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Abstract
clectrostatic interactions as a perturbation. Theoretical expressions

: Perturbation theory for non-spherical molecule ﬂu"‘
are determined using the peturbation theory of Singh e/ o/ [12]. T

is considered, in wmch the GOCE poctutial 1s taken as a reference and the
s given for perturbation terms. The properties of the reference GOCE fluid
numerical calculations are made for the thermodynamic properties such as

internal cnergy, entropy and pressure for N, and CO, using the Gauggsian parameters and comparisons arc made with the expenmental data The
4

agreement is found to be good iy
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1. Introduction

In recent years, theoretical and experimental efforts have
been made to understand the structural and thermodynamic
propertics of polar non-spherical molecular fluids [1-5].
Several potential models such as multicentre (atom-atom) or
Kihara generalised pair potential have been proposed for
molecular fluids of non-spherical molecules [1]. The atom-
atom potential model is convenient for use for small molecule
like N, but inconvenient for larger molecules (e.g. CeHe).
Further the dependence on molecular orientation in the
atom-atom model is implicit, so that it is difficult to use in
analytic perturbation calculation. The Gaussian overlap (GO)
model of Berne and Pechukas [6] is of special interest
because it proved to be solvable onc. The GO madel may
be viewed as an interaction between molecules whosc
repulsive cases arc basically ellipsoids of revolutions. This
model has certain deficiencies as pointed out by Gray and
Berne [7]. Even then this model is sufficiently realistic [8]
and may be employcd to fluids of non-spherical molecules.
Particularly, it may not lead any serious error in estimating
the thermodynamic propertics of molecular fluids, where we
perform integration over orientations {9].

Considerable progress has becen made in the study of
polar non-spherical fluids. The approach for studying thc
propertics of these systems is the extended version of the
Barker-Pople-Gubbin-Gray (BPGG) perturbation theory [1]
in which the Kihara potential serves as reference and the
eifect of the electrostatic intcractions is considered as a
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perturbation. The reference distribution function (of convex
molecules) in the perturbation terms is approximated by that
of the GO fluid [3,4]. Employing the decoupling
approximation [10} for the Gaussian distribution function,
the perturbation intcgrals become simpler for evaluation.

In this paper, we extend the perturbation theory, originally
developed by Boublik {2,4], for non-spherical molecular
fluid, where thc GO potential is taken as a rcference and the
electrostatic as well as the anistropy of short range overlap
interactions as a perturbation. The perturbation terms in this
case arc dircctly cxpressed in terms of the distribution
function of the GO fluid. To detcrmine the thermodynamic
propertics of the GO fluid,.we employ the Wecks-Chandler-
Anderson (WCA) [11ptype perturbation theory developed
by Singh et al [12}.

The paper is organiscd as follows. In Section 2, the theory
for thermodynamic properties of the non-spherical molccular
fluid is discussed. The perturbation theory for the GO fluid
is described in Section 3. The results for N, and CO, arc
discussed in Section 4. The paper ends with the concluding
rcmarks in Scction 5.

2. Theory

We consider non-spherical molecule fluid, whosec molecules

interact via pair-potential, given by a sum of two terms.
u(r,anm) = uco(r,w )+ V(r,mwy), m

where ugo is the Gaussian overlap potential model of Berne
and Pechukas [6]
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‘Pau(w|w2)=2+30052 6, +3¢os’ 0,, (8ch)

@ o (w,@;) =sin* 6, +sin® 8, + 4cos* 6, +4cos* 8, (8c)

Here, 6,, 6; and ¢ = ¢; — ¢, are the Euler angles, u and ¢
are, respectively, the dipole and quadrupole moments and «
the average polarizability. In the GO model, the attractive
part of potential-4¢(w,w,)o(w,w,)/ rl® is the dispersion
potential and is given correctly, where as 4e(w,w,)
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uGo (r,ww2) = 4e(wiw2)[(6(ww2)/ r)'?
—(o(ww2)/r)®], )
whcre
o(wiw2)/ 6o =[1-x(cos? 6 +cos?2 02 —
2xcos 0y cos 82cos 612)/ (1~ x2 cos? 612)]-V2 (3)
and
e(@,0,)/ €y =1~ x* cos® 6;,)]""%. 4)
Here, r = Irp = ryl is the centre to centre distance, o,

represents the orientation cordinates (6,, ¢,) and 6,, 6, and
0,, are the Luler angles. The constants g, and o have the
dimensions of energy and Icngth, respectively and x the
anistropy parameter defined as

