A splitting of the Weert superpotential

J L López-Bonilla
The International Institute of Integral Human Sciences, 1974 de Maisonncuve West, Montréal, Qué, Canada H3H IK5
J Morales aind G Ovando*
Area de Física. División de CBI. Universidad Autonoma Metrqpolitana-Azcapotzalco Apdo Postal 16-306. 02200 México, D F
e-mail address: gadz@hp9000al.uam.mx
Received 7 June 1999, axcepted 15 September 1999

Abstract

We show that the concept of Lanczos spintensor (Rev. Mod Phys. 34379 (1962) [1]) leads in a natural way to the sphtting of T_{B} as proposed by López (Phys. Rev. D17 2004 (1978) [2]) for the bounded part of the Lienard-Wiechert electromagnetic field.

Kcywords : Liénard-Wiechert field; superpotential for the electromagnetic field.

PACS Nos. : 03.50.-z; 13.30.--a

First of all we go back to Refs. [3-9] and recall the notation and quantities employed there. When a pointcharge is moving arbitrarily in Minkowski space, it generates the Lienard-Wiechert electromagnetic field whose Maxwell tensor may be split as [10]

$$
\begin{equation*}
T_{a c}=T_{B} a+T_{a} \tag{1}
\end{equation*}
$$

in its bounded T_{B} and radiative T_{R} portions, which in turn satisfy the continuity equation outside from the world line of the charge :

$$
\begin{align*}
& T_{R}^{a}{ }_{c, a}^{a}=0, \tag{2}\\
& T_{B}^{a}{ }_{c, a}^{a}=0, \tag{3}
\end{align*}
$$

On the other hand, in $[3,5,7-9,11,12]$ it was shown the non-local superpotential ${\underset{R}{R}}^{a b c}=-K_{R}$ bac for the radiative part,

$$
\begin{equation*}
{\underset{R}{R}}_{T_{a}}=K_{R}{ }_{a c, b}^{b}, \tag{4}
\end{equation*}
$$

from which (2) follows. Similarly, (3) implies the existence of the Weert superpotential $[13,14] K_{B}$, which has the role of a generator for the bounded part :

$$
\begin{equation*}
{\underset{B}{ } T_{a c}=K_{B a c, r}^{r} .}_{r}^{r} \tag{5}
\end{equation*}
$$

In Ref. [8], the physical meaning of $K_{B} a b c$ was found and it turns out that this is the intrinsic angular momentum density of the electromagnetic field produced by the point charge.

Furthermore, a splitting of the bounded piece was suggested in [2] :

$$
\begin{equation*}
{\underset{B}{B a c}}^{T_{B}} \bar{T}_{B c}+\dot{T}_{B} a c \tag{6}
\end{equation*}
$$

which is quite convenient when studying the angular momentum of the Liénard-Wiechert field; however, the actual origin of (6) was not clear.

Since the potential $K_{B} i j$ has $[6,8]$ the same algebraic and differential symmetries as that of the Lanczos spintensor [1,15-28], we will prove in this work that this fact brings naturally to the splitting

$$
\begin{equation*}
K_{B} \text { arc }=K_{B} a r c+K_{B} a r c \tag{7}
\end{equation*}
$$

as evident from the expressions (5) and (6).

[^0]
Splitting of $\underset{\Delta}{K_{i j r}}$:

In [4-10,12-14] one finds the expression for the bounded term of the Maxwell tensor associated to the LiénardWiechert case :

$$
\begin{align*}
T_{B}= & q^{2} w^{-4}\left[\frac{1}{2} g_{b c}+\left(k_{b} a_{c}+k_{c} a_{b}\right)\right. \\
& \left.\tilde{B}\left(k_{b} v_{c}+k_{c} v_{b}\right)-w^{-2}(1-2 W) k_{b} k_{c}\right] . \tag{8}
\end{align*}
$$

Also Weert [13,14] has shown that (5) implies (8) by means of

$$
\begin{gather*}
K_{B} b_{j c}=\frac{q^{2}}{4} w^{-4}\left[w^{-1}(4 W-3)\left(v_{b} k_{j}-v_{j} k_{b}^{\prime}\right) k_{c}\right. \\
\left.-4\left(a_{b} k_{j}-a_{1} k_{b}\right) k_{c}+g_{c j} k_{b}-g_{c} k_{j}\right] . \tag{9}
\end{gather*}
$$

The symmetries of the Weert superpotential have been studied for example in Refs. $[6,8]$; in fact, it is casy to verify by using (9) that they are

$$
\begin{align*}
& K_{B} b r^{\prime}=-K_{b} b_{b}, \quad K_{b}^{j} j_{j}=0, \\
& K_{B} a b c+K_{B} b_{c a}+K_{B} c a b=0, \quad K_{R} b_{j,{ }_{,}}=0, \tag{10}
\end{align*}
$$

which are remarkable because (10) are fulfilled also by the Lanczos spintensor $K_{l, r}$ [1,15-28] in general relativity.

