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Abstract : In an attempt to find a genera] recipe for obtaining single solitary wave 
solutions, a modified mixing exponential approach is presented to deal with the discrete models. 
This requires establishment of new mathematical identities, llie necessary identity for Toda 
system is established and all the possible solitary waves are obtained in a series form. With the 
proper choice of parameters the series solution reduces to all known single solitary wave 
solutions. Again the important case of diatomic Toda system is analysed with the help of mixing 
exponential approach and approximate solutions are discussed in the light of KAM theorem. An 
unexpected result is obtained which suggests only acoustic solitons.
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1 . Introductioii

For quite a  few years, a  physical approach better known as mixing exponential m ethod has 
been used in the literature [1] for constructing solitary wave solutions of a  numbo- o f non­
linear equations having application in a  variety o f physical system s. C onceptually, the 
method is very aiqiealing as it starts w ith the real exponmidal travelling wave solutions o f  
the underlying linear equations. The presence o f non-linearity suggests a  mixing o f  these 
exponentials and in the m ethod, one thus seeks a  solution to the nonlinear equations in the 
form o f  a  series involving all the m ixing exponentials. I h e  m ediod has some similarity with 
the previous worics o f  K oipel [2]. Ih e re  also exists a  fairly good resranblance between the 
real exponential tqqnoacb and  the Fourier aiqproach used by D ash and Patnaik [3], for the 
construction o f  period ic solutions, because solitary solution can be obtained from  the
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cnoidal p o io d ic  solution in tbe long wavelength limit. In cm qiarision  with other methods 
like 1ST, Hirota's bilinear method, BhCklund tiansfonnation etc., this d ire a  m ethod is easily 
accessible and in addition, it introduces a  new dim ension to the non-linear dieory by 
stressing the fundamental importance o f  the exponential solutions o f  the underiying linear 
equations. Using this direct apiHoacb, Hercman et a l [1] analysed a  fairly large num ber o f 
non-linear equations and outlined different steps for obtaining solitary w ave solutions. All 
these woiks refer to continuous cases including system o f partial dillietential equations. Its 
application to discrete difference equations is long overdue and no such case has been 
analysed till date because it requires intricate m athem atical m odifications and also the 
derivation o f new  m athem atical identities. O f all tbe discrete lattice equatitm s, tbe <»ly 
completely integrable equation is tbe Toda lattice equation [4]. So the purpose o f  this pq>er 

is to exam ine Toda lattice with a  view to extending the m ixing exponential m ethod to 
differential d iffoence  equations. W e observe that the discrete Toda problem  needs certain 
modifications in the procedure as well as establishment o f  a  crucial madmmatical identity. 

Here, we intend to establish tbe identity and apply this teal exponential method to a  discrete 
.system for the first time. Further in this ptq)er, we want to aitalyse diatomic Toda equations 
with the help o f this method.

2. Theory

(a) Toda lattice:

The equation o f  m otion for one dim ensional lattice with nearest neighbour interaction 
potential o f the fmm

= exp(-r)-> -r (1)

can be written as

% = e x p ( y „ _ i - y „ ) - e x p ( y „ - y , . , i ) ,  (2)

where y„ denotes the displacem ent o f  the n-th unit m ass. Changing variables as in Toda 
1975, eq. (2) can be recasted as

s„ =  (1 + ){r„+, + -  2s„ ), (3)

where s„ = ds„/dt = exp(y„_i-y„)-l.  (4)

Linear part o f eq. (3) is

= 5n+i+^»-i-2s, (5)

and it adm its growing and decaying exponential solutions o f  the form exp (±  K2^ where K 
is an arbitray positive constant and

Z s  A n p r o v i d e d

0  = ± 2 sinh(iM /2). (6)

W e m ay observe that if  is a  soluticm then ( r .  -f c )  is also  a  solution for any 
constant c . N ow abbreviating tbe decaying exponential, exp (,-KZ) by g, we seek a  solution 
to eq. (3) in tbe fonn  o f pow er series in g.
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substitution o f the expression for s„ in (3) yields

s„ = ' ^ a ^ g j { r - B ^ p - \ t x p ( j K A )  + txp{-jK A )-2]}
;=i

= K B '^ p o p g p '^ a j g j  [expijKA) + txp(i-JKA)- 2]

or> 7 ~ 1
= f ( B ^  -  p)apaj,pgj\e\pipKA)-¥exp(-pKA)-2].

j=2 p=l

So, the recursion relation becomes

{K^B^j^ - [exp(JKA) + exp(-jKA)-2])aj

= K B '^  ( ;  -  P)apaj_p [exp(pA[A)+ exp(-pA A ) -  2]
p=i

(7)

(8)

for j  >2  and here Oi is arbitrary.

