3 6 .1 2

O , T h e o ry 3 9 9 4 .2 5 6 4 6 7 .2 9 2 5 .1 0

M D 6 4 4 3  00 27 24

A r T h e o ry 3 5 6 0 .4 0 585 2  72 28 .41

M D 6 0 6 6 .0 0 28 21

4. Critical point location

In this section, we employ our theory to study the critical temperature T , critical volume Vc 
and critical pressure Pc for molecular fluids. For the LJ (12-6) fluid they are given by

T* s  kTc / £ = 1.26, (21a)

V* m vc I N o 3 = 3.1. (21b)

Pc&Pctj3 / e  = 0.117. (21c)

In order to estimate the critical constants of molecular fluids, we replace e —* eT and 
a  —» CTr in eq. (21). Thus,

T ‘ = 1.26 e. (22a)



vc = 31 & ,  (22b)

/£  = 0.117e/ O'3. (22c)

Eq. (22a) may be solved by the interativc process. Knowing 7  * one may obtain V * 
and Pc*. C c

We first consider the dipolar LJ( 12-6) fluid. Using the expressions of e and o  in eq. (22), 
we obtain

Tt = 1-26[l + (p *2 / 2)2 / 3 r *]2 /[l + (14/225)(/i*2 /2 )4 / T*3] , (23a)

vc = 3.1 ( [l + (/i*2 /2 )2 /37;*]/[l + (14/225)(A/*2 /2 )4 / r r‘3] ) ^  , (23b)

P* = 0.117/ VT26 [7/1  + (p *2 / 2)2 / 37*],/2. (23c)

Eq. (23a) can be rearranged and written as

7* = 1.26[l + (2/3)(;U*2 / 2)2(1 / T*) + 0.061728(p’2 / 2)(1 / f (*2)+...]. (24)

Using the interative process, it can be solved to give

7* =1.26 + (2 /3 )O t*2 /2 )2 -0 .3 0 3 7 4 3 (/2 /2 )4 + .... (25)

From eq. (23a), we get

[l + (/i*2 / 2)2 / 37*]/[l + (14/ 225)(/i*2 /2 )4 / T*3]

= T* / (l.26[l +(//*2 / 2)2 /3T(*]).

Substituting this value in eq. (23b) and using eq. (25), wc obtain an expression for the 
reduced critical density p* = V̂*-1 for the dipolar fluid

p* = (1 / 3.1)+ (0.2560/6) (p *2 / 2)2 -0.032745((p 2 / 2)4+ .. . . (26)

Similarly from eq. (23c), the reduced critical pressure P’ is expressed as

P* = 0.117 + (5 x 0.09286/ 6) (p *2 / 2)2 -  0.031893(p*2 / 2)4 +.... (27)

In eqs. (25)-(27), the first terms are the critical values lor the LJ (12-6) fluid whenp*=0. 
The second and third terms are the second and fourth order perturbation corrections due to the 
dipole-dipole interactions. The second order correction for Tf agrees with the previous result 
122]. However, the second order correction for p* and P* differs quantitatively from the 
previous results [22]. The fourth order correction terms in eqs. (25M27) are new. From eqs. 
(25M27), it is clear that the values of T(\  p* and P* increase with increase of p *2 for lower 
value of p*2, while they decrease with increase of p *2 for higher values of p*2. Results of Tc , 
P* and V* based on eq. (22) and eqs. (25)-(27) are compared in Figure 1. They are in good

Theory for thermodynamic and transport properties of molecular fluids 621
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agreement for lower values of p*2( p '2 < 1). However for higher values of p*2, they differ. 
This shows that our theory predicts better results for lower value of fj*2.

F ig u re  1. The reduced critical tem perature T  * Critical volume Vc * and critical pressure P ( * 
o f  the d ipo lar LJ (12-6) fluid as a function  o f  //*-' The points (0) 7\ *, A P ( * and •  V * )  
represen t the se n es  expansion  values

Next we calculate the critical temperature T( , critical volume V and critical pressure P{ 
for molecular fluids such as N2 and (with the force parameters given in Table 2) using cq. 
(22).

The values olT  . V andP for N2 and are compared with the experimental data 115] 
in Table 4. The agreement is good. .

