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Abstract Density waves n the galactic disk have been considered by many authors as
the real cause of generation of large scale spiral arms 1n the disk galaxies. Propagation of the
density waves through galactic disk has been analysed by various authors over the last few
decadcs, but so far, only hincar perturbations have been considered In the present paper, we
have analysed the problem considering the nonlinear effects It is found that nonlincar
cffects are important 1n analysing the density wave phcnomena in the outer region of the
galactic disk.
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1. Introduction

The spectacular appearance of the spiral arms in the disk galaxies is now believed to be the
results of propagation of density waves along the galactic disks. Density waves may be
gencrated in the disk of a galaxy by gravitational disturbances in a number of ways under the
influence of the differential rotation in the disk [1, 2). The generation of density waves in such
adisk has been demonstrated by numerical simulation by Lindblad [3] and Hockney [4, 5]. Lin
and Shu [6, 7] and Lin [8, 9] have established the original density wave theory of Lindblad [1]
on a strong theoretical foundation by invoking rigorous mathcmatical treatment to explain
various observed phenomena in our Galaxy. These authors adopted a wave solution of the
linearized gas dynamical equations and could show among other things that (a) all components
of the galaxy, including the gas and the stars, should form similar spiral patterns on the scale of
the radius of the disk, and that (b) the galaxics that do not show prominent spiral patterns are
mostly devoid of gas and the velocity dispersions of different stellar components in them are
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large enough to suppress the instability completely. Basu [10] used the density wave model
established by Lin and Shu [6, 7] to explain some observed phenomcna in the solar
neighbourhood and drew some plausible inferences of a general nature. Basu and Roy [11]
extended the model to the inner region of the Galaxy and tried to interpret some of the observed
dynamical behaviour of the gas in the central region. Basu ez al [12] have derived the gencral
dispersion relation from the wave solution of the linearized three-dimensional pressure free gas
dynamical equations and deduced some useful conclusions by analyzing the density wave
propagation in the outer and inner regions of the galactic disk. Similar analysis was made by
Paul and Khan [ 13] including the pressure term in the gas dynamical cquations. These latter
authors found that the pressure has but minor role to influence the effects of the density wave
propagation. The cffects of density waves in the formation and maintenance of global spiral
arms in disk galaxies have also been discussed in some dctails by Bertin [14] and by Toomre
[15]. The fact that the density waves trigger star formation in spiral arms, has becn confirmed
by several authors [16-18]. Galactic magnetic ficld is also influenced by the propagation of
density waves [19-21]. These latter authors have found among other things that the strength
of the magnetic field is correlated with the strength of the density wave. This correlation again
bears relation with the rate of star formation.

Thus, density waves appear to have significant influence on various aspects of the
manifestation and evolution of spiral galaxies. Different authors have investigated different
aspects of the effects produced by the density waves. But for such investigations, linear
theories have mostly been used. The higher order effects have rarely been considered. We
have therefore, considered it worthwhile to examine the higher order effects on various physical
parameters which are influenced by the density wave propagation. Thesc effects have so far
remaincd mostly unexplored. The higher order contribution might significantly change the
simple behaviour of the field variables. New Physical interpretations might emerge for the
observed phenomcna in the galactic disk. In order to verify these probablc changes, we have
undertaken the project to study and analyze the non-linecar behaviour of the ficld variables
under the density wave model of the galactic disk. In particular, we shall first consider the effect
of the contribution of the second order perturbations in the field variables on various observed
phenomena in the galactic disk. However, in the present paper we have discussed such cffects
only on the density and velocity components using two-dimensional analysis. In subsequent
works, we plan to discuss other aspects of the problem including the three-dimensional analysis
and additional parameters such as gas pressure and magnetic field.

2. The basic assumptions and equations

The following assumptions have been made :

(a) The effect of the galactic magnetic field is not significant and so can be
ignored.

(b)  The dynamics of the galactic disk can be studied by using the pressure-free gas
dynamical cquations.

(c) The density of gas in the disk is non-uniform and is a function of (1, 8).

(d) Therotational motion of the galactic disk is perfectly circular and the velocity is
a function of the radial distance r only.
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With these assumptions, the basic equations 10 be considered are :
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where p is the density of the gas, u and v are the radial and cross-radial components of the
velocity, and ¢ is the gravitational potential satisfying Poisson’s cquation (4). Let the field
variablcs p, u, v and ¢ are purturbed as

p=p,+ep, +£2p2 +....,
u=0+eu +u,+...,
v=rAr) + e +ET vyt )
$=0,+ep, +£0, +
where £ (r ) is the variable angular velocity of the disk.

