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Abstract : An exact solution is found for the Ginzburg-Landau equations for zero 
magnetic field and at the critical temperature, with the superconductor being a long cylinder with 
a 'hole* around the axis. Some properties of the solution are discussed.
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1. Introductioii

The Ginzburg-Landau equations for superconductivity [1.2] can be derived by varying the 
action

S =  J d 3 x G ,.  (1.1)

where G , is the microscc^ic Gibbs free energy density given by

C, H  (1 2 )

with F, as the free energy density given by
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Here, is the free energy density in the normal state in zero magnetic field, y' (r) is a 
complex order parameter, A is the magnetic field with A the cociespoBding vector potential
given by

h =  curl A . (1.4)

H  is a uniform external magnetic field. The constants a  and b  are temperatuieHlependent 
phenomenological constants, and r*, m* are related to the chaige e  and mass m of the
electron as follows:

e* — 2e , m* = 2m . ( 1 .5)

The requirement that the variations of 5 given by ( 1 . 1) with respect to A and ytvanish leads 
to the following two equations [1,3]:

( 1 .6a)(2 m * ) ''^ - i6 V + 0 ,

( c /4 f f ) c u r lh  - ~ { e *  6 /2m *i)(v^*V v^-V < V yr* )-(e*® /m *c)|y j*A. (1.6b) 

provided that A , satisfy the following boundary conditions :

« . ^ - i  ft V  +  . ^ A  =  0 , (1.7a)

n . { h - H )  = 0 , (1.7b)

where n is the normal to the surface of the superconductor. The supercurrent./ is given as 
follows:

j  * -(e-ft/2m *.)(y/-V y.-ytV yr*)-(«*V m ‘c)|^*A . (1.8)

The physical interpretation of the complex order parameter yris that I yffi is proportional to 
the number density of the superconducting electrons, so that the currenty derived from yr 
given by M.8) is that of the superconducting electrons. When 0, the material is in the 
normal state.

2. The new solution

We assume magnetic fields to be absent:

(2. 1)

and set a = 0 (the meaning of the latter will be explained later). We then get the following 
single equation for the order parameter y f :

- o V V + f r |y r |V =  0 a .2 )

with O’ = ft ̂ /2m*. Consider now cylindrical polar coordinates (r, 0, z) and let y^have the 
following form:

yr(r,tf) » «(r)e"» (2.3)
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with « a  constant to be deteraiined, so that yr is independent o f z. W ith the latter property 
we get

v * w =  +  i J L  +  _ L _ £ L ) u r
^  ^  r d r  *  r2 96^ T

“ ( “ *■*■ r “ '  “  TT")***®- (2.4)

where u m d u / d r ,  etc. Eq. (2.2) then reduces to the following :

+ - p a '-  +  fr«3 »  0 I (2.5)

which is a nonlinear differential equation. There ex is | no standard methods for solving such 

equations. W e proceed to demonstrate that an exact solution o f (2.5) can be found of the 
following fo rm ;

« ( 0  =  Mo{«ir-‘ +  r - “ (r) +  r/» )- '} . (2.6)

where uq,Ui , a, p  and rj are suitable constants. From (2.6) we get

u'(r) =  -  a r -« -> ( jj  +  r ^ ) ' '  -  +  (2.7a)

“ "('■) =  « o |2 “ |r"^ +  a ( a  +  l ) r - “ -2 (ij +  r ^ ) ”*

+ ft(2a-fi+ l)r-^*^^(^T ]+ r^y^ + 2 p ^ r -°* ^ -^ [q + r^ y ^ Y  (2.7b)

« ^ ( '’X =  «o +

+  3«| ( ?7 +  ) '^  +  r ‘^“ (;) +  )”* | . (2.7c)

We substitute from (2.6), (2.7a~c) into (2.5) and set a  ^  = 1 (this follows from an 

intermediate step which we omit) to get the following equation, after cancelling a factor « o :

« t ( - 0 ’+ o w ^ + « ^ u ? 6 )r“3 +  ( - c a ^ +  o n ^ +  3u^«i^6)r~®"^(77 + r/*) *

+  { - a ( l - a ) ( 3 a - l )  +  3«,6}r-2«-'(T? +  r/>)-2

+  { -2 < y ( l-a )2  +  />}r-3«(j) +  r^)-3 =  0 , (2.8)

where for convenience o f  writing we have retained ^  s  1 -  a  in the expressions (tj + rf). It 

is clear that (2.8) will be satisfied if the constants a,n,Uo,Ui,a,b satisfy the following 

equations:

<y(n2 - 1 )  +  u^ufb  *  0 , (2.9a)