To solve this recursion relation we require the following m athem atical identity, 
which can be proved by induction (since this identity is very crucial w e establish it in the 
appendix)

U -  p)[exp{pKX) + txp(-pKX) -  2]
p=\

= - p +  [expijKX) + exp(-JKX) -  2][exp(.KX)+exp(-KX) -  2 ] - ‘ 

For j  = 2, eq. (8) becomes,

{4K^B^  -[exp(2^M )+exp(-2A:A)-2]}a2

= KBa^ [exp(A:A) + exp(-A>1) -  2]

From identity (9) w ith p  = 1 and y = 2, we have 

exp(^:A) + e x p (-A :A )-2

=  -  4  +  [(exp(2^M ) + exp(-2KA) -  2)][exp(^:A) + exp(-/i:A ) -  2]-*.

Using the above expression as well as (6) in eq. (10), we obtain 

{411:252 - [ e x p (2 fc 4 )+ e x p (-2 X > D -2 ]}fl2 

= K B a ^i- 4 + [expaXA) + exp (-2K A )-2] /K ^B ^) .

(9)

(10)
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02 = K B (-a j lK ^ B ^ )

( 11)

(42)

= ( - l ) 2 ( - 0 ) ( a , / 0 ) 2  

Similarly for y =  3, recursion relation (8) gives

{9K'^B^ -  [exp(3X A )+ ex p (-3 X 4 ) -  2]}a3

2
= K B a ^ a ^ ^ O  -  pM exp(pJC A )+exp(-piC i4)- 2].

p-i

From  the identity (9), we obtain

2
^  (3 -  p)[exv(PKA) + cxp(-PA:A) -  2]
P«\

= -  9  + [exp(3A:A) + exp (-3 i:A ) -2 K ex p (^M )+  txp(-KA) -  2 ]-‘ .

Using the above expression as well as eq. (6) in eq. (12)

[9K^ _  [exp(3A:A) +  exp(-3A:A) -  2]}a3

= KBaia2(-K^B^rH9K^B^  -[ex p (3 8 :> l)+ ex p (-3 A :A )-2 ]).

So,

flj = i-D ^i-KBKai /  K B )\

From  eqs. (11) and (13) general form, Up becom es transparent.

ap = ( - K B X - a i / K B f .

Similarly, considering increasing exponentials exp (X2) as g. the recursion relation yields 

ap = (K B X O ilK B y.  (15)

(b) Construction o f solutions o f monatomic Toda lattice:

(a) In case o f decreasing exponentials, 

g = exp (-KZ). 

a, >0,Op = - K B b P ( - i y  

bi = Oil KB

(13)

(14)

For

With

= -  KBj^i-iypbPgP
P»1

= - K B i - b g  +  b ^ g ^ - .......),

= - K B [ - b g ( l - b g  +  b ^ g ^ - .......) l

= K B [ b g H l + b g ) l

(16)
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W riting b as exp (-5 ) and bg = exp (-x ) where x  stands for (KZ + 5) and eq. (16) w ill be 
convergent for x  = ^TZ + 5 > 0

= ± s i n b ( / 2)(1 -  lanh I  [AT( A« -  ) + 5]).

For fli <0,ap  = - K S b ^ v / i t h b  = \ax\lKB,

s„ = - K B ^ b P g P
/>=i

Now, again taking b = exp (S),

s„ will rq jresen t a  convergent series for x  > 0 so that

s„ = ± s in h ( A A /2 ) [ l - c o th ^ ( A :( A n - B 0  + 5)].

