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Abstract : In an attempt to find a general recipe for obtaining single solitary wave
solutions, a modified mixing exponential approach 1s presented to deal with the discrete models.
This requires establishment of new mathematical identities. The necessary identity for Toda
system is established and all the possible solitary waves are obtained in a series form. With the
proper choice of parameters the series solution reduces to all known single solitary wave
solutions. Again the important case of diatomic Toda system 1s analysed with the help of mixing
exponential approach and approximate solutions are discussed 1n the light of KAM theorem. An
unexpected result is obtained which suggests only acoustic solitons.
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1. Introduction

For quite a few years, a physical approach better known as mixing exponential method has
been used in the literature [1] for constructing solitary wave solutions of a number of non-
linear equations having application in a variety of physical systems. Conceptually, the
method is very appealing as it starts with the real exponential travelling wave solutions of
the underlying linear equations. The presence of non-linearity suggests a mixing of these
exponentials and in the method, one thus seeks a solution to the nonlinear equations in the
form of a series involving all the mixing exponentials. The method has some similarity with
the previous works of Korpel [2]. There also exists a fairly good resemblance between the
real exponential approach and the Fourier approach used by Dash and Patnaik [3], for the

construction of periodic solutions, because solitary solution can be obtained from the
© 1999 JACS
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cnoidal periodic solution in the leng wavelength limit. In comparision wita other methods
like IST, Hirota's bilinear method, Batklund transformation efc., this direct method is easily
accessible and in addition, it introduces a new dimension to the non-linear theory by
stressing the fundamental importance of the exponential solutions of the underlying linear
equations. Using this direct approach, Hereman er al [1] analysed a fairly large number of
non-linear equations and outlined different steps for obtaining solitary wave solutions. All
these works refer to continuous cases including system of partial differential equations. Its
application to discrete difference equations is long overdue and no such case has been
analysed till date because it requires intricate mathematical modifications and also the
derivation of new mathematical identities. Of all the discrete lattice equations, the only
completely integrable equation is the Toda lattice equation [4]. So the purpose of this paper
is to examine Toda lattice with a view to extending ‘the mixing exponential method to
differential difference equations. We observe that the discrete Toda problem needs certain
modifications in the procedure as well as establishment of a crucial mathematical identity.
Here, we intend to establish the identity and apply this real exponential method to a discrete
system for the first time. Further in this paper, we want to analyse diatomic Toda equations
with the help of this method.

2. Theory

(a) Toda lattice :

The equation of motion for one dimensional lattice with nearest neighbour interaction
potential of the form

o(r) = exp(-r)+r )
can be written as
Yo = €XP(Yp_1 = Yn) = €XP(Yp = Yns1)r ()]

where y, denotes the displacement of the n-th unit mass. Changing variables as in Toda
1975, eq. (2) can be recasted as

S, = (145, )(Spey + Sp_y =28, ) 3)
where 5, = ds,/dt = exp(Yu_; = Yn)-1. )]
Linear part of eq. (3) is

Sqp = Spa1 +Sa =25, )
and it admits growing and decaying exponential solutions of the form exp (+ XZ) where K
is an arbitray positive constant and

Z = An - Bi, provided
KB = 1 2 sinh (KA/2). ©
We may observe that if s, is a solution then (s, + ¢) is also a solution for any

constant ¢. Now abbreviating the decaying exponential, exp (-X2) by g, we seek a solution
to eg. (3) in the form of power series in g,
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S, = Z ag’
j=1
substitution of the expression for s, in (3) yields

5, = Za] g’ {K*B2j2 - [exp(JKA)+ exp(-jKA) - 2]}
4

= KBZpapg"Zajg/[exp(jKA)+cxp(7;—jKA)—2]
p=1 j=1 '
o )1

= KBZ Z(j—p)a,,a]‘,,g"[exp(pKA)-bexp(—le)—2]. @)

J=2 p=l
So, the recursion relation becomes
(K?B2)% - [exp(jKA) + exp(- jKA) - 2])a;

J-1
= KB) (j-p)a,a,_,[exp(pKA)+exp(-pKA)-2] (8)
p=1
forj 2 2 and here q, is arbitrary.
To solve this recursion relation we require the following mathematical identity,
which can be proved by induction (since this identity is very crucial we establish it in the

appendix)

-1
-Z (j - p)|exp(pKX) + exp(- pKX) - 2]
p=1

= —j? +[exp(jKX)+exp(-jKX) - 2)[exp(KX) + exp(-KX) - 2]} ©
Forj = 2, eq. (8) becomes,