T ab le  4. C ritical tem perature T  , critical volum e V and critical pressure for m olecular 
fluids

System T (k) V. (C in ') Pn (a tm ) P V /R T

N 2 T h e o ry 129 .27 9 0 .2 2 3 3 .8 9 0 .2 8 9

E x p t 1 2 6 .1 0 9 0  10 33 50 0 292

T h e o ry 1 5 4 .4 0 72 58 50  28 0 288

E x p t. 1 5 4 .4 0 7 4 .4 0 4 9 .7 0 0 .2 9 2

5. Surface tension
In this section, wc apply our theory to calculate the surface tension (ST) along the liquid-gas 
phase boundary. The ST of the LJ (12-6) fluid is described by 123]

y * s y < r2 /e  = 2.666(1 - T *  IT *)’27 (28)



where T *  = 1.26. In case of molecular fluid, we replace e - + £ r and a  a  T in eq. (28). Then
the ST of the molecular fluid is expressed as

s / c r 2 / £ = (f / a 2) 2.666 (1 -  7^ / 1.26)1,27, (29)

where T* = kT I e r = T * le. Eq. (29) is applicable to a molecular fluid over a wide range of
temperature. In this approach, the amplitude is modified but the exponent remains a constant 
with a value of 1.27.

We employ eq. (29) to predict ST y for N2 and 0 2. These results are reported in Figure 
2 as a function of T along with the experimental data [24]. The agreement is good. This shows 
that the T* -  dependence of <7 ande is of real physical significance.
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F ig u re  2. The surface tension y o f  and O, as a function o f tem perature T. The points (O) 
rep resen t the experim en ta l values

6. Liquid-vapour coexistence curve

In this section, we apply our theory to study the behaviour of the liquid-vapour coexistence 
curve of the molecular fluid. The behaviour of the LJ (12-6) fluid may be described by the 
following equations [23,25]

V*IV*  = l+ ( 3 /4 ) ( l - 7 ’*/7-f*) + (7 /4 ) ( l-7 -* /7 ^ ) ,' ;' (30)

V*/V* = l + 0 / 4 ) 0 - T * / T * ) - 0 / 4 ) 0 - T * / T c ) i n , (31)

where V,*, V,* and V * are the reduced liquid, gas and critical molar volume. Here Tc* = 1.26 

and V* = 3.1. These equations represent the behaviour of Vc* / V* for T*ITC < 1.

For molecular fluid, where £ is replaced by £y and o  by , we find [23]

V f i v * - *  (Vc IV*) ( a A l a Ac? ,
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T */T *->  7^*/1.26,

where a c is the value of ft at T* = T*c . Then eqs. (30) and (31) can be expressed as

V* / Vj* = (<7C / <7)3 [1 + (3/ 4) (1 -T* /1.26)+(7/ 4) (1 -  T'* / 1.26),/3] , (32)

vc 1 v« = (ffc ’ [> + (3 ■/ 4) (1 -T* / 1.26)- ( 7 / 4) (1 -  T* / 1.26)1/3]. (33)

The values of the density p, where p* s  v* -1  for N2 are demonstrated in Figure 3 as a
function of T< Tc along with the experimental data [2,26]. The agreement is excellent.

F igure  3. The comparison of theory with experiment for liquid-vapour coexistence curve 
of N, .

7. Transport properties of molecular fluids

Lastly, we apply out theory to estimate the transport properties (TP’s) such as shear viscosity 
p  and thermal conductivity A of molecular fluids. We assume that the structure of a dense fluid 
is similar to that of a hard sphere (HS) fluid of properly chosen hard sphere diameter dT . The 
TP’s of the ELJ (12-6) fluid may be evaluated through the evaluation of the TP's of the HS fluid.

7.1 Effective diameters:

To obtain the effective diameter of the fluid, we divide the effective pair potential y/(r) into a 
reference part y/Q and perturbation part y/p , according to theWeeks-Chandler-Andersen (WCA) 
scheme [17]

where

and

¥ 0(r) = \l/(r) + e T , r c r m ;

= 0, r < r„ ;

yrp(r) = - e T , r<rw;

(34)

(35a)

= V(r), (35b)



where rw= 21/6 aT for the ELJ ( 12-6) potential. Using this perturbation scheme, the free energy 
A for the molecular fluid is given by

A = A() + (1 / 2 ) Np J g0(r)\f/p(r)dr , (36)

where A0 and#0 are, respectively, the free energy and radial distribution function (RDF) of the 
reference fluid.