2= (K*=1)/(K?+1). (5)

Thus, the GO model is a threc parameter one (&), o, and x}.
where y determines the shape, prolate or oblate of the
molecules, K is the length-to-width ratio (2a/2b) of the
molecules such that K > 1 for prolate and K < 1 for oblatc
molecules. For spheres K = 1, ¢q. (2) simply reduces to the
Lennard-Jonces (LJ) (12-6) potential for spherical molecules.
In the special case of the Gaussian overlap with constant
encrgy (GOCE) model [9], &(w,w,) = &,. Kabadi and Steclc
[9]) have shown that use of g instead of &w;w@,) does not
change the thermodynamic propertics much. In the present
calculation, we use the GOCE model. For the second term
in eq. (1), we take

V= lperm + Un, (6)

where 1.y, is the interaction between multipole moments of
the molecules and u,, is the interaction of the induced
multipole moment in one molecule with the permanent
multiple moments in the other. They are expressed as [1,13]

Uperm = (17 17 ) Dy (@,0,)+(3/ 2)(UQ 1 ) Dy (0,0,)

+(314)Q7 1 1Py, (0,0,) (7a)
and = ~(1/2) (o’ 1 1) D, (0,0,) -

(9/8)(aQ? ] r8) Py (w,0,), (7b)
where

D, (0,@,) =sin B, sin 6, cos § -2cos Gy cos 6,. (8a)

Pyol(@ ;) =¢0s6,(3cos> 0, - 1) —

2sin 6, sin 8, cos 6, cos @, (8b)
@00 (wlw2)=1-5(cos2 6] +cos2 62) —

15cos? 8, cos? 6, + 2(sin 6, sin B, cos ¢ —

4c0s 6, cos 6, )2, (8¢)

| 6(w,0,)/ r1'? is the repulsive part of potential, which treats
the short range shape or overlap potential.

Using the perturbation theory, where ug;q is treated as the
reference potential and V is the perturbation, the residual
Helmholtz free energy of the molecular fluid can be written
as

(A=~ A")/ NKT = ((Ago —A*)! NkT)+ (A1 / NkT)
4+(A, I NkKT)+ (A, / NkT)+..., 9)

where A" represents the Helmholtz frec cnergy of an idcal
gas and Ag)-A°, the residual free energy of the reference GO
fluid, and A, is the n-th order perturbation correction term
due to the perturbation potential V.

A NET = (11 2)Bp] < g6o (r@,02)V (r@@3)> g dn .

(10)
Ay I NKT = ~(1/ 8)B2p| < go (ro,0;)
[V(r@w)) P > giwodr; (1
and
Ay ! NKT = (Aq, I NKT) +(As; / NKT) (12)
with
Ay | NKT = (1112)B°p ] < g0 (ro,0,)
[V(r@,@)*> 10207, (13)
Ay I NKT = (11 6)B*p* | < g0 (1,2,3)V(1.2)
V(L3)WV(2.3)> 10203dndr. (14)

Here, B = (kT)™!, ggo (r @@y) and ggo (1,2,3) are pair and
triple distribution function of the reference GO fluid and p
= N/V the number density (N is the number of molecule in
a volume V). <(. . .)> ¢ . o represents an unweighted
average over the molecular orientations @, . . ., w; for the
quantity within the angular bracket.

In order to evaluate the perturbation terms, we introducc
the new variable r, defined by r = r/lo(w,®,), then the
potential (eq. 2) transfers to be central Lennard-Jones (LJ)
(12-6) potential. Conscquently, the molecular pair distribution
function (PDF) of the GO fluid becomes that of the LJ (12-
6) fNuid [3,7] i.e.