<r(n^ -a ^ ) + 3u^u^b = 0 , (2.9b)



f f ( a - l X 3 a - l )  +  3ii,fr =  0 . (2.9c)

2 t r ( l - a ) 2 - f e *  0 .  (2.9d)

Eqs. (2.9a.b) imply

2f|2 + a 2 = 3 .  (2.10)

while (2.9c,d) imply

2 f f ( l - a ) 2 .  6«, =  ( 3 a - l ) / ( l - a ) .  (2.11)

The constant uq can be determined from (2.9a) o r (2.9b). Although the values s  1 s  
satisfy (2.10), this im plies through (2.9a), that one o f Uq-U].^ m ust be zero and the 
corresponding solution is not o f interest. W e therefore choose the following solution o f
(2.10) :
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n =  ± j ,  o  =  ± 5 / 3 .

W e get two cases which we call Case /  and-//, as fo llow s:

Case / :  a  = -  S/3. This leads to the following values of b,U| ,/3 : 

i* 1 2 8 < r /9 ,  «, =  - 3 /8 ,  /3 =  8 /3 ,  « o = ± 2 /3

so that M(r) is given by

« (r)  =  - ± ( 2 /3 ) { - ( 3 /8 ) r - ' +  rS '^frj +  r* '’ )- '} -

(2.12)

(2.13)

(2.14)

W e shall see below that the boundary condition (1.7a) (with A = 0) is satisfied in this case 
if  the material o f the superconductm- lies between r  = ri and r  =  r2 such that thp derivative 
o f  u(r) vanishes at these two values. From (2.14) this means that r | , r2 are roots o f

(3 /8 ) r -*  +  (5 /3 )r2 /3 (T j± r8 '5 ) '' -  ( 8 /3 ) r ‘0/J(T) +  r « /5 p  =  0 . (2.15)

The only positive solution o f this equation is the following one, assuming r| to be positive :

13/8
(2.16)

-2

r  =  r, =  { (2 9 + 2 V 2 4 4 )rj/1 5 } '

which can therefore be taken as the value o f r .̂ It is also clear that u '( r )  vanishes for very 
large r, so that r-i can be taken as some very large value o f r.

Cose n : a s  + 5/3. In this case the values of b, u ,̂ pare as follows :

b s % o l %  B , « - l ,  p s - i n ,  Bo =  ± l

and the corresponding solution for u (r) is as follows :

B(r) =  ± | - r ~ ‘ +  +

(2.17)

(2.18)
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In this case, one does not get a  positive value o f r  for which « '(r) vanishes, unless ij is 
negative; but in the latter case, u(r) is infinite for a value o f r  which is greater than that for 
which u'(r)  is zero, implying that y^has a singularity in the material of the superconductor, 
which is unphysical. How ever, a somewhat different interpretation o f the configuration, 
etc., may be possible which will rectify the situation.

The boundary condition (1.7a) in this case rpads as follows :

( n .V ) y / = 0 .  (2.19)
I'

If i, and are unit vectors in the direction o f increasing r  and B respectively, we have

d
dz' (2.20)

where k,  as usual, is a unit vector in the z-direction. Let the unit normal n  to the surface be 

given by
a  ^  nji^ +  ngig + n j i . (2.21)

Then (2.19) reads as follOMrs :

yielding the following relation ;

UfU'lr) +  inr~'ngU = 0 .

(2.22)

(2.23)

This is satisfied if  n« = 0  and if  u '( r )  -  0 ;  we have used the latter condition in (2.15). 
Thus, we envisage the material o f the superconductor to have a cylindrical 'hole' from r  s  0  
to r  = T| where r] is given by (2.16). This also avoids the singularity in u(r) given by (2.14) 
at r  = 0.

3. D iscussion o f th e  so lu tion  

The full solution is given as follows ;

yf(r,0)  =  M(r)e“ * =  ±  (2 /  3 ){ -(3  /  8 ) r - '

+  (TJ +  r* '’ ) - '}  exp^± -j i o j . (3.1)

This satisfies the Ginzburg-Landau equation exactly for A = 0  = i f  and for a  = 0, as well as 
the boundary condition. However, although I — u^(r) is well-defined and single valued 
in the m aterial o f the superconductor, yr(r, 6) itself is not single-valued, as is evident from
(3.1). W e shall com e back to this point.