A0 of the reference system can be obtained by a blip function expansion [17] about HS 
system interacting through uHS(r)y

M//5(r) = °o, r < d T \

= 0, r < dr (37)

where dT is the effective hard sphere diameter, which is determined by the Verlet-Weis method
[16] and given by

d j  = djj £l + (o  j j / 2 trqq ) <5j, (38a)

where

dB = / 0 ~ exP ( - P y /0(r)))dr ,

S = J ((r / dB) - 1)2 (d / dr) (exp |- /J  ^ 0( r ) )) d r ,

<r00= ( l - r ; / 2 ) ( l - r j r 3

cru = (1 ~1.5ti + 0.5t}2 -  5.7855r/3 -1 .5 1774) (1 - tj)-4 (38b)

Here t] = 7t p  d^ / 6 is the packing fraction.

7.2 Transport properties :

The TP’s of the LJ (12-6) fluid can be estimated through the evaluation of the TP’s of the HS 
fluid with the properly chosen effective diameter. This approach can be extended to evaluate 
the TP’s of the ELJ (12-6) system. We employ the revised Enskog theory (RET) of Bci jeren and 
Ernst [27] to estimate p  and A of the HS fluid. They arc given by
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n  = ) f ‘ (1 +<4 / 5) L + 0.7615 L2] fiQ , (39)

k  = l gHS (dT)]"' 11 + & 15) L + 0.7575 L2 ] , W

where

/i0 = (5 /1 6  7i d T2)(nmkT)'n  , (41)

A0 = (75k/ 64 n d T2)(n  k T /m )m  , (42)

L = 4 r )g HS(dT). (43)

Here, m is mass of a particle and ghs^ t ) ' s Equilibrium radial distribution function (RDF)
of the HS fluid at the contact.
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The effective hard sphere diameter dT and RDF gm  (d) may be determined from the 
experimental values of the second virial coefficient B(T) and equation of state PV/NkT, 
respectively [28]. However, in the present case, the diameter dT is determined using eq. (38), 
and the equilibrium RDF g/iS^ T ) is given by [29]

^ s (rfr ) = ( l - r j / 2 ) ( l - r j r 3 (44)

8. Results and  discussion

We calculate the TP’s of fluid N2 using ELJ (12-6) and LJ( 12-6) models with parameters given in 
Table 2. We present the shear viscosity /I of fluid N2 in Figure 4 at T = 250°K. Experimental data
[16] and result obtained previously by Sinha [11] with GOCE model are also reported. The 
agreement is good particularly at low density. This result is a bit better than the result of the 
GOCE model given by Sinha. From the figure it is clear that the angle-dependent interaction 
enhance the value of /.i.

Figure 4. The shear viscosity y  of N, as a function of p  at T = 250"K

Figure 5. The thermal conductivity A of N2 as a function of p at T  = 130’K.



Figure 5 demonstrates our results for thermal conductivity A of fluid N2 at T = 130°K. 
The results obtained by Sinha 111 ] and the experimental data [ 16) are also shown there. The 
agreement is good except at high density. The angle dependent interaction enhances the value 
of A also.

9. Concluding remarks

The effective pair potential is expressed in the I J( 12-6) form by simply replacing <7 a  r (T*) 
and € Er (T*). Then the system can be treated as the LJ(12-6) system. The ELJ (12-6)
potential is employed to estimate the thermodynamic and transport properties of molecular 
fluids over a wide range of temperature and density. In all these cases, the agreement with 
experimental data (where available) is good.
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AppendixA
In this Appendix, expressions for the coefficients Am appearing in the right hand side of eq, (8) 
arc given as

As = l+ ( l /2 ) ( 0 * / i* 2) + ( l /1 2 r ) ( ( f * 2)2 , (A.1)

(A2)

11 to -9& -K
- »-

»

(A.3)

Al2= I -  (4 /5 P )  (1+1,9 /r2)+(7 /1800 r * 3) (/J *2)4 (A.4)

A,{ =(1/57*) 2 * 2 1 (36/5) A2+ ( l / P ) ( | i * 2)2l (AJ)

AIj = ( 6 /3 5 P 2) / i *2 (C*2)2 , (A.6)

\ ,= (1 8 /2 4 5  P 2)(C *2)5 . (A.7)


