Codazzi's equation in four dimensions

J L Lóper-Bonilla
The International Insitute of Integral Human Science 1974 de Masonneuve West. Montréal. Que, Canada H3HI IKs
J Morales and G Ovando*
Area de Frncal Divioón de CBI, Umıersudad Autónoma Metropolitana-Azcapotalco, Apdo Postal 16-306, 022(0) México, I) F

Recened 15 「olmuarv 1999, acrepted 10 Mav 1999**

Abstract

 We find that this solution exists only if the Weyl tensor fulfils the Bianchi identites The results are mmediately applied to the local and sometrie embeddeng of the space-time into t a

Keywords : Codardi sequation y pace-time embedded into L_{-5}
PACS Nos. : 1420 (4. $10460+c$

We consuder Codarfi's equation in a Riemannian 4-space R_{4} :

$$
\begin{equation*}
A_{11},=A_{1,1} . \tag{1}
\end{equation*}
$$

with; denoting covartant derivative for the case of intrinsic rugity when $A_{\text {, }}$ depends only on the metric tensor g_{11} and on its hirst and second partal derivatues (denoted by r):

$$
\begin{equation*}
A^{\prime \prime}=A^{\prime \prime}\left(g_{a l}, g_{a l},, g_{a l},(d)\right. \tag{2}
\end{equation*}
$$

By means of Lovelock's theorem [1-3] we will find in Sectoon 2 that the most genetal form of the tensor Λ_{4} fulfilling (1,2), is a linear combination of the metric and Recei ensors $R_{\psi,}$. It will turn out that the conformal tensor $C_{1,1,}$ of the corresponding space-time will satisfy the Bianchi identities $|4|$, i.e. R_{+}is a C-space $|5-7|$:

$$
\begin{equation*}
C_{1 \mu q, 1}^{\prime}=0 \tag{3}
\end{equation*}
$$

It means that eq. (3) is a necessary condotion for eqs. (1) and (2) to have simultaneous solution in four dimensions.

The results that we obtain are then applied in Section 3 to space-times embedded into E_{5}. i.c. to 4 -spaces of class one $|4,8-10|$. This is so, because in them, there exists the second fundamental form tensor $b_{\text {". }}$ fulfilling (1) |11-13|.

Our task is to determine, in the four-dimensional spacetime, the general structure of every tensor $A_{1 /}$ with the properties (1) and (2). We note that the deduction neither requires that $A_{1,}$ be symmetric nor uses its linear dependence on-the second derivatives $g_{\text {al }}$, d.

Lovelock | 1 | proved the powerful theorem :
"The most general tensor Bu" in R_{4} satisfyung

$$
\begin{equation*}
\left.B^{\prime \prime}=B^{\prime \prime}\left(g_{a, k}, g_{a l}\right)_{, c}, g_{a b, c d}\right) \text { and } B^{\prime \prime},=0 \tag{4}
\end{equation*}
$$

is given

$$
\begin{equation*}
B^{\prime \prime}=\alpha G^{\prime \prime}+\beta g^{\prime \prime} \tag{5}
\end{equation*}
$$

α and β are constants, and $G_{\psi 4}=R_{\psi}-\frac{R}{2} g_{q /}$ is the Einstein tensor (4)"

On the other hand eq. (1) implies the relation

$$
\begin{equation*}
A_{1,1}^{\prime \prime}=A^{\prime} \quad \text { with } A \equiv A_{1}^{r} \tag{6}
\end{equation*}
$$

which together with (2) shows that the tensor $B^{\prime \prime}=$ $A^{\prime \prime}-A g^{\prime \prime}$ satisfies (4) and, in consequence, (5) leads to

$$
\begin{equation*}
A^{\prime \prime}-A g^{\prime \prime}=\alpha G^{\prime \prime}+\beta g^{\prime \prime} \tag{7}
\end{equation*}
$$

[^0]Our final expression is now

$$
\begin{equation*}
A^{\prime \prime}=\left(x R^{\prime \prime}-\frac{1}{6}\left((x R+2 \beta) g^{\prime \prime}\right.\right. \tag{X}
\end{equation*}
$$

with $\Lambda=\frac{1}{3}(\alpha R-4 \beta)$ ．
which solves the Codaralis cquation with intrinsic regidity in R_{+}We now see that the tensor $\Lambda_{1 /}$ is symmetric and linear in the galb，al．