86o (rwy@,) = goo (r/ 0(@,@,)) = g1, (r'). s
Substituting eq. (6) in eqs. (10) and (11) and using eq. (15).
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the tirst and second order perturbation terms can be expressed
as
(16)

(17)

A,/ NKT = A,(in)/ NkT,
A, I NKT = A;(Perm)/ NkT,
where

AGmY I NKT =2m(p* /T (M 4)a* 2 J6™ (K) e
+(9/R)a*Q* JF(K) Iy, (18)
\(Perm )/ NKT = —m(p* /T * 2)[(u*2)2 JE* (K) I,

312 O*2 I (K ) Iy + (31 40*2 )2 J8C (K)o ]

19),
with L (p*) = fgu (r*)(r*)ym 2dr*, (2())%
In(K) =< @il a(w,0,)/ 0, jrme Zwlw? @i

where n represents the order of perturbation term and m
denotes the power of (1/r) of the perturbation potential. In
ey (18 -19), we have used the following reduced quantities

p* —po,. T* =kT 1 &, a* = o/ o,

,
* = £,05, QFF = Q° /C()O'?)- (22)

In a similar way, the lcading contribution to the third order
perturbation term As; may be written in the form

A I NKT = (11 3)m(p” 1 TH3U(u ™) (3Q™ 1 4)Jf7(K)
HEHBE Q122 KO

+3(§55(—2«) (3021 ) I (K1,

+(307 14 & (K151, (23

where j,"!w and JM@ are the coefficients, corresponding to
(u?)}(Q)?* and (u? )(uQ)? respectively, while J40¢ and J¢?

are the cocffcients, corresponding to (uQ)*(Q*) and (%)%,
respectively.

The values of the J,(K) intcgrals can be evaluated
numerically for any value of K. Boublik [3] has given the

functional equation to determine the integrals except J;s€>.
They arc evaluated numberically for several values of K and

reported in Table 1. The integral /, at density p+ = p*k and
temperaturc T~ can be evaluated following cmperical equation
of Ananth [14}].

Inl,(p*. T )=Ap?2InT" +B,p*2+C,p*InT*
+D,pt+E,InT* + F,. (24)

The coefficients A, — F, for different values of n are
reported by Gray and Gubbins |15].
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Tuble 1. Values of J, for different values of X

K 21 NK)
1.00 4 17959
1.20 0 79097
130 0 55556
1.3419 0 S181S
150 047915
155 0 47795
1.5637 047780
1792 047208
180 047164
| 8836 0.460610
2.00 0 45620

Using the superposition approximation for gyy (1,2,3).
thc term Asz can be written as

Ayy/ NKT = (472 13)(p"2 I T*)|(U*2)3 Ly,
+3(U2)2(3Q2 1 4) Lo +3(U N30 1 4) Lygyo

+(30"/4)} Lyg ), (25)
wherc
L= JJJ- M oump 813 (12813 (133) 813 (1)) 1+
A
(3 " m* (5 Prrdn)ydidi (26)
Mnm]) = (475)-“["—“. V’n(wlwl)w"u(wlwl)
I[/,,(wz(l):; )d(lhdwztl(l)g (27)
and
Vi (0,0,) = d(00) o(ww,)! ol "*2. (28)

Here, A denotes integration over ry, ryy and ry; forming a
triangle. The numerical integration of L in general is time
consuming except for the pu—pu—y and Q—Q—() interactions.
For these interactions L is given by Monte-Carlo (MC)
interaction, which is fitted to formula [3]

Ly =0.0236(1+2n+2n%)/ K} 063 (29)

Lopp = 0.0155 exp (4.31581)/ K2 65265 (30)

where 7 is the packing fraction.
Thc total perturbation contribution to the Helmholtz free
cnergy, AA is evaluated from the Pade' approximant |16]
AA=A|+A2(1—A3/A2)"I. (3])
The total residual frec encrgy of the molecular fluid is
determined as
(A=A*)! NKT = (Ago — A*)! NKT + AA I NkT . (32)
The other thermodynamic propertics follow from thc

respective derivatives of AA. Thus, the internal cnergy is
obtained as
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(U=U"*)! NkT = (Ugo - U*) ! NKT + AU /| NKT, (33)
where