3. Thelinear perturbation

Substituting the relations (5) in eq. (1) — (4), and equating the coefficicnts of £ on both sides,
one gets the linear equations of perturbation in ficld variables. as
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Eq. (6)—(9) have been solved by Lin and Shu [6, 7], Lin [8. 9], Basu [10], Basu et al[12],
Paul and Khan [13], and by others, by assuming the wave solution of the field variables in the
form (assuming two-dimensional case) :

u, =expi(wt—nb+Kr),
v, =cxpi(wt-nf+K,r),
p, =expi(wt-nb+K,r), (10)
¢, =expi(wt—nb+K,r),

where wis the wave frequency andn, K, are respectively the wave number in 6and r-directions.
The above authors have investigated the various properties of the density wave propagation
through the galactic disk, using these solutions of the equations in linear perturbation. Using
(10) in (6) - (9), the first order perturbed field variables are obtaincd as

rD|K3+2t'n.Q mn
“h= rD 1’ (
. 2
v == 2n2D, —irK,K . 12)
2rQ2D
(l(,2 -iK, /r+n? /r2)
Py arG ¢
where
D=K?> - (w-nf2)* 20,
D =w-nQ+#0. (14)
Here, K is the epicyclic frequency defined by
dan
K2 =40? |+-5———].
[ 29 dr 13

Basuetal[12] and Paul and Khan [ 13] have derived the dispersion relation in the three-
dimensional case and analyzed the density wave propagation in the galactic disk, in particular,
in regions close to the galactic centre and far away from the centre. They have also calculated
the magnitudes of the perturbation in velocity components in terms of perturbation in the
density. (The latter authors [13] included thc pressure term in their equations). In calculating
the numerical values the authors have used the derived values given in Table 1 of Basu et al

[12).

4. Thenonlinear perturbation (second order )

Our principal aim in this paper is to make an assessment of the non-linear perturbation effects
on the density wave propagation and on the resulting field variables. For the purpose we have
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considered here the equations with second order perturbation of the field variables. These
equations are
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These equations are obtained by using the ¢q. (1) to (5) and retaining the perturbation
quantities upto the second order. The sccond order field variables in perturbation will then be
obtained by using eqs. (11)-(13) in eq. (16) - (19). We obtain the following relations :

2i (0 =nQ)u, —282v, - Pp; = -2iK,9,. (20)
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Solving for the system of eq. (20) — (23), we get the second order perturbation quantities

as
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S. Numerical results
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For computation of numcrical results in the perturbation of velocity components, both lincar
and second order cases. we have adopted the values of the various galactic parameters from
Table 1 given in Basueral[12).

5.1 Linear perturbation in velocity components :

Using the relations (11) - (13) we can write

u/p,=a +ib, and v, /p, =a,+ib,. where

. 2
4nG rD K, (K;+"/r2)—(2n.(21(3)/1
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rD , n_) K,
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where K, is the radial wave number in density perturbation for which the adopted value by
Basueral [12] was w Kpc™'. The same value has been used here. Using other values from Basu
et al [12], the following Table 1 has been computed.

Table 1. The first order velocity perturbation relauive to the perturbation in density

u/p(Km M, '. Sec '.Pc') v/p, (Km M "' .Sec™' Pc?)
(Kpc)
1. 147.90 140 40
2 64.40 110.65
3. 42.77 1305
4. 44.73 16 35
5. 59 20 197.59
6 83.04 233.40
7. 113.68 270.04
8. 148.96 309.71
9. 176.12 467.91
10. 207.24 391.42
1. 224.08 438.45
12. 257.86 487.22

Figures 1 (a, b) show the run of the values of u,/p, and v,/p, as given in Table 1. For
comparison, the plot of the same parameters as obtained by Basu et al [12] is also presented
(Figure 2 in that paper). It is found that the run of the plots are cssentially similar, but the
numerical values are somewhat higher in the present computation. This may be at least partially
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due to the difference in the adopted computation technique. It is found that the rclative

perturbation incrcases with the increasing distance from the centré of the Galaxy. But Figure 3

of Basu et al [ 12] shows that the absolute values | u, land Iv, | of the first order perturbation

velocity systematically fall off with the increasing radial distance. This implies that the absolute

density perturbation falls off faster with increasing radial distances. We sec therefore, that the

first order perturbation in physical variablcs gencrated by propagation of density waves
300 ~
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Figure 1a. The plot of | v / p, | . (1) for the present work, (I1) for the previous work of Basu
et al [12).
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Figure 1b. The plot of | vilp i) for the present work, (II) for the previous work of Basu
et al [12).
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nce from the centre. Density waves thus

gradually decreases with increasing radial dista
ily smooth out toward the periphery of the

form at the inner region of a galactic disk and stead
disk.

