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A b s t r a c t  • We need to make choice of gauge to define a gauge theory There arc many 
choices o f gauges The theories [greens functions etc] in different types gauges are difficult 
to  re la te  to  each  o th er as the  tran sfo rm atio n  from  one gauge type  to  an o th e r  is hard to 
construct exp licitly  Yet the physical results in various types o f gauges are supposed to be 
g au g e -in d e p e n d e n t In fact, h ow ever, ex am p les  have been  found  w here  the an o m alo u s 
d im ensions of physical observables have been found to differ m Lorentz and axial gauges

In this work, we develop a m ethod for constructing an explicit field transform ation betw een 
tw o sets o f  gauges This field transform ation  is a generalization  o f  the BRS transform ation  
in that the anticom m uting param eter now is not infinitesim al nor fie ld-independent [though 
not local]. T hese generalized  BRS transform ations, w hich we call “ F in ite F ield-dependent 
BRS transform ations", or FFBRS for short, are nilpoteni and are obtained by integrating the 
infinitesim al field-dependent ones We show that these can be used to connect the Faddeev- 
Popov effective action in linear gauges with gauge param eter lam bda to [1 ] the m ost general 
BR S-anti-BR S sym m etric action in linear gauges ; [li] the Faddeev-Popov effective action m 
q u ad ra tic  gau g es , [m ] the F ad d eev -P o p o v  e ffe c tiv e  ac tion  w ith  an o th e r  d is tin c t gauge 
param eter alpha. In each case the extra term s in the latter action aie shown to arise from the 
Ja c o b ia n  fo r  th e  N O N L O C A L  F F B R S  tr a n s fo rm a tio n  [P h y s . R ev  D 5 I .  (1 9 9 5 )  
1 9 1 9 -1 9 2 7 ]

T he above id ea  is fu rth e r  ap p lied  to  co rre la te  ax ial and the L o ren tz  type gau g es by an 
ex p lic itly  co n s tru c ted  F FB R S tran sfo rm a tio n . We show  that it can  be used to ex p lic itly  
C O N ST R U C T  a p rescrip tio n  fo r lig h t-co n e  and ax ial gau g es It m ay fu rther be used to 
corre la te  quantities in the tw o sets o f  gauges. (/. P h ys. A31 4217 (1998)]

K e y w o rd s  : BRS sym m etry, gauge transform ations, axial gauges 

P A C S  N o. ■ 11. 15.B t

1. Introduction

The known high energy physics is well represented by the standard model ; which is a non- 
abelian gauge theory. [ 1 ] Hence, the practical calculations in High Energy Physics [generallyl
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require a choice of a gauge. There arc many distinct [families of] gauges, variously useful in 
different situations. For example :

LorcntzGauges . f — —1/2A J J  a [<?* A\

[2| Coulomb Gauge : V« A = 0;

[3] Axial Gauges : rj• A = 0 [Includes Light-cone, temporal etc.J

or J =  - | /2 A  j V ‘.r[tj A]7 ,

(4) Planar Gauges : 5 = -1  / 2A J  d Ax\r iA]d^  [»7 4) f]2 ;

(51 Radial Gauges ; a • A = 0;

[6J Quadratic Gauges ;

[7] in SBGT R- r Gauges; 

etc.

We note in passing how these gauges have been found useful under different 
circumstances. The use of the Coulomb gauge in QED radiation problems is well-known. The 
axial gauges, as commented later, arc useful as they are supposed to be ghost-free. [21 A 
special case of these, the light-cone gauge, has been found useful in calculations involving 
perturbative QCD [3|. The planar gauges have advantages of the axial gauges and in addition 
have a simpler propagator [41. The radial gauge has found widespread use in the context of the 
QCD sum-rules and operator product expansion in QCD [5|. Certain quadratic gauges have 
been found to simplify Feynman rules and diagram calculations in the spontaneously broken 
gauge theories [SBGT]. The use of the Rc-gauges while performing calculations in SBGT [6| 
and that of the Lorcnt/.-typc gauges in QCD are too well-known. [More detailed comments on 
the Lorcntz-typc and the axial-type gauges will follow in Section [6| ].