AU I NKT = (1/ T*)(S6(AA/ NkT )/ 811 T*)). (34)
Using eq. (31), one gets

AU = U, +((1-2431 AU, +Uy) 1 (1= A3/ A3)2. (35)

Similarly the equation of state is

P/ pkT = Pso | pkT + AP | pkT, (36)
where

AP/ pkT = p*(8(AA I NKT )/ 8p°) (37)

which gives

AP = B +((1-2A3/ Ay) A + P3)/ (1- Ay Ay)2. (38)
Here, Ugo and Pgo are, respectively, the internal energy and
pressure of the GO fluid.
3. Gaussian overlap fluid

In order to obtain the thermodynamic properties of the GO
fluid we divide the GO potential ugo into a reference part
up and perturbation part i, such that [12]

UG (rogw;) = uy (ro\w; ) +u, (royw,), (39)
where
Uy (r@ys ) = ugo (r@ ) + E(W103), r < ry, (00,)
=0, r>rmm(wlw2) (40)
and
u,(raoy®y) = —e(W1@2), r< . (00,)
= Ugo (rywr)  r> py,(00;). 41)

Here, 7. (0,0,) = 2V6 g(w,w, ) . In the present calculation,
~we cansider the GOCE model, where €(w0,) = €.

Using this perturbation scheme, the Helmholtz ftrec
cnergy of the GOCE fluid is given by

Ago ! NKT = (A, / NkT)+(1/2)ﬁpfdr

< 8o (rayws)u, (rqw;) >y 432, (42)

where g,(rwyw;) is the PCF of the refercnce system.

The propetics of the reference system can be obtained by

a blip function expansion about a suitably chosen hard
Gaussian overlap (HGO) system. The HGO potential is

uygo (ranw, ) = o,

=0, (43)

where d(wy, w7 ) is the distance of closest approach between

two HGO's and is given by

d(@w,)/ dy = o(\w,)/ 0.

Here, o(ww,) is given by eq. (3).

In order to be consistent with the calculation of the

perturbation terms discussed in the previous section, we use

the decoupling approximation to estimate the reference and
perturbation parts of the GOCE model.

r <d((l)|(02)

r>d(a),w2).

(44)
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For the GOCE model, Singh er al [12] have given uy
expression for dj =dy / 6y
dy =dp/[1-(611/200)8) = dp(1+ (611 / 20m)8), (45)

where

dy = J(l = expl —Buy(r*)dr* (4ba)

&= J((r' ! dg)—1)2(d/ dr*)(expl—Puo(r~)Ddr" (46b;
0

O = (1= n/2)(1-n)3, (47a)
0, =(2-7.5n+0.512 +5.7865 N3 - 1.51*)(1 - n)-4,
(47b)
with
n= pVHGO = (ﬂ/6)p‘d53K (48)
as the packing fraction.
Thc thermodynamic function of the reference system can
be detcrmined from the equation of state of the reference
system, given by [12]

Py 1 KT = (Pugo | PKT) + 418Fy ()

[(12/2)=(011200)T1 ], (49)
where [17,18]
Pago /PKT =1+(2n2-m)/ (A -mH) K (0. (50
Ry = (=221 (x216)- (x*/40) = (x°/112)-...].
(5hH
T) = O + Oy, (52a)
T, =20y + O, (52b)
Ow and oy, are given by eq. (47) and
O3 =(2-21+3n*+0.1713 -26.797n*
+11.2205)(1-n)-5. (53)

The residual Helmholtz free energy of the reference system
is given by [12]

(Ag— A*)/ NKT = Aygo — A / NKT +48F, (x)(BAS).

54)

where
(Apgo —A")/ NKT = n(4-3n)(1-n)2FRy(x), (55)
BAf =3n2(1+1.75n-5.249n2 )(1 - n)-3. (56)

We use egs. (49) and (54) respectively to calculate the
pressure Pgq and the residual free energy (Ago — A”) of the
reference fluid for the GOCE model. The configurational
internal cnergy for the reference system is obtained from
eq. (54).