At this stage, we proceed to give the steps to generate a splitting in T_{B} ac we write (9) in the form (7) but carefully imposing the condition that \bar{K}_{B} ur and \tilde{K}_{a} satisfy the symmetries of Lanczos (10) too. And indeed, it is not difficult to see that there is only one way to rewrite (9) fulfilling such requirement :

$$
\begin{align*}
& K_{B}^{K_{b r}}=\frac{q^{2}}{4} w^{-4}\left[4 w^{-1} W\left(v_{b} k_{j}-v, k_{b}\right) k_{c}\right. \\
& \\
& -4\left(a_{b} k_{j}-a_{j} k_{b}\right) k_{c}-3 w^{-1}\left(v_{b} k_{j}-v_{J} k_{b}\right) k_{c} \tag{11}\\
& \\
& \left.\quad+g_{c j} k_{b}-g_{c b} k_{j}\right]
\end{align*}
$$

When comparing this eq. with (7), the following superpotentials come out :

$$
\begin{align*}
& \bar{K}_{B} b_{j c}=q^{2} w^{-4}\left[\left(w^{-1} W v_{b}-a_{b}\right) k_{j}-\left(w^{-1} W v_{j}-a_{j}\right) k_{b}\right] k_{c}, \tag{12}\\
& \tilde{K}_{B}, \tag{13}\\
& b j c \\
& =\frac{q^{2}}{4} w^{-4}\left[3 w^{-1}\left(v, k_{b}-v_{b} k_{j}\right) k_{c}+g_{c j} k_{b}-g_{c b} k_{j}\right],
\end{align*}
$$

satisfying the properties (10). The splitting (6) proposed by López [2] appears if eqs. $(7,12,13)$ are substituted into (5), with

$$
\begin{equation*}
\bar{T}_{B} a c=K_{B}{ }_{a}^{\prime} r, r, \quad \underset{B}{\dot{T}_{a c}}=K_{B}^{K_{a}{ }^{r}, r} \tag{14}
\end{equation*}
$$

and one recovers the expressions (which are not necessary to display here) of the mentioned author.
In this manner, we have made clear that (6) is motivated by requiring that the Weert superpotential be the sum of two tensorial objects with the symmetries of the Lanczos spintensor.

References

[1] C Lanczos Rev. Mod. Phys. 34379 (1962)
[2] C A López Phys. Rev. D17 2004 (1978)
[3] N Aquino, O Chavoya, J Lopez-Bonilla and D Navarrete Nuovo Clm. B108 1081 (1993)
[4] V Gaftor, J Lopez-Bonilla, J Morales and M Rosales J. Math Phys 353482 (1994)
[5] J López-Bonilla, J Morales and M Rosales Pramana J. Phys 42 89 (1994)
\{6] N Aquino, H N Núñez - Yepez, J López-Bonilla and A L Salas Brito J Phys. A28 L375 (1995)
[7] J López-Bonilla, G Ovando and J Rivera Indian J. Pure Appl Math 281355 (1997)
[8] JLópez-Bonilla, G Ovap̧do and J Rivera Nuovo Cim B112 1433 (1997)

19] J López-Bonilla, H N Núñez - Yépez and A L Salas-Brıto J. Phys. A30 3663 (1997)
[10] C Teitelboim Phys. Rev. D1 1572 (1970)
[11] J López-Bonilla and G Ovando Gen. Rel. Grav 311931 (1999)
[12] V Gaftoi, J López-Bonilla and G Ovando Nuovo Cim B114 423 (1999)
[13] Ch G van Weert Phys Rev D9 339 (1974)
[14] V Gaftoi, J López-Bonilla and G Ovando Int. J. Theor. Phys 38 939 (1999)
[15] F Bampi and G Cavigha Gen. Relat. Grav. 15375 (1983)
[16] G Ares de Parga, O Chavoya and J López-Bonilla J. Math Phys. 301294 (1989)
[17] J Lopez-Bonilla, J Morales, D Navarrete and M Rosales Class Quantum Grav. 102153 (1993)
[18] P Dolan and C W Kim Proc. Roy. Soc. (London) A 447557 (1994)
[19] V Gaftoi, G Ovando, J López-Bonilla, J Morales and JJ Peña, J. Moscow Phys. Soc. 6267 (1996)
[20] G Bergqvist J. Math. Phys. 383142 (1997)
[21] S B Edgar and A Hogglund Proc. Roy. Soc. (London) A453 835 (1997)
[22] V Gaftoi, J López-Bonilla, G Ovando and J Rivera Bull. Allahabad Math. Soc. 12-13 85 (1997-98)
[23] J López-Bonilla and J Rivera Indian J. Math. 40159 (1998)
[24] V Gaftoi, J Lopez-Bonilla and G Ovando Nuovo Cim. B113 1489 (1998)
[15] R L Agacy Gen. Rel. Grav. 31219 (1999)
[26] J López-Bonilla, J Morales and G Ovando Gen. Rel. Grav. 31 413 (1999)
[27] V Gaftoi, J Morales, G Ovando and JJ Peña Nuovo Cim. B113 1297 (1998)
[28] J Lopez-Bonilla, G Ovando and J J Peña Found. Phys. Lett. 12 401 (1999)

[^0]: "To whom correspondence should be addressed.