It is well known [1] that the constant a in (1.3) and (1.6a) is in general dependent on 

the tem perature T  and has the behaviour (with a '  # 0  at 7"= Tc)

a ( D  =  ( T - r , ) a ' (3.2)
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near die critical lempecature Moreovo*. by considering the case of a one-dimensionBl 
gedmeiiy. one can derive a natnral scale of length f a t  spatial variarimi of the oidw 
parameter given by

€(D  -  [A V 2 "» * k n |f * -  */[2m *(n -  D f l 'f  (3.3)

the second expression obtaining near and bdow the oidcal temperature. This length is the 
so^alled Oinrira^-Landau cobeience length [1 ]. Thus this coherence length tends to 
infinity as T - * T g ,  while aCT) apfptoadbts zero. Therefore the above solution describes a 
situation very near or at die critical tenqierature 7  s  7̂ .

The constant bean belelaled to the Oinzburg-Landaupuameter rgiven by

* f- 2,(7)/{(T), (3.4)

where M,T) is the penetration Imigth, so that k  is independent of the temperature near 
Tc. since XCD also varies as (7 ^ -  7)~‘̂  n a a tT =  7^ The relation between frand b is as 
follows:

K  -  {m * c lh e * )  (3.5)

We next detennine the siy e tcurrent J  corresponding to the above solution. With 
i4 s  0  and the operator V given by (2 .20) for cylindrical polar coordinates, we get 
from (1 .8) :

/ «

s  7(«*b/3m *)H ii»(r)f,. (3.6)

The cunent, therefore, as expected, is circular with the axis r  s  0 as centre, the solutions in

(3.1) with CKtors exp corresponding to equal and <q>posite currents. We shall

consider later die question of flux quantization.

We consider now die total free energy per unit length in the z-diiection. Setting o 's  0 
and Fao*0 (so that the normal energy is ignored) in (1.3), we have

-  i * l » f  +  (b V 2 m * )|V v ^P

w (3.7)



For convenience we write u(r), u'(r) given by (3.1) as follows :

ii(r) = ±(2/3)r-^^-(3/8) + r<V3(r, + rV3)-'J^ (3 gaj

« '(r)  = ±(2/3)r-2{(3/8) + (5/3)r<^(Tj +r*V3)"'

-(8/3)r>‘̂ (̂77 + r'V3)-2}. (3.8b)

so that the total free energy E per unit length in the z-direction is given by (substituting for 
i  from (3.5)):

E = 2 / r f r F ,  dr 

= 271 j

-  8 f f g f l [ 2 S 6 r  3 .  r»y3 V  . r3  ■ Sr -̂  ̂ 8r'<V3 f
9 J r3  I  81 (  8'*’ n + r ^ J  ^8 3(T7 + rV3) 3(tj + r ^ y  J

rj + r ^ ]

In Appendix A, we show how to calculate this expression explicitly. The expression itself is 
quite complicated and can be written down explicitly if desired, but we have omitted it. The 
important point to notice, however, is that this expression is finite when the limits are taken 
in (3.9) as r\ given by (2.16) and another larger value of r, no matter how large, so. that the 
energy per unit length is finite, no matter how large the outer radius. We thus have here an 
exact solution of the Ginzburg>Landau equation satisfying the appropriate boundary 
condition and with finite energy per unit length of the ‘hollow* cylinder that is required by 
the geometry.

We now come to the ‘unphysical* aspect of the solution mentioned earlier, namely, 
that the order parameter y/(r, 9)  given by (3.1) is not single valued. We make some 
remarks in this connection. Sometimes a suitable physical interpretation of a solution 
emerges much later; such is the case, for example, of several solutions in general relativity. 
A possible physical interpretation of the solution found here may be connected with flux 
quantization. This can probably be seen more clearly in the presence of a magnetic field, 
when the number n in (2.3), in suitable circumstances, may be associated with the 
quantization of charge. The solution (3.1) would then seem to imply that charge 
quantization may occur in one-third integral values. Even if such a connection can be 
established, there is no reason this has anything to do with quarks but such a possibility 
cannot be ruled out. The lack of single-valuedness might possibly be acceptable because of 
the geometry, in that the region occupied by the superconductor is not simply connected. 

73A(4)~7
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T his also m ay have connections w ith the Bohm *Aharonov effect. W e belieye these 

questions are w orth investigating, and may give the new solution m ore interest than is at 

present apparent. A  prelim inary investigation with m agnetic field has been carried out [4] 

which, although of some m athematical interest, has not yielded results o f  sufficient physical 

interest. Recent detailed studies o f  m agnetic fields in superconductors [5] may possibly be 

exam ined, among other methods, through solutions o f the Ginzburg-Landau equation such 

as the one found here (see also Ref. 6).

W e note that the solution is valid for a  ^  0, that is, at the critical temperature T  => TV. 