(b) For growing exponentials g = exp (KZ),

s„ = ' ^ a p g P . a p  = KB{a,!KB)P
pael

When fl] > 0, taking {a^lKB) = b,

s„ = KB[bg/ ( I-bg)]  forx<0,

with bg = exp (x), so that

(17)

(18)

±  sinhOiCA / 2 )tl -  c o th [^ ( /:(A n  -  Bt) + 5)].

When fl] < 0,

s„ = ± s in h ( A A /2 ) l l - ta n h f ^ ( ^ C ( A n - f t ) + 5 ) ] .

(19)

(20)

The eqs. (17-20) represent convergent solutions in the entire region - « > < ; <  + «> and their 
solutions can be written as

s„ = ±  sinh a [ l  -  tanh (an  -  + e)]

and

(21)

(22)s„ = ± s in h a [ l - c o th ( c m - j8r +  e)], 

where a  = (KAtl), p  = {KB/2) and e  is a  constant phase = S/2.

3. Diatomic Toda lattice

A m ongst all nonlinear lattices Toda lattice occupies a special position, being the only 
com pletely integrable nonlinear lattice. So, many attempts are made to study its diatom ic 
version [3 ,5-7]. Num erical work o f Casati and Ford [5] and Painleve analysis o f Bounds 
et al [6] show  that diatom ic Toda represents a  nonintegrable lattice. But the dynamic form 
factor calculation o f  D iederich [7] suggests soliton type solutions. Again KAM  theorem



implies atleast solutions very near to tbe integrable case. W e here apply mixing exponential 
m ethod to shed some light on diatmnic Toda case.

Eiiatomic Toda lattice equations can be written as

+ m,S2„-i +m252n+i - (m j  + m 2 )S2„

=  hn  [(« ! + « 2  > 2̂n “  ”hS2„-l ~ ]• (23)

-m ,m 2 J2 „ - l +Wl,J2„ + m 2 i2 » -2  - ( « 1  +"»2)-^2h-1

=  S2„ .i[ in i i  + m 2 ) S 2 „ - l  - t n 2 S 2 n -2  - m i S i n ] .

354 P C  Dash and M Panigrahi

Let

and

hr, = X a y « 2n -« 2B =exp(/C Z ),Z  =  ( 2 n A - 5 t )
/=i

^2n-i =  ' ^ b ,g ^ „ _ „ g ^ ”- ^ = e x p { K n y  = ( 2 n - m - B t ,
p=i

(24)

(25)

(26)

where aj, bp are running coefficients and A, ^  are travelling w ave param eters. L inearized 

equations corresponding to eqs. (23) and (24) can have exponential solutions, if

(m, + m 2 + mim2 K^B^)^ = [m̂  exp(-KA) + ni2 exp(+XA)]

[m, txp(KA) + m 2 exp(-A:A)]. (27)

Now coefficients Ox and b\ can be found out to be

Ox = bxL(K)X~^(K)  with ax arbiffary. Eqs. (23) and (24) also yield following recursion 

relations for y ^  2 .

-aj{K'^B^j'^mxm2 +ntx +nt2) + bjX(,-jK)

= f ^ B ^ { j - p )a j ,p [ - {m i+ m 2 )a p  + bpX{-pK)]
pal

ajX(jK)-b j(K^B ^j^mxni2  + nix+ 0 1 2 )

(28)

j-i
= K B '^ U - P ) b j . p [ - i m ^  -i-m2)bp+apX(+pK)], 

p=i
(29)

where

and

X(jK) = ffi] expCyiCA) + m2 e x p ( -JKA)

Link) = (n ^ )^ fl^m im 2 +O T i+ ni2 w ith/I = 1,2, 3 . . . .  