{4K2B? - [exp(2KA) + exp(-2KA) - 2]} a,

= KBa}[exp(KA)+exp(-KA) - 2] 10
From identity (9) with p =1 and j = 2, we have

exp(KA) + exp(-KA) -2

= —4+[(exp(2KA)+exp(-2KA) - 2))[exp(KA) + exp(-KA) - 2]
Using the above expression as well as (6) in eq. (10), we obtain

{4K2B? —[exp(2KA) + exp(-2KA) - 2}}a,
= KBa? (- 4+[exp(2KA)+exp(-2KA)-2]/ K?B?).
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So,

a, = KB(-a} | K*B?)

= (-1)2(-KBX(a, / KB)? (11)
Similarly for j = 3, recursion relation (8) gives

{9K2B? - [exp(3KA) + exp(-3KA) - 2} a,

2
= KBa,a, Z (3 - p)lexp(pKA) + exp(—pKA) - 2]. “2)
p=1

From the identity (9), we obtain

2
Y (3- p)lexp(PKA) + exp(~PKA) - 2]
p=l
= -9+ [exp(3KA) + exp(-3KA) - 2)[exp(KA) + exp(-KA) - 2]*.
Using the above expression as well as eq. (6) in eq. (12)
{9K2B? —[exp(3KA) + exp(-3KA) - 2]}a,
= KBa,a,(-K?B?)'(9K*B? —-[exp(3KA) + exp(-3KA) - 2)).

So,

a; = (-1)’(-KB)a, / KB)3. (13)
From egs. (11) and (13) general form, a, becomes transparent.

a, = (-KBX-a, / KB)". (14)

Similarly, considering increasing exponentials exp (K2) as g, the recursion relation yields
a, = (KBXa, / KB)?. (15)

(b) Construction of solutions of monatomic Toda lattice :
(a) In case of decreasing exponentials,

g =exp (-K2).
For a, >0,a, = - KBbP(-1)?
With b = a /KB
S, = — KBi(—l)PngP
p=1
= - KB(-bg+b2g?-...... ), (16)

= — KB{-bg(1-bg+b*g%-......)},
= KBibg/(1+ bg)).



Mixing exponential method and Toda lattice

353

Writing b as exp (-6) and bg = exp (-x) where x stands for (KZ + &) and eq. (16) will be

convergentforx=KZ+6>0

]

$, = +sinh(KA / 2)(1 - tanh - [K(An - Br) + 81).

For a, <0,a, = -KBbP withb = |a;|/ KB,
S, = —KBZngP
p=1

Now, again taking b = exp (6),
s, will represent a convergent series for x > 0 so that

5, = +sinh(KA/2){1 - coth (K(An - Bi)+ 5)).
(b)  For growing exponentials g = exp (KZ),

S, = Za,,g",a,, = KB(a, / KB)?
p=1

When a, > 0, taking (a,/KB) = b,
s, = KBlbg/(1-bg)] forx<0,

with bg = exp (x), so that

Sn

When a; <0,

Sa

+ sinh(KA / 2)(1 - coth[%(K(An — B+ 8)].

tsinh(KA / 2)[1 - tanh[—;—(K(An - Bt)+ 8]

an

(18)

(19)

(20

The eqs. (17-20) represent convergent solutions in the entire region — eo < 2 < + oo and their

solutions can be written as

s + sinh a[1 - tanh(am - Bt + £)]

and
+ sinh a[1 - coth(an - Bt + €)1,

Sn
where a = (KA/2), B = (KB/2) and ¢ is a constant phase = &/2.

3. Diatomic Toda lattice

(21

(22)

Amongst all nonlinear lattices Toda lattice occupies a special position, being the only
completely integrable nonlinear lattice. So, many attempts are made to study its diatomic
version [3,5-7]. Numerical work of Casati and Ford [5] and Painleve analysis of Bountis
et al [6] show that diatomic Toda represents a nonintegrable lattice. But the dynamic form
factor calculation of Diederich [7] suggests soliton type solutions. Again KAM theorem
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implies atleast solutions very near to the integrable case. We here apply mixing exponential
method to shed some light on diatomic Toda case.