If (8) is substututed into（ 1 ）It follows（when $\alpha \neq 0$ ） that：

$$
\begin{equation*}
R_{11}-\frac{R}{6} g_{11}=R_{11}-\frac{R}{6} g_{11} \tag{10}
\end{equation*}
$$

which is equivalent 10 （3） $14,5 \mid$ and therelore，the Weyl ensor satishes the Baanchi identues If $\alpha=0$ ，we have the trivial case when $A_{1 \prime}$ is proportonal to g_{11} and $C_{1 / 11}$ is not required to saltsfy identhtes（3）．

We apply the result of the previous section to the local and sometric embedding of R_{4} into E_{5} ，bust the case of intrinsic rigidity，i．e．when the second fundamental form $b_{\text {ct }}$ depends only on the internal geometry of the space－time．

In fact，if R_{+}is of class one，the Gauss－Codara equations $|4.8-13|$

$$
\begin{align*}
& R_{1 / 1,}=c\left(b_{11} b_{11}-b_{11} b_{11}\right) \tag{11}\\
& b_{11,1}=b_{11,1} \tag{12}
\end{align*}
$$

are veritied，where $c^{2}= \pm 1$ and $R_{\text {a，}}$ is the corresponding curvallute tensor．If we further impose intronsic rigidity we have

$$
\begin{equation*}
b_{11}=b_{11}\left(s_{1}, l_{1}, g_{1(1)}, g_{1} l_{1, c d}\right) \tag{1.3}
\end{equation*}
$$

and eqs．（12）and（13）assure that $b_{1,}$ satisfies（1）．（2）． Hence，the second fundamental form will have the structure $|c| c .(8)$ and（9）｜with the restriction（3）

$$
\begin{align*}
& b_{1 \prime}=\left(\alpha R_{11} \cdot \frac{1}{6}(\alpha R+2 \beta)_{\mathfrak{m}_{1 \prime}}\right. \\
& b=-b_{1}^{\prime}=\frac{1}{2}(\alpha R \quad 4 \beta) \tag{14}
\end{align*}
$$

where α and β are constants（with values determined by the proper R_{4} in questoon）．

The ervalal case $\alpha=0$ imples

$$
\begin{equation*}
b_{1 .}=\frac{\beta}{3} k_{11}=\frac{b}{4} a_{11} \tag{15}
\end{equation*}
$$

whoh after subublution in（11）．lead to an space of constant curvature（DeSitte model）$|4,14|$ ．

If $\alpha \neq 0$ ，eqs．（11）and（14）show that the metric and Rice tensors are adequate to express the Riemann iensor in a simple way．We consider the task to find the Petrov lype $\left\{4,15,16 \mid\right.$ of R_{1} admissible in thas $\alpha \neq 0$ case as an open problem．We hope to report a careful analysis somewhere else in the future．Our preliminary calculations suggest that there are no 4 －spaces of class one with Petrov lypes III or N that fulfil（12，13）；neither they fulfil（14），m consequence．However，other Petrov types may occur；in fact，the metric

$$
\begin{equation*}
d s^{2}=\frac{1}{2 \phi^{2}}\left(d \theta^{2}+d \phi^{2}\right)-2 d r d u \tag{16}
\end{equation*}
$$

corresponds to an space－time of type D ）which satisfies（14） with $\beta=-2 \alpha=-\sqrt{2}$ and $\epsilon=-1$ ．

References

11 D）Loncloch／Math PM， 1.387 .4 （1972）
（21 1）Lovelock and II Rund Iemsons Diffele＇mlad Iorma amd I＇allatmmal P＇ımiples（New York Johan Wilcy）（1975）
［3］J loopes－Bomilla，J Motales，G Ovando and J Rivera Indum J Thre＂Ph：s（2（x）（0）（in ptess）

 （Imvernty Picss）（1980）
15］C N horameh．E：T Newman and K P lod Cice kelat Gion 17343 （1985）

171 PBell and P＇Sackers lin I Iheo Phas 6 1111972）
 （109＋）
｜9｜II N Núnč－Y＇eper．J Lépe\％－Bomilla，A Sada－Brila and

｜l（）｜J Loper－Bomilla，（i（Nando and J Revera Aligall Bull Mlath is 39（19ッリ）

 25 50（1995）
 こり（1096）

11＋1 PSicheres Numw（＇m A +31062 （1906）

116）R A D＇luverno and R A Ruscell－Clark／Muh Phis 121258 （1971）

[^0]: *Author for cormespondence
 **The publication of this manuscript has been delayed due to techntcal problems and considerable tume taken by the authors to correet the final versom This may kindly be noted