F o r;■ = 2, p  =  1 and 02. ^2 can be o*'tained as

a2 = K^B^mxm2.a^[Xi2K).Xi~2K)-L?(2K)] '

. X [XiK).X- '  i -K ) .X ( -2K)+  L i2K) \ (30)



X [ X ( - / : ) .  {K)X{2K)-t- L I  (31)

Similarly fo r ;  = 3 , =  1, 2 and

flj =  [alML{^K)■t■blNX{-^K)]KBG, (32)

63 =  KBG[XOX). M. a,3 + LOK). N. b^ ]. (33)

where G-' = X ( - iK ) .X ( 3 K ) -L ^ O K ) :

MH  = [X( AT). i -K ) .  X{-2K)]  + H.2K)^  +  [X{-2K)X-^ i -K)L^ (K)]

[X(-K.)X-^ (K). X{2K)  + L{2K) 

with I  =  2 K ^ B ^ m ^ m 2  - m j  -  m 2

;ind H =  l K ^ B ^ m ^ m 2 ) - ^ i X a K ) . X ( - 2 K ) - L ^ ( 2 K ) - ,

NH = [ X ( - ao . a:-> (a: ) .a:(2 a: ) + l (2 a:) ) /
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+ x a x ) .  X^ (K). L-2 {K){X(K).  X -‘ i - K ) X i - 2 K )  + U2K) ] .  
Solution can be written as

^2n a , exp(ATZ) + 03 cxp(2KZ)+ a^ exp(3ATZ)+...

and

(34)

(35)^2n-i = & iexp(A :n + i>2exp(2A :n + fe3exp(3A:r)+...

Solutions (34) and (35) may converge in the regions Y,Z< 0 .  Again considering decaying 

exponential solutions it can be shown that the solutions may converge in the region Y,Z>
0. So (34) and (35) represents solutions in the entire region.

For m. = m2 = 1. fl] = fci = arbitrary; a2 =b2 =a.i / KB

flj = =  (a^lK?S^) and the solutions (34) and (35) reduce to monatomic case.

The series solutions with coefficients (30-33) will represent soliton like solutions 

p rovided  the coeffic ien ts  converge. It is n o t easy  to estab lish  the convergence 

m athem atically. So we exam ine two limiting situations. From KAM theorem it is obvious 
that for sm all perturbations tr^ecto ries near equal mass solution may be possible. Hence, 
first w e establish that when »  m 2, the coefficients reduce to m onatom ic Toda case. 

Secondly, for diatom ic Toda case, choosing mj = 1 , m2 = 2, A = 2 and B = 1 we obtain A = 

1.015036403 from (27). with these numerical values (34) and (35) yield

Si„ = 2  exp (-2?) +  1.10 exp (-4 z) + 0.59 exp (-6z), (36)

73A(3>-12



*2/1+1 = 0.188 exp ( -  2d  + 0.015 exp ( -  4z) + 1.310 x  10"  ̂exp ( -  6z). (37)

Their behaviour is illustrated by plotting graphs for Z > 0.8 in Figures (1 and 2) obviously 

in half plane only. The purpose here is very clear. W e know that the approximate solutions
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Figair« 1. Diatomic Toda chain (oddsite S2n^\ versus z).

can not give accurate results in zero region. So we only use those expressions to guess the 
fonn  o f  diatom ic solution. H ie  graphs exhibit identical fonn as the equal mass case, but the



evensite excitations appear to  be stronger than odd-site excitations. This analysis 

unexpectedly, suggests soliton inodes in acoustic region only.
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Fignre 2. Diatomic Toda chain (evensite S2n versus z).

4. Conclusions
We have succeeded in applying a  heuristic physical approach, the mixing exponential 
method to a  (M eiential difference equation. Our analysis on Toda lattice equation indicates
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that for tackling discrete system s it is no t convenient to go over to travelling co-ordinate 

system, instead a series in exponentials is to be directly applied and necessary mathematical 
identities should be used or established, if necessary. We have established one such identity 

in tlie appendix. The general series solution for the single soliton case is obtained in eqs. (7) 

and (1.5). The choice o f param eters are m ade in section 2 b  to obtain all known single 

soliton solutions o f Toda lattice equation. The present w oik  m ay be useful for finding 

nonlinear solitary wave solutions for many interesting discrete m odels which are now being 

studied in the continuum  lim it because of the absence o f  an easily accessible m ethod to 
solve the discrete counterpart. A nother use o f this approach m ay be its q>plication to the 

controversial diatomic Toda model. W e analysed this case in Section 3.