Diatomic Toda lattice equations can be written as
—MY S + MY S2p ) + MyS3,4 —(mMy +my)S,,
= Syu[(my +my)s2, —MySzn ) —MyS3n0r ) (23)

—MYMy Sy, g + My, + MySg, o —(My +my)S,,

= Spp[(my +my)sy,  —mySae 3 —myS, ). (24)

Let S2n = D, 8;83n82n = XP(KZ),Z = (2nA - B) (25)
1=1

and Sant = b8l 1.82" =exp(KY),Y =(2n-DA- Bt, 26)

p=1
where a,, b, are running coefficients and A, B are travelling wave parameters. Linearized
equations corresponding to eqgs. (23) and (24) can have exponential solutions, if

(m, +my, + mym,K2B?)? = [m, exp(-KA)+ m, exp(+KA)]
[m, exp(KA) + m, exp(-KA)]. 27
Now coefficients a, and b, can be found out to be
a, = b L(K)X"'(K) with a, arbitrary. Eqs. (23) and (24) also yield following recursion
relations for j 2 2.
-a;(K2Bj mym, +m, +m,)+b; X(-jK)

-1
= KBE( j=P)a,_,[~(m +my)a, +b,X(~pK)| (28)
p=l

an(jK)“bj(Kszj2mlm2 +m) +m2)

-1

= KBY (j-pb, ,[~(m; +my)b, +a,X(+pK)] 29
p=l
where X(JK) = m, exp(jKA)+ m, exp(- jKA)
and L(nk) = (nk)>B*mymy +m; +m, withn=1,2,3...

Forj=2, p=1and a@,, b, can be oMained as
a, = K>Bmym,.a}[X(2K).X(-2K) - I* 2K)|

X [X(K). X" (-K).X(-2K)+ LK)}, (30
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b, = K3B*mym,.b?[X(2K).X(-2K)- I* 2K)]”
x [X(-K). X-{(K)X(2K)+ L). (31)

Similarly forj=3,p=1, 2and

ay = [a}ML(3K)+ b} NX(-3K)]KBG, 32)
b, = KBG[X(3K).M.a} + L(3K).N.b}}, 33)
where G!' = X(-3K).X(3K)- L?(3K); |
MH = [X(K). X' (-K).X(-2K)1+ LK)} +[X(-2K)X 2 (-K)L* (K))
[X(-K)X1(K).X(2K)+ L(2K)
with 1 = 2K?B*mym, —m, -m,
and H = (K3B%mm,)"' [XQ2K).X(-2K) - [2(2K);

NH = [X(-K).X"'(K).XQ2K)+ L2K))I

+X(2K). X2(K).L-2(K)X(K). X' (-K)X(-2K)+ L(2K)).

Solution can be written as
Sy, = a, exp(KZ) + a, exp(2KZ) + a, exp(3KZ)+... 34)

and
Sap-1 = by exp(KY)+ b, exp(2KY) + by exp(3KY)+... (35)

Solutions (34) and (35) may converge in the regions Y, Z < 0. Again considering decaying
exponential solutions it can be shown that the solutions may converge in the region Y, Z >
0. So (34) and (35) represents solutions in the entire region.

Form, =m; =1, a; = b, = arbitrary; a, = b, =a? / KB
a; = by = (a%/K?B?) and the solutions (34) and (35) reduce to monatomic case.

The series solutions with coefficients (30-33) will represent soliton like solutions
provided the coefficients converge. It is not easy to establish the convergence
mathematically. So we examine two limiting situations. From KAM theorem it is obvious
that for small perturbations trajectories near equal mass solution may be possible. Hence,
first we establish that when m; = m,, the coefficients reduce to monatomic Toda case.

Secondly, for diatomic Toda case, choosing m; = 1, m; =2, k=2 and B=1 we obtain A =
1.015036403 from (27), with these numerical values (34) and (35) yield
Son = 2 exp (-22) + 1.10 exp (-4z) + 0.59 exp (-62), (36)

73A(3)-12
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Sone1 =0.188 exp (- 22) + 0.015 exp (- 42) + 1.310 x 103 exp (- 62).  (37)
Their behaviour is illustrated by plotting graphs for Z > 0.8 in Figures (1 and 2) obviously

in half plane only. The purpose here is very clear. We know that the approximate solutions
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Figure 1. Diatomic Toda chain (oddsite s3,,; versus 2).

can not give accurate results in zero region. So we only use those expressions to guess the
form of diatomic solution. The graphs exhibit identical form as the equal mass case, but the
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evensite excitations appear to be stronger than odd-site excitations. This analysis
unexpectedly, suggests soliton modes in acoustic region only.
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Figure 2. Diatomic Toda chain (evensite s, versus 2).
4. Conclusions