O ne can investigate the behaviour o f the solution near the critical tem perature, that is, for 

sm all a, using a  suitable expansion. Referring to the new solution (3.1) as y/o and the 
solution for non-zero a  as (r, 9) one can expand the latter as follows [3 ]:

Wair, 9) =  V^o(^ 9) -»• a V 2 ( ^  » ) + • • • .  (3.10)

The term s proportional to a, a^, etc. can be obtained, in principle, in terms o f yrg (r, 9), and 

one can exam ine the behaviour o f the corresponding solution near the cHtical point.

Another possible difficulty with the new solution is that there may be some simple 

situations, such as y {r , 9) = constant, for which the energy is lower than that found in the 

new  solution , resulting  in instability . H ow ever, because o f the special geom etrical 

configuration, and the m anner in which the state corresponding to the new solution is 
attained, the sim pler states with less energy may not be accessible in some circumstances, 

thus providing at least quasi-stability  to the state given by the new  solution. These 

questions are under investigation.

In Appendix A , we carry out the evaluation o f the energy m entioned earlier, and in 

Appendix B, we point out a similarity o f the present problem  with that o f a static solution 

o f a relativistic m assless complex scalar field with quartic self-interaction.
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Appendix A

In this Appendix we show how to evaluate the expression on the right hand side o f (3.9). 

Expanding the powers and sim plifying, we get

^  32r'y^
9(tj-h r ^ f

368r« 8 3 2 r” /3 . 1 -27(ri +  r'V3)" 8l( t j+r»/^y

We next calculate the various integrals in (A l). Consider the indefinite integral 

r-V3dr

Write tj m and transform  to_R =  to get I =  O j l ) ! ' , with

dRf  dR ^  f ______
J J(C2 + -+ V2C/J+ /?3) (C^ -  V 2 f /f+

Resolving into partial fractions and integrating, we get

r  =  - 1  log

1
2 7 2 ^

tan‘

In term s o f r), this result can be written as follows

,, 1 , TjVZ+V2»jV</?+/?3

"  4 V 2 tJ^* ® +

" ■ 2 7 2 ^ ^

(A l)

(A2)

(A3)

(A4)

(AS)
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The other integrals in (A l) can be written as follows

/ -  f r't^dr , _  f  r V r  ,  _  f r^^d r
' ■* {ri +  r ^ ) ^   ̂ •' (tj + r*/ )̂  ̂  ̂ J (t7 + r'V3)̂

The same transformations as above yield the following integrals :

/ _ f R*dR ,  _  f R^dR ,  _  { _ g } d R  

' ^ ( r t  +  R *)^ '  ̂ +  ̂ M J7 +

Noting that
dR

we find that

f— ^

f dR 

f dR

d r

1 d ^ r
2 dri^ '

1 d ^ r  
fydr]^ '

d r
dr\

drT

f _  1 o « . d r  , 3 d ^ r  . 1 d ^ r

(A6)

(A7)

(A8a)

(A8b)

(A8c)

(A9a)

(A9b)

(A9c)

Thus the integrals / i ,  / i .  h  be worked out explicitly with the aid o f (A 9a-c) and (AS) 

and so E  can be calculated. As these expressions are quite com plicated, we om it these, 

except to note that these integrals tend to zero faster than I '  as R (or r) tends to infinity. 

This property leads to the energy being finite in the sense mentioned earlier.

Appendix B

C onsider a m assless com plex scalar relativistic field interacting with itse lf through the 

following Lagrangian d e n s ity :

£  =  d ^ ip d i^ r - M ip * ^ ) ^ .  (Bl)

The equations o f  motion are as follows :

□  d + 2A(0*0)d = 0 (B2)

and its complex conjugate, where □  ■ d^di^ is the d’Alembertian operator. Suppose we 
consider a static situation whne dw fields are time-independent. Eq (B2) thep reduces to

V 2 # - 2 A ( P » # » 0 .  (B3)
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Consider now the field configuration to be such that ^ has the following form

^(r, 6 )  = (B4)

where, as before, (r, 6, z) are cylindrical polar coordinates, ^  is independent of z and n is a 

constant, and u  is a function of r  only. With the use of (2.4) we see that (B3) reduces to the 

following equation:

u" + r t ) '  -  -  2Ai»  ̂ = 0. (B5)

This is the same equation as (2.S) if we identify 2A with b, and so solutions can be found as 

above. In this case, the solution conesponding to (2.18) has some relevance; we write this 

solution as follows:

V(r) =  Jk r-'/3 (l +  krV3)’ ' (B6)

where we take the constant k to be positive. For this solution if the energy per unit length in 

the z-direction is calculated, including the region around r  = 0, it is found to be infinite 

(singular). However, this energy is less singular than the electrical energy per unit length of 

an infinite line electric charge, so that this property itself of the new solution need pot deny 

its use in some circumstances, somewhat like the line charge.


