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Abstract * We need to make choice of gauge to define a gauge theory There are many
choices of gauges The theonies [greens functions cic) n different types gauges are difficult
1o rclate to each other as the transformation from one gauge type to another 1s hard to
construct expheitly Yet the physical resuits in various types of gauges are supposed to be
gauge-independent In fact, however, examples have been found where the anomalous
dimensions of physical observables have been found to differ in Lorentz and axial gauges

In this work, we develop a method for constructing an exphcit field transformation between
two scis of gauges This field transformation 1s a generalization of the BRS transformation
in that the anticommuting parameter now i1s not infinmtesimal nor field-independent [though
not local]. These gencralized BRS transformations. which we call “Finite Field-dependent
BRS transtormations’, or FFBRS for short, are mipotent and are obtained by integrating the
nfinstesimal field-dependent ones We show that these can be used to connect the Faddeev-
Popov effective action 1n bnear gauges with gauge parameter lambda to {1} the most general
BRS-anti-BRS symmetric action in linear gauges : [1i] the Faddeev-Popov cffective action in
quadratic gauges . [in] the Faddeev-Popov effective action with another distinct gauge
parameter alpha. In each case the extra terms in the latter action are shown to anse from the
Jacobian for the NONLOCAL FFBRS transformation [Phys. Rev DS1. (1995)
1919-1927]

The above 1dea 1s further applied to correlate axial and the Lorentz type gauges by an
explicitly constructed FFBRS transformation. We show that 1t can be used to explicitly
CONSTRUCT a prescription for light-cone and axial gauges It may further be uscd to
correlate quantities in the two sets of gauges. [J. Phys. A31 4217 (1998)]
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Introduction

The known high energy physics is well represented by the standard model ; which is a non-
abelian gauge theory. [ 1] Hence, the practical calculations in High Energy Physics |generally)
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require a choice of a gauge. There arc many distinct [families of] gauges, variously useful in
different situations. For example :

Lorentz Gauges . S, , =—1/24 J‘df\ [Ae A]°

[2] CoulombGauge: Ve A=0;

[31 Axial Gauges: nne A = 0 |[Includes Light-cone. temporal etc. ]

orSs=—1/21 Jd".r[q Al

[4]  Planar Gauges: § =—1/2A4 J’(IJ,\' In-A](f (n Al n°;

[S]  Radal (}augcs v A=0);
[6] Quadratic Gauges ;
(7] inSBGT R—; Gauges ;.

crc.

We notc in passing how these gauges have been found usclful under different
circumstances. The usc of the Coulomb gauge 1n QED radiation problems is well-known. The
axial gauges, as commented later, arc uscful as they are supposed to be ghost-free. [2] A
special casc of these, the light-cone gauge. has been found uscful 1n calculations involving
perturbative QCD [3]. The planar gauges have advantages of the axial gauges and in addition
have a simpler propagator [4]. The radial gauge has found widcspread use in the context of the
QCD sum-rules and operator product expansion in QCD |5]. Certain quadratic gauges have
been found to simplify Fcynman rules and diagram calculations 1n the spontancously broken
gaugc theories [SBGT]. The use of the R -gauges while performing calculations in SBGT 16]
and that of the Lorentz-type gauges in QCD arc too well-known. [More detailed comments on
the Lorentz-type and the axial-type gauges will follow in Scction [6] }.

Now, we expect the physical results for a physical observable P to be independent of
the choice of the gauge. Indeed, gauge-independence, 1n a limited sense, has been proven
since carly days. E.g. in Lorentz type gauges. one establishes the A-independence of P ete.
Such proofs utilize the infinitesimal gauge transformations responsible for an infimtesimal
change in gauge fixing term. Gauge independence with reference to different familics of gauges
has not been established. Indeed, recently discrepancy | 7] has been reported in an [obscrvablc]
anomalous dimension. Further. gauges such as axial gauges suffer from the prescription
ambiguity [8] for the 1/1.¢ type singularities. Stch ambiguities do not exist [or arc rather casily
resolved] in Lorentz type gauges. We thus cxpect that a ficld transformation from the axial
gauges to Lorentz gauges will cnable us to derive the correct prescription for such
singularitics.

