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Abstract Significant differences aie ohserved in the tornpan.son of LleLtrv>n skalleiing
data from the octupole transitions in ^ a n d  ^ '̂() with ilic re.sulis of a large basis shell 
model calculations A good de.scnpiion of the octupole data is obtained for the longitudinal from
factors in  ̂ and when (.oniriburjons from collectne siait' are allowed in the shell 
model transition density. The amplitude of this admixture is nleiitjeai in the three nuclei
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A detailed test of Uie radial shape of nucicur excited stale wave luneiions is provided by 
inelastic electron scattering (c, e ')  form lactors. The (c, e ')  lorni laetor is a l\)imer* 
Bessel transform of the transition density which may \ x  then compared to a nuclear model 
prediction. The shell model has been reasonably succcs.siul in explaining a huge body o< 
data in l/?-sheIl nuclei and in this Idler wc examine radial octupole iransition den.sities 
predicted by the shell model lor and Octupole uansiiions ate pariiculaily
interesting for nuclei in upper half of the lp>shell since such transitions me expected to 
have, within the approximation of a IffO) shell model, a unique radiai shape of 
V i / 2,3/2 “ 1 ^ 5/ 2,3/2 transitions. I he use ol a .V/w model space [11 gives little modilications 
to the shape of the octupole transitions. Saxon-Woods wave functions do not change tiic 
^-dependence in any significant way and the use of Harmonic-Oscillator (110) wave 
functions, to define the radial shape of basis states, is justif ied.

For a stringent test of tlie wave functions, it is necessary to define (c, e ')  form 
factors over as large a ^-rangc as possible. The experimental data used here me from 
Ref. [2] for Ref. [3] for and Ref, [41 for
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Figure 1. The longiludinal form factors for the octupole transiUons in and
Experimental values are indicated by solid circles; Ok:. and data arc from Refs. [2-4]. 
Solid curvc.s are the predictions of ifie shell model with no effective charges. The dashed curve.s 
are tliosc with Se chosen to repro<luce the maximum of the experimenul form factor^ see Table 1.
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W e com pare the longitudinal octupole transitions in '*N and '®0 with shell 
model predictions o f M illener in F igure 1. Tw o observations are obvious from  this 
comparison : the shell m odel form factors do not have the correct ^-dependence, tending to 

be too broad relative to the experimental data and the longitucttnal form factors obtained in 

the shell m odel calculations are too small com pared with the experim ental data. This is 
particularly true for the so called collective transitions. Conventionally, the discrepancy 

between the experimental and theoretical form factcvs is explailied by the inu-oduction o f an 
additive effective charge defined a s :

e = €i +Se,

where e, is the charge o f the free nucleon (Cp = 1, e„ = 0) and Se is the effective charge. 

Some flexibility in the choice o f different values o f Se for the neutron and the proton has 
been found to provide a better description o f the experim ental data. This approach was 

investigated by Brown et al [5] for nuclei near '* 0  and they found effective charges for the 

neutron Se„ -  0 .34 and for proton SCp = 0.0. For octupole transitions, it has been found that 

the 5e„ is bigger than the Scp, explained the experimental data very well [5,6]. M illener [9] 
has suggested that the octupole transitions in can be explained by 6e„ -  0.385, Sep «

0.095. In fact, the effective charge needed to reproduce the strength at the m aximum o f  the 
form factors varies from  0.1 for the 5 /2*  to 2 .2 . for 5 / 2 j  in with other transitions 

requiring interm ediate values. The effective charge values are presented in Table 1. In 

Figure 1, the solid curves represent the shell model predictions with no effective charges, 
while the dashed curves are those with effective charges. It should be hoted that the 
predicted C3 form factors with the effective charges chosen to reproduce the m aximum o f 

the experim ental form factor can also be obtained by choosing different values o f the 
eff ective charges for protons and neutrons.

Table 1. Collective state mijung parameters.