Now, we expect the physical results for a physical observable P to be independent of 
the choice of the gauge. Indeed, gauge-independence, in a limited sense, has been proven 
since early days, E.g. in Lorentz type gauges, one establishes the A-independence of P etc. 
Such proofs utilize the infinitesimal gauge transformations responsible lor an infinitesimal 
change in gauge fixing term. Gauge independence with reference to different families of gauges 
has not been established. Indeed, recently discrepancy [7] has been reported in an [observable] 
anomalous dimension. Further, gauges such as axial gauges suffer from the prescription 
ambiguity [8] for the \/q.qlypc singularities. Such ambiguities do not exist [or arc rather easily 
resolved] in Lorcntz type gauges. We thus expect that a field transformation from the axial 
gauges to Lorcntz gauges will enable us to derive the correct prescription for such 
singularities.

We thus summarise some of the motivations for obtaining the field transformations 
from one family of gauges to another:

•  To obtain a method for relating the Feynman diagrams in two sets of gauges and 
thus establish a basis for comparison of the results in the two gauges.
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•  To establish the gauge-independence of a physical observable P with respect to 
a wider class of gauges.

•  To obtain a [proven rather than ad-hocj prescription for the I/n.q type 
singularities in the axial and, in particular, the lighl-conc gauges.

•  To address to the already existing discrepancies in the calculations for the physical 
observables in the axial and Lorent/ type gauges.

We know explicitly the infinitesimal gauge transformation that relates two gauge functions 
differing infinitesimally ; v/c.

Fn Fa +6F*

It is given by [9]

K  = DT  MPy ^  ■

This is an example of a field-dependent infinitesimal gauge transformation. It is difficult 
to integrate and explicitly evaluate the finite version of this. For example, even in a simple case 
such as seeking the transformation from A = 0 to A'() = 0 gauge, the explicit transformation 
can be formally solved for, but is difficult to evaluate.

A' is given by A’ = U\A\ [d +£ A ] U [A]"1/# with,

£/ [A 1 = 7" exp { j Aq (a*, f ) d f  }.

The results in other cases arc expected to be even more involved. We instead seek an 
alternate approach in which we try to integrate the BRS transformation. [ 1()| This seems to be 
more easily managablc. This property arises mainly from the facts that [ 11 BRS transformations 
are nilpotent [21 The finite BRS and infinitesimal BRS have the same form unlike the gauge 
transformations.

2. BRS transformations and generalizations

We shall firstly introduce what we call “finite" BRS somewhat simplistically :

Infinitesimal “Finite"

8 A° ( x ) = D ;Pc(x )PSA, 

S c a = - g / 2  f aprc pc r5 A ,

A* =A^  + D ^ c PM A ,

c '“ ( a ) = ca(x) — g ! 2  f " Prcpc r8A ,

S c*  = - [ d . A f  / X  5A, c,l0f(x) = c a (jc) — [<?• A]ff / A A,

are symmetries in both cases : 6A infinitesimal and A finite. So it is easier to integrate from the 
infinitesimal case to the finite case.

Further, the above transformations are a symmetry even when SA or A is FIELD- 
DEPENDENT butje-independent. This is so since the BRS invariance depends only on SA2 = 
0, or A2 = 0.
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Example:

A = j f ( \ )a [d • A]a (v) d A V.

We note that A is a ‘finite’ field operator in the sense that if a Greens’ function ol A 
between vacuum and a state with a ghost and a gauge field is evaluated, it has finite [as 
opposed to infinitesimal] value. Yet, A2 = 0 as seen below.

A = J r n (y) ld»A]n(y) c( z )4 A]1* ( z )d4y d 4z.

A = l c n ( v ) c{z)n | d » A f  ( y ) | < 9 .  A\i ( : ) d4y d 4z.

Now by interchanging the summation variables (?], v) —> (£, z)* one sees that 
A2 = - A 2 = Q.

In this case, the FFBRwS reads [dropping indices] :

A'(x)  =  A (.\)  +  D r ( . x ) | r ( y ) [ r ) « / \ ] ( v )  dv , 

c'(x) = c ( x ) ~g / 2 / c t* /r (y ) [< 9 #  A]( v) d\\ 

r ' ( v )  =  r ( A ) -  \d*A\!  X \ c(\ )[d • A](\) d\\

etc.