The first order perturbation correction to the free energy
is given by [12]



Perturbation theory of non-spherical molegule fluids

A/ NKT = (121, / T )Ry(X) A (57)

where

Al =h-L-1 (58)

with

h= 4Idr°r°2 [(dapr™) 12 = (dgr™)STWus(r". w) (59,
1

ol do)
h=a [dr P Y S s ), (s9b)
1
Toun /gy
19 = j dr'r2Yus(r', Ny, (590);
1
Ne =N-n2116, (60a)!
d} =d"3n,/n. (60b)

The values of Yys (") are calculated from the hard sphere
values [9] of the Y-function, defined as

Y(r*) = exp|Bu(r*)]g(r*).

4. Results and discussion

In order to test the theory for predicting the thermodynamic
properties of the non-spherical molecule fluid, simulation
data are needed. But as far as we know, there arc no
simulation data for the thermodynamic properties involving
the GOCE modecl. Hence, we usc experimental data to make
our comparisons. However, only few fluids such as N,, CO;
and C¢Hg are characetrised by the GOCE (or GO) model. But
the experimental data of C¢Hg are not available. In the
present paper, we calculate the thermodynamic properties of
N> and CO, which can be characterised by the GOCE model.
Their force parametrs are reported in Table 2. The GOCE

(61)

‘Table 2. Force parameters for N; and CO; using the GOCE potential
model

System K oW/A (kK ! o/10 =4 Q10 -°
cm’ esucem’

N, 130 3.370 94.00 1.730 -1 40

CO; 1.88 2.853 285 81 2.925 430

parameters (0y, & and K) for N; and CO; are taken from the
literature [19,2]. For CO,, I" = /o = 0.815 |2}, which
corresponds to the Centre-to-Centre distances of the outermost
atoms. Corresponding to this values of /', K = 1.88, which
is used in the present calculation. In addition, this table
include the parameters (o,Q), taken from Shukla et al [20].
They used these parameters with usual LY (12-6) potential
model.

The magnitude of the contribution of various branchcs
of pair interactions to the residual Helmholtz free encrgy for
N, are given in Table 3 for p* =0.659, T° =0.957, p* = 0.603,
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Table 3. Comparison of magnitude of contributions of vartous branches
of puir potentials to the residual free encrgy for N> at K = 13

Contributions p =065 p" = 0659 p" = 0.659
T = 0957 T = 1004 =170
A\Gn)/NKT — 005216 —0.04049 - 003676
As(Perm)/NKT —0.12125 — 0 08386 —0.06968
A/NKT 000214 000132 000102
AWNKT 0.00667 000337 000241
AUNKT 000881 000469 000343
AAINKT — 016520 -0 1199} -0 10317
(Ao — ATNKT = 247006 — 1 98830 - 156884
(A — A"YNAT —2.63520 - 210821 - 167201

7" = 1.064 and p” = 0.598, 7" = 1.170. It may be sccn from
the table that the contribution in the first order perturbation
is small. In the sccond order perturbation term, the
contributions arising [rom quadrupole moment interaction to
the free encrgy is significant. The contribution of the third
order perturbation term is small in comparison to the
contribution arising in the second order terms. This shows
the convergence of the scries. The third order terms mcludes
Az and Asz; terms. Their contributions are comparable in
magnitude. The higher order terms are taken approximately
into account by using Pade’ approximant [16].

It is clear from this table that the main contribution to
the free encrgy comes from the reference GOCE model.

The calculated values of the thermedynamic properties
such as residual intcrnal energy (U« / NKT = (U —U* )/ NiT,
entropy S/Nk and the pressure P for N, are compared with
experimental data [21-23] in Table 4. The results obtained
by Shukla et al [20] are also reported there. The agreement
between theory and experiment arc found to be good,
sometime better than one obtained by Shukla et al.