5.2 Second order perturbation in velocity components :
Using the relations 27)-(31) wecan write

v, G+ iC,

u, A +iA,
2 =12 and == -
p, B+ iB, p, B+ iB,

where

4np K
A =(—27rG)[-4KtolRI +ﬂ'£R2__Po 10 +
: - .

r

4QD K 2 an’
—-20,-40D, [2Kf+2r£2—]Q2— Pop

r

2 2
2 2" 4D K
-4D} \21{3 Jf—rz—)Pl +——'—-‘—P2J,

4nQ 4K
Rl - —‘—"",'12"0' Q2

2n? 40D K 4n’
+4% Dl (2K:+—"—2—)Q1+ ] 3QZ— r2po P2

4012’(3 2 2 20’
+——=P -4D, 2K3+—rZ—|P2|,

r

2n’ 4
B = [21(_3 + 2 ][Rl @D -K*) + —"—f-"- D0, - 4K, 2,0,

2
r

2np, K K s 2
~4K,p DR - oo P +—ri[R2(4D, -k

4n mp, K?
-4KQp,Q, + rPo D,Q2+——§-°--§-5P,—4K,pob,l’z],




On the non-linear analysis of the propagation of density waves etc 589
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For numerical computations of u,/p, and v,/p,, we have used the parameter values from
Table 1 of Basu ez al | 12). Also the following numerical values have been used :

n is the wave number in @-direction and this is actually the number of spirals ; son =2
has been used ; for density wave propagation in the plane of the disk, Basu [10] obtained the
radial wave numbers K to be equal with the numerical value K = nKpc'; the values used for
the basic density p, at different r are given in Column 6 of Table 1 of Basu er al [12].

With these parameter values, the numerical values of u,/p, and v,/p, have been computed
for different radial distances from the centre, using computer. These values are given in

Table 2.
A careful inspection of the values of the second order perturbation, reveals several

important features. First, the second order perturbation values of u,/p, are significantly higher
than the corresponding first order perturbation values of u /p, - This is shown in Figure 2a.
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Table 2. Values of the perturbed velocity relative to the perturbed density in the galactic disk
(second order perturbations)

r

(Kpc)
1.

w N

o 9 O W b

10
11.
12.

u/p(Km.Mg . Sec'.Pc) v,/p, (Km Mg "'.Sec'.Pc’)
32295 112.85
39986 11.170
65870 86.077
21897 1.4379
57189 11.498
99609 51.569
148831 154.19
201016 348.30
184081 811.23
282722 848.53
299845 975.83
337995 1250 76

Because of the incompatibility of thc magnitudes of numerical values, we have shown a
logarithmic plots of u,/p, and u,/p, in Figure 2b. The plots, however, show essentially similar
trend of variations in values along the galactic disk. Figure 3 shows plots of v,/p, and v,/p, .
Here we see that v,/p, values cover a great range. While the values of u,/p, are greater than
those of u,/p, in the range 1-8 Kpc of the galactic disk, u,/p, rapidly increases beyond 8 Kpc
and are much higher than u,/p, . We can therefore conclude that the second order perturbation

300,00

250,000

Km.Mo'.Sec™'.Pc? —»
g B
8 8

8
g

— § T WA U WU N VUN N S |
2 3 4 5 6 7 8 9 W0 11 12

1(KPC) —

Figure 2a. The plot of | u,/ p, | against radial distance r.
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is important in analyzing the density wave phenomena in the outer region of the galactic disk.
This may have a bearing on the abrupt termination of the molecular ring beyond 8 Kpc and also
on the warping of the galactic disk beyond 10 Kpc. It is instructive therefore, to explore the idea
that the large scale dynamics of the galactic disk will be better understood if the study is made
on the basis of nonlinear analysis of the galactic dynamics. Better insight is likely to emerge

5.0 _\o%\%\

4.5
4.0
35
& 3.0
o
Q
UJ. 4
A =\
S 20 \0%\ P
15
1.0
0.5
{ 1 1 1 1 1 L i 4
5 6 M 1R
1(KPC) -

Figure 2b. The plot of | u,/ p, | and | u,/ p, | aganst r shown in logarithmic scale.

1200

T

Km.Mo"'.Sec™'.Pc? -
8 g
T T

g

1 2 3 4 5 7 8 8 1 11 1

6
(KPC) =
Figure 3. The plot of | v,/ p, land | v,/ p, | against r.



592

Sabitri Tah, S N Paul, Tanuka Chatterjee and B Basu

when the corresponding dispersion relation is solved and analyzed. Our aim remains to do the
same in a subsequent work. It may be noted that the introduction of the third dimension and
the galactic magnetic field, will undoubtedly make the things a lot more complicated, but is
likely to give a more complete picture of the large-scale galactic structure and dynamics.
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