We note that the field transformation is ‘finite’ rather than infinitesimal in the sense that 
(A'-A) is a field operator with finite Greens’ functions (as discussed earlier for A). The above 
transformations are non-local but an exact symmetry of S.

3. Construction of FFBRS by integration of an infinitesimal transformation

In order to show that the above kinds of FFBRS can interpolate between two sets of gauges, it 
is necessary, first of all, to obtain the Jacobian for such a field transformation. The Jacobian for 
the finite nonlocal transformation is by no means easy to obtain. Now, if a finite transformation 
can be obtained by a succession of infinitesimal ones ; in such a case, the Jacobian for the 
finite transformation can be obtained by integration.

We now investigate how an infinitesimal field-dependent BRS [IFBRS for short] can be 
integrated and show how the BRS form of the transformation is preserved during the process 
of integration.

We define a parameter-dependent generic field 0 (a, K) [ = A or c or c ]; by

d<p{x,K)l d x  - 5 BRS \ <P(X,K) ]© ’ [0OMOJ.

These stand for the three equations :

dA (x ,k ) / dK = D c (x )0 ’ {A(y,K), r(y,K-),c(y,ir)l, 

dc(x ,K) /dK = - g / 2 f c c ( x ) 0 ' \ A ( y , K) ,  c(y,K),c(y,K)],  

dc  ( x , K ) / d K  = -[^»^j(x)/A 0 '[M (y,tr),c(y ,> r)Ic(y,*r)}.



Finite field-dependent BRS [FFBRS] transformations etc 141

We shall show that as these arc integrated w.r.t. v. they preserve the form and yield an 
FFBRS of the generic form :

<Hx,K) = <p(x,Q) + S BRS [0(jr,O )l©  |0(y,O)]

and setting v=  1, and 0 (.t, 1) = 0 ’ ; we obtain the FFBRS ;

0' (jc) = 0(.x) + S BRS [ 0( x ) ] 0  [ <t>(y)] .

Sketch o f the proof:

Imagine integrating the equation

d<t>(x,K)/ die = S BRS f 0(jf,v) ]0[0(y,K-)] 

straightforwardly. Wc then have

<I>(x , k ) = 0(.i,O) + j dK ' SBRS i <t>(x,K') ] © '  |0(v, *•')].

This equation is difficult to evaluate because r.h.s. contains explicitly the quantities we 
arc trying to evaluate. But here the simplification comes essentially from the nilpotency of BRS. 
It leads to simplifications in two places : 11 ] in 8gBS \<p(x, K)J the xr-dcpcndcncc can be dropped 
, so that we can formally simplify :

</>(X,K) = 0( V.O) + S HRS | 0 (A\ 0) ]}dK‘ &  [0( V.K"')] .

and 12] the integral, though it formally involves the unknown, can still be explicitly evaluated. 
To see how this works, we evaluate 0 ' in terms of 0(0) by writing the differential equation 
lor©':

d&'\K\/dK = 60f(A-,K-)l50750
= 80/5<l>SbrsQ\(x k )\& \K]

=f\tp(x,K))&\K].

This is solved to yield

& [0(jc)1 = &  [0(O)J exp {J /  [0(y, V )] did . 0 )

As of now wc still have implicit 0(ic) dependence. Here, nilpotency of ©'comes to 
rescue. We expand/[0(v, >0] around K = 0 :

fl<Hy.K)) = A<P(y,0)]+K\5f/8<l>)l8(p/8K}+...........................
Now, each term on the right hand side except the first is proportional to 0 ’ [ 0(0)]. In 

view of the fact that the right hand side contains a factor of ©’[0(0)1 and that 0 ’2[0(O)|. = 0, all 
higher terms in the expansion of/ in (1) can be dropped. Hence,

©'[>£■]=© (O]exp{xr/[0(.v,O)]}.

Secondly, in

d<tXx,K) / dK  = 5 Bfts [0(x,* )]e 'ltp iy ,*c)J
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a similar expansion for SBRS [0 ( a \  K )1 can he carried out; with a similar conclusion. Then we 
have

d<p{x,K)idK = SBRS10(a\O)]0 ' [0( v,())]exp{**/10(0)]}.