The calculated valucs of U‘/NkT and S/Nk for CO, arc
compared with experimental data [21-23] as well as with
those of Shukla et al [20] in Table 5. Even in this casc the
agreement is fairly good.

Table §. Thermodynamic properties of CO» at K = 1 88,

7(K) -U INKT ~S/NA
(mol/1) Present  Shukla  Expt. Present  Shukla  Expt

work er al{20] [21-23] work 1 dl[20] [21-23]

2232 26209 7.446 7426 7465 4109 4196  4.069
2332 25337 6902 6816 6862 32722 3795 31684
2432 24408 6304 6158 6.293 3350 3353 3356
2532 23400 5724 5681 5.761 3.006 3.064 30706
263.2 22313 5203 S168 5256 2793 2729 2781
273.2 21118 4786  4.669 4763 2465 2407 2445
2R83.2 19.614 4303 4159 4.264 1998 2067 2.072
293.2 17609 3722  3.697 3.731  1.673 1 696 1.634
303.2 13.475 2933 27147 2.841 1095 1117 1079
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Tabte 4. Thermodynamic propertics of N» at K = 1.3
~UMINKT SINK Platom B
:,moll I Present Shukla Expt. Present Shukla Expt. Present Shukle Eape
work et al [20] [21.23) work et al [20] [21-23] work et al [20] [21 2
T=90 K T
26.63 6132 6.193 6.146 2970 2999 3.005 10.11 10 00 m
26.89 6.205 6.219 6.212 3044 3043 3.060 30.27 3000 30
27.14 6.240 6.289 6274 3100 3108 3.109 5106 51.00 50
27.69 6.348 6349 6415 3.212 3201 322 101.29 101 00 100
28.59 6538 6412 6632 3.387 3.381 339 201 14 202 00 200
29.96 6.815 6413 6.924 3.662 3659 3658 403.98 405.00 400
30.97 7.008 6.598 7118 3.865 3859 3 884 596 44 609 00 600
T=100K
24.57 5.051 5.071 5.060 2628 2643 2630 7 80 7 68 77
24.59 5.076 5074 5.090 2.638 2 646 2.640 10.03 10 05 10
2501 5.143 5.134 5.166 2703 2715 2698 30:32 30 52 0
25.37 5.247 5.182 5.240 2760 2775 2.759 49.98 50 03 S0
26.14 5392 5.378 5.402 2.893 2.909 2.888 100.46 100.56 104)
27.29 5620 5.583 5648 3084 3060 3.093 20096 201 76 200
28 88 5.920 5 890 5.953 3367 3.374 3.363 402.52 402 26 400
30.04 6.073 5.995 6.151 3650 3607 3.693 601.67 604 .91 [
"= 110 K
22.18 4.114 4.181 4120 2199 2.208 2.200 14.70 1215 145
22.73 4271 4262 4.267 2315 2.301 2.328 30 39 30.3% 30
23.32 4392 4.346 4.387 2387 2.385 2423 50.12 5017 50
24.46 4 607 4.500 4578 2569 2.558 2571 100 50 101.68 100
25.93 4.859 4.832 l 4 850 2.808 2.800 2.798 200 46 202.54 200
2782 5.160 4879 5168 3078 3143 3081 402.45 404 32 200
2912 5.361 5295 5.374 32 3364 3118 600 92 619.16 000
5. Concluding remarks Acknowledgments

In this paper, we develop the perturbation theory, where the
GOCE potential is taken as a reference and multipole
moment and induccd interactions as a perturbation (o
estimate the thermodynamic function of molecular fluid of
non-spherical molecules. The properties of the reference
GOCE fluid arc calculated using the WCA type perturbation
theory developed by Singh er al {12]. The perturbation
terms are expressed in terms of J and [ integrals, which can
be easily evaluated. We have applied this theory for N, and
COs only and found good agreement with the cxperimental
data.

This theory can be applied to estimate tht thermodynamic
functions of any system whose GO parameter (0p, & and K)
are accurately known.

We are thankful to Dr. J Ram, Banaras Hindu University.
Varanasi for many useful discussions. We acknowledge the
financial support of the University Grants Commission, New
Declhi.
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