Transitions Excitation energy 
(McV)

Se a

'2c. 3- 9.64 0.24 0.03110.002

'*0.3- 6.13 0.‘16 0.032 ± 0.002

'*N. 5/2* 5.27 0.1 0.00410.0004

*5n . 5/2* 7.15 2.2 0.00610.0006

'*N. 1/2* 7.57 0.21 0.01310.001

>*N. 5/2* 9.15 1.2 a 006 1  0.0006

£  = 0.029 ± 0.002

The m ajor inadequacy  o f  the shell m odel is the neg lec t o f  m ixing w ith 
configurations outside the restricted m odel space. However, significant extension of the 
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shell m odel basis requires knowledge o f m any more two-body interaction m atrix elem ents 

and even if  these w ere know n, the size o f  such a  calculation w ould  rapidly becom e 

prohibitive. Although the shell model description o f the C3 transitions is not consistently

Figure 2. Possible C3 form factors calculated from different configurations» in the upper 
curves. In the lower curves, comparison between data and theory for the 7,57 MeV level. 
The curves are predictions of the shell model mixed with the configurations shown above as 
defined in eq. 1.
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good in term s o f  the predicted strength, from the com parison, it w ould appear that the 

model w ave function is missing only a  small contribution from configurations not included 
in the  shell m odel space.

It is possible to utilize th e  experimental data to obtain soine feeling for the reasons o f 

this contribution by writing the physical transition density as fo llow s;

Ptr<'’> = PsM('')+aPadd('‘)- (1)

Here, a  is an adjustable param eter and p^a^r) is the contfibution from configurations 

which are outside o f the space considered by the shell model. Such conHgurations will in 

general, be expected to have a ^-dependence which is different from that o f the shell 

model form factors. W ith this model space, it was possible to give a  reasonable description 
o f the octupole transitions [8]. However, the shapes o f these configurations are displayed 

in figure 2. with com parison betw een data and theory for the 7.57 M eV level, as an 

example.

An alternative choice for pujuC'') ^  fbat o f a collective vibrational state, how ever, 

can provide an overall satisfactory agreem ent for all six states w ith very significant 

improvements in both the shape and strength o f the predicted form factors. This procedure 

has som e theoretical [10,11] and experim ental [12,13] justiflca tion  even though the 

application to explain octupole transition data in this way has not been attem pted so far. 

However, the existence o f  low -lying octupole collective states is well established and 
considerable evidence for the existence o f a  giant octupole resonance (G O R) at an 

excitation energy o f -llO /A ^'^^ MeV [14] has accumulated in recent years.

The radial shape o f the collective state to be used in eq. (1) was chosen as

Padd('-) = A'rp;..(r), (2)

where N  is adjusted to give the strength required by the sum rule [10] and p ' . ,  ( r )  is the 

radial derivative o f the ground state charge distribution o f the nucleus which was obtained 

fr(»n [15] in terms o f a Fourier-Bessel s a le s

p j . f ( f ) =
= 0, r ^ R , .

The values o f q/fic gives the p -th  zero o f the spherical Bessel fu nc tion : -  0, where

Rc — 1 fm, is the cu t-o ff radius and are the Fourier-Bessel coefficients [15]. The 

description o f  In eq. (2) was then used in eq. (1) and a w a s  treated as an adjustable 

param eter for each transititm studied. In P sm(0 .  no effective charges were used. The results 

are presented in Table 1, and Figure 3. The admixture is always such that the strength o f the 

transition is enhanced. Considerable im provem ent in the ^-dependence o f all the studied 

transitions is observed for values o f  or which are needed to reproduce the experim entally 

observed form factor maxima.
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Fifurt'3. The experimenta] form factors as in Figure 1. The solid curves 
are the predictions of the model defined in eqs. 1 and 2. The values of 
a  are listed in Table 1. The dashed curves show the sensitivity of the 
admixture a.
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