This can now be easily integrated to yield :

0(a\ k*) = 0(a\O) + S BHS l<p{xA))]@ [0(y,O)]{expx-/-1} / /  

and, in particular, putting k*= 1. and letting 0 11 ] = 0’

0'(A) = 0(A‘) + 5m (0(A)]0|0|

which is the FFBRS in question. [We remark that only specific forms of 0[0)\s in the FFBRS 
above can be obtained from some local <9’[0]1. Wc note that this is also a non-local 
transformation; however, unlike finite gauge transformations, it has been evaluated explicity.

The non-local transformation, even in DR has a non-tn vial Jacobian. This Jacobian, as 
wc shall see is responsible for the differing effective actions in a pair of gauges.

4. The Jacobian

We express the vacuum to vacuum amplitude in two gauges

< OK) > = W = J D<j>cxp [iS^ [ 0 | } (i,

= JO<A exp (</>]) • (ii)

We seek a field transformation 0 0’ such that W of (i) with in Lorent/. gauges
when expressed m terms ol 0 \ becomes converted by this field transformation into W of
(ii) with SefJ an effective action for another gauge choice. Now, under 0 —> 0'

W -> W = / D<p J[<P' ]cxp[is'n |(/>' 1), since the actionS1 is invariant under FF BRS.

For many cases, the Jacobian lor the non-local transformation can effectively be replaced 
by exp {/Sj (0 ]} with5^(0'] a local action. In such cases, the transformation takes you from the 
effective action in Lorent/ gauges to that in some other family of gauges. Then the Jacobian 
explains the difference between the two effective actions.

The mathematical condition for the effective replacement J  exp (/ 5,} is formulated
in terms of the Jacobian for the infinitesimal transformation as :

0 = 1 D<j> {II / J I [ dJ / dK) -  ids,[<!>( X, k), xr] / (iK) exp { / [ +  5, ]}.

5. General prescription and examples

The general prescription for constructing an FFBRS from one family of gauges to another is 
then :

[a] Establish a continuous route of interpolating gauges [if necessary] from one 
family to another;

[bj Postulate an infinitesimal field-dependent BRS. The form of the infinitesimal 
gauge transformation serves as a preliminary hint.
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[c] Using the form for the interpolating Sef1 if necessary guess a form for S, \<p, atJ.

[d] Evaluate the Jacobian for an IFBRS in step [b]. This is easily evaluated compared 
to that for an FFBRS.

[e] Impose the condition meant for validity of the replacement J —> exp {/S,}.

This condition leads to constraints on 0 ’ and the coefficients and the form for S,. If 
then this condition can be fulfilled ; one has found the FFBRS under consideration.

Example

Gauge 1 : Lorentz type gauges

Gauge 2 : The general BRS-anti-BRS effective action of Baulieu and Thierry-Mieg. The S is 
given by :

S'elf=Sl)- l d 4 x l / 2 \ [ d * A \ 2  + Sc

S G =  $d 4x[( \ -  a  1 2)dc Dc + (a 1 2)Dc d c + a  1 2(\ — a  1 2 ) ( J  c c){ f c  c)

We note that gauge I is a special Case of gauge 2 [ a  = 0] and hence there is no need to 
construct an interpolating gauge. An inspection of the infinitesimal gauge transformation

[ a : 0 5a] suggests the form for 0 \  It is given by

0 ' [ ^ ( y , f r ) ]  =  i p i  c~a {y , K)  c~p ( y , K)  c r ( y , K ) d y .

We note the kind of terms present in the second effective action. We make an ansatz for S1 .

5, [<P(X,K); K] = { P K / 2 - $ p K2} g j f c c  f i c - 2 P K l X \ f d » A c c  

The imposition of Jacobian condition leads to P - -  £ Ag. Setting a  = 4 ^ k , 

we obtain,

of Baulieu and Thicrry-Mieg.