We have succeeded in applying a heuristic physical approach, the mixing exponential
method to a differential difference equation. Our analysis on Toda lattice equation indicates
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that for tackling discrete systems it is not convenient to go over to travelling co-ordinate
system, instead a series in exponentials is to be directly applied and necessary mathematical
dentities should be uscd or established, if necessary. We have established one such identity
n the appendix. The general series solution for the single soliton case is obtained in egs. (7)
and (15). The choice of parameters are made in section 2b to obtain all known single
soliton solutions of Toda lattice equation. The present work may be useful for finding
nonlinear solitary wave solutions for many interesting discrete models which are now being
studied in the continuum limit because of the absence of an easily accessible method to
solve the discrete counterpart. Another use of this approach may be its application to the
controversial diatomic Toda model. We analysed this case in Section 3.

On the whole, the purpose of this paper is two fold. First, the mixing exponential
method is expected to bring out a general recipe for obtaining solitary wave solutions in
discrete and continuous cases, in complete integrable as well as partially integrable cases in
single fields and coupled fields and the like. The very forceful methods like IST, Hirota and
Backlund are applicable for complete integrable equations and fail to deliver results for
partially integrable cases. Since in the literature all cases discussed using mixing
exponential are continuum situations, we analysed a discrete difference equation to
illustrate its general nature. However, our analysis shows that discrete cases are extremely
difticult because it requires establishment of new mathematical identities which we have
succeeded in finding for monatomic case. In this discrete case, even the next complex
problem of finding two soliton solutions becomes unmanagably difficult due to lack of
necessary mathematical identity and till to-day we fail to establish such identity. Hence our
conclusion in this regard is that mixing exponential method as it stands now, can be
considered as a general approach for obtaining single soliton solutions. The second purpose
of this paper is to shed new light on the diatomic Toda case for which soliton modes may
exist as shown in some numerical calculations {7] and so analytical methods should suggest
its presence. This was done approximately by mixing exponential method as has been
shown in Section 3.
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Appendix

By algebraic simplification we may write :

and

~22 +[exp(2Kx) + exp(-2Kx) - 2)[exp(Kx) + exp(- Kx) - 2)] !

= (2-Dlexp(Kx) + exp(-Kx) - 2]

-32 +[exp(3Kx) + exp(-3Kx) — 2][exp(Kx){t— exp(-Kx)-2] !

= (3-Dexp(Kx)+exp(~Kx) - 2]+ (3 — 2)[;.=xp(2xx) + exp(-2Kx) - 2]
—42 +[exp(4Kx) + exp(—4 Kx) - 2][exp(Kx);.+ exp(-Kx)-2]"!

= (4-1)exp(Kx)+exp(-Kx) - 2]+ (4 - 2)l[exp(2K.x )+ exp(-2Kx) - 2]

+(4 - 3)[exp(3Kx) + exp(-3Kx) - 2].

Using the method of induction, the general form becomes transparent :
-J2 +[exp(jKx) + exp(—jKx) - 2]lexp(Kx) + exp(-Kx) - 2]~}
7-1
=Z(j—m)[cxp(me)+cxp(—me)- 2]. (A)
m=1
The general identity (A,) can be verified as follows :

RHS.= (j—-1eX* +e K - 2)+(j-2)e " +e Kx _2)+ ...

"'+[J—(j—l)]leu~l)k‘ +e U 1 Kx _2|

+Jj(a+a*+a’*+..... +a’ Ny -{a+2a’ +3a’+...+(j-Da’ !
+j(b+ b2+ b3+ +b) )= (b+2b% +3b3+.. . 4+(j - Db/ !

204+2+3+.....(J-D),a=eX and b=¢ X

_.a(l-al) al-a-!) (j-Da’  bU-b1)
A G-a? '~ 1-a Y/ 15

_ba-p) G-Db L jG-D
(1- b)? 1-b 2

(j-Da-ja*+a’*' (j-1)b-b* +b/*
(1-a)? (1-b)?

-jr+j+
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(j=D-ja+a’/ (j-1)-jb+bl

= —j +j+ (@72 _glizy2 T 1z _pliz)z

2(j-1)-ja- jb+a’ + b’
el e~k 2

= -jl+j+

—jla+b-2)+a’ +b/ -2
a+b-2

= —j2+j+

a2 .. oal+bi=2
= I HI-IY T,

., elKr 4 e-iKx _ 2

= -] +m— =L H.S.