On the whole, the purpose o f this paper is tw o fold. First, the m ixing exponential 

m ethod is expected to bring out a general recipe for obtaining solitary wave solutions in 

discrete and continuous cases, in complete integrable as well as partially integrable cases in 

single fieids and coupled fields and the like. The very forceful m ethods like 1ST, Hirota and 

Backlund are applicable for com plete integrable equations and fail to deliver results for 

partia lly  in tegrab le  cases. Since in the literature all cases d iscussed  using m ixing 

exponential arc continuum  situations, we analysed a  d iscrete d ifference equation to 

illustrate its general nature. However, our analysis shows that discrete cases are extremely 

d iflicult because it requires establishm ent o f  new m athem atical identities which we have 

succeeded in finding for monatcanic case. In this discrete case, even the next complex 

problem  of finding tw o soliton solutions becom es unm anagably difficult due to lack of 

necessary matliemaiical identity and till to-day we fail to establish such identity. Hence our 

conclusion In this regard is that m ixing exponential m ethod as it stands now, can be 

considered as a general approach for obtaining single soliton solutions. The second purpose 

ol this paper is to .shed new light on the diatom ic Toda case for which soliton modes may 

exist as shown in some numerical calculations [7] and so analytical m ethods should suggest 

I ts  presence. This was done approxim ately by m ixing exponential m ethod as has been 

shown in Section 3.
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Appendix

By algebraic sim plification we may write :

- 2  ̂ + [exp(2 Ajc) + e x p (-2 / 0c) -  2 ][exp(Jtjc) + exp(-^Cx) -  2 )] •

= (2 - l ) [ e x p (A jc )+ e x p ( -K x ) -2 ]

-3* + [exp(3K x) + exp(-3 /C x)-2 ][exp(/C x)’̂ e x p (-A lx )-2 1  '

=  (3 -  l)[exp(Air) + exp(-A le) -  2] + (3 -  2)fexp(2Alx) 4 exp(-2A lc) -  2] 

and -4 ^  +  [exp(4ACx) + exp(-4K x) -  2][exp(Al]t>+ exp(-A lx) -  2] ‘
I

= (4  -  l)lexp( Ax) + exp (-A x) -  2] + (4 -  2)lexp(2 A.t) + e x p (-2  Ax) -  2]

+ (4  -  3)[exp(3A x)+ exp(-3A x) -  2],

Using the m ethod o f induction, the general form becomes transparen t;

- j ^  + [cxpijKx) + exp(-yA x) -  2][exp( Ax) + ex p (-A x ) -  2]*'

= y . O  -  m)[cxp(mAx) + ex p (-/)iA x)-  2]. (Aj)
m=l

The general identity (Aj) can be verified as follows :

R.H.S.= (y-l)(c*^^+e - 2 ) 4 - 0  - 2)(<'^'^"+e -*̂ ‘ - 2 )  + ...

=  4 - y ( a  +  f l - + a ^ 4 - ...........+a^~^)-{a + 2a~ +' ia^+.. .+(j-l )a^  ‘

+ j ( h  + b^ + h ^ + ........+b^ ' ) - [ b  + 2b^ + 3 b ^ + . . . + ( j  - \ ) b^' ^

-2H + 2 + 34-........0  - and /; = e

. a d - a - ' O  f l ( l - f l ' ' “*) ( j - \ ) a >  . b ( \ - h J ~ ^ )
1 - f l  ( l - a )2 1 - a

b ( l - b j - ^ )  , { j - l ) b ^  
a - b ) ^  l - b  ^ 2

■2 ■ (2 - l ) f l - + Q - ' ~ ^ ‘ . {j - \ ) b - j b ^  + bJ*^
( l _ a )2 "  { i -b y -
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^  ■' _  f l l /2  )2  +  ( ^ - 1/2  _  l , m  )2

=  j2  I J I +
^  e ^ + e - ^ ~ 2

= j2  I j  , - j i a  +  b - 2 )  +  g j  + b ^  - 2
a  +  b - 2

g i  + b j  - 2  
a +  b - 2

=  - y "  +
± £ l i f l z 2

+  e - ^  - 2
L.H.S.