An identical discussion applies to connecting FPEA [A] FPEA [A’) and FPEA [A] —> FPEA 
[Quad. Gauge]. Here FPEA [A] stands for the Faddeev-Popov effective action with the gauge 
parameter A[11],

We now turn to the application to the Axial Gauge problems.

6. Axial gauges

Lorentz gauges have been used widely in Standard model calculations principally because of 
simplicity of Feynman rules, Lorentz covariance, and availability of a gauge parameter to 
simplify calculations and check gauge independence. They do however need Faddeev-Popov 
ghosts and these complicate Feynman diagram calculations, OPE etc. Hence another class of 
gauges have found favour in calculations : the axial gauges ;

tj.A = 0 ; where T) is a 4-vector.
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The main advantage of axial gauges is that they arc formally ghost-free and hence this 
reduces the number and simplifies Feynman diagram calculations. In fact, some of the very first 
calculations in QCD were done in this gauge. There are however two main disadvantages :[]] 
the lack of manifest covariance [2] more importantly, the problem of interpreting the 1 fr j .q  type 
singularities. The second problem does not exist in Lorent/ type gauges ; The l/r/2 type 
singularities arc correctly dealt with by adding / e io q l  Ad hoc prescriptions have been given 
: [a) The Principle Value Prescription (PVP]|2] |b] The Mandelstam-Leibbrandt Prescription 
[MLP] 114]. But these inevitably run into difficulties of various kinds [ 15,16]. One prescription 
for a special kind of axial gauge A , + A A , = 0 has been derived f 17] in canonical quantization 
framework.

We expect that since the Lorent/ type gauges have no prescription problem, if a 
transformation to axial gauges were available, wc could derive the correct prescription for axial 
gauges. The FFBRS transformation could also enable us to express axial gauge Greens’ f unctions 
in terms of Lorent: type greens' functions. This could in particular be used to remove the 
reported anomaly [7] m the anomalous dimensions n the two gauges. We follow the same 
procedure as outlined earlier. First we understand the r\.\ = 0 gauge as the A —» 0 limit of the 
gauge with

sgl = - l / ( 2 A)j| rj.A\2d*x

[together with the corresponding ghost term).

Then wc construct an intermediate gauge-fixing term

S = -] / (2X)h(l-P)r).A  + Pn.A]2d\x 

[-1- corresponding Ghost term |.

From these, we make anansatz for &' and S f 18]:

0 ’ = i y \ d * x c ^ ( y ) ( d . A  -  r f . A ^ i y )

S]\(f)(K),K\-^l{K)(d.A)2 +%2(K)(ri.A)2 + ^ ( K * ) ( r ) . A ) ( 7 7 . A )

+  £ 4 (K*)c M e  + £ s {x ) c M c 

(All fields arc here functions of k : A = A (x , k ) etc.)

and impose the Jacobian condition in Section 4. Wc then obtain as one possible solution the 
following:

^ (v )  = [ l - ( l - i r ) 2]/2A ; y = |

4 2 ( K ) - - K 2 / 2 k

£3(K-) = fc (v -l) / x  

^ 4(k) = k = - ^ ( k )

This allows us to construct an explicit FFBRS from the Lorentz type gauges to the axial type 
gauges. We shall now outline one of the applications of the result; viz. towards deriving the
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prescription for the Mr\.q type singularities in axial gauges. To exhibit our procedure [ 19], we 
note that the Mq1 singularities in the Landau type gauges is correctly dealt with by the effective 
replacement q1- ^ q 1 + /£ This amounts, in practice, to an addition of a term -ieA A ̂  12 + ie cc

~ L hto the St0 . This takes care of the singularity problem in the Lorcnlz type gauges. We then start
with:

^ ‘ S ^ - i e A ^ n + i e r c

and perform the FFBRS that has been constructed. Of course, will be invariant under this
~  L  "

transformation. But the added terms in Seji will now generate new non-trivial and nonlocal 
terms eSS | of order c]. Thus, taking account of the Jacobian terms |</>] transforms into Seff 
[0’ | where

S^W^S^W^ieA^A'V/l+iec'c'+eSS.

The effect of the newly found term on the propagator is to be evaluated. We expect this term to 
give the manner in which the poles in the propagator arc shifted away from the real axis. This 
work is in progress [ 19).
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