We thus summarise some of the motivations for obtaining the ficld transformations
from one family of gauges to another ;

e  Toobtain a method for relating the Feynman diagrams in two sets of gauges and
thus establish a basis for comparison of the results in the two gauges.
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e  To establish the gauge-independence of a physical observable P with respect to
a wider class of gauges.

e To obtain a [proven rather than ad-hoc] prescription for the 1/n.q type
singularities in the axial and, 1n particular, the light-conc gauges.

e  Toaddress to the already existing discrepancies in the calculations for the physical
observables in the axial and Lorentz type gauges.

We know cxplicitly the infinitesimal gauge transformation that relates two gauge functions
differing infinitesimally ; viz.
F* - F* +6F"
Itis given by [9]

o _ o -1 y
5A” -D” Mﬁr OF".

This is an example of a field-dependent infinitesimal gauge transformation. It is difficult
to integrate and explicitly evaluate the finitc version of this. For example, cven n a simple case
such as seeking the transformation from ge A = () to A’ = () gauge. the explicit transformation
can be formally solved for, but 1s difficult to evaluate.

Asgivenby A =U|A]|g +g A)U[A]}"/g with,

UlAl=Texp{ [A,(x.1)dr ).

The results in other cases are expected to be even more involved. We instead seek an
alternate approach in which we try to integrate the BRS rransformation. [ 10] This scems to be
more easily managable. This property arises mainly from the facts that [ 1] BRS transformations
are nilpotent [2] The finitc BRS and infinitcsimal BRS have the same form unlike the gauge
transformations.

2. BRS transformations and generalizations

We shall firstly introduce what we call “finite™ BRS somewhat simplistically :

Infinitesimal “Finite™

a , \_ naB . B la _ L« af B
5Au (x)=D,"c(x) oA, A, —-A”+D”c (X)A,
Sc% =-g/2 faﬁycﬁc"&\ , *(x)= c“(x)-gl2 faﬂr(ﬁ(_r&/‘ ,
8% =~[d-AI" /A 8A, FUx)=¢¥(x)~-[e A" /A A,

arc symmetries in both cases : §A infinitesimal and A finite. So it is easicr to integrate from the
infinitesimal case to the finite case.

Further, the above transformations are a symmetry even when 8A or A is FIELD-
DEPENDENT but x-independent. This is so since the BRS invariance depends only on 6A%=
0,0rA2=0.
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Example :
A=Jem® 19«41 )"y
We note that A is a ‘finite’ ficld operator in the sense that if a Greens' function of A

between vacuum and a state with a ghost and a gauge ficld is evaluated, it has finite |as
opposed to infinitesimal] value. Yet, A*= 0 as seen below.

A ={Je)" (e d v}
A=]ET (12« A" (¥) F(:)L§ [()-Al;(:)dJ_\'d":.
A=l (e [deAY (M[deAl*()d vd*z

Now by interchanging the summation vanables (1, v)—> (& 2). one sees that

Al=-A2=0.
In this case, the FFBRS rcads [dropping indices] :
A ()= A+ D () JE()[D e AT(¥) dy,
c'(x):c(x)—g/2_[('(']("'(_\')[(%/1]()')d_\'.
(xy=e(x)— [e Al A JE(WM[D e Al(y) dy.
elc.

We note that the field transformation is ‘finite’ rather than infinitesimal in the sensc that
(A’-A) is a field operator with finite Greens® functions (as discussed earlier for A). The above
transformations are non-local but an exact symmetry of S.

3. Construction of FFBRS by integration of an infinitesimal transformation

In order to show that the above kinds of FFBRS can nterpolate between two sets of gauges, it
is nccessary, first of all, to obtain the Jacobian for such a field transformation. The Jacobian for
the finite nonlocal transformation is by no means casy 1o obtain. Now, if a finite transformation
can be obtained by a succession of infinitesimal ones ; in such a case, the Jacobian for the
finite transformation can be obtained by integration.

We now investigate how an infinitesimal ficld-dependent BRS [IFBRS for short] can be
intcgrated and show how the BRS form of the transformation is preserved during the process
of intcgration.

We define a parameter-dependent generic field ¢ (x,x)[=Aorcoré ]; by
do(x,K)/ dK =6 s | 9(x.X) 1€ [$(3,K)).

These stand for the three equations :
dA (x,5)/ dx =Dc(x)O'[A(y,K), c(y,K),E(» )],
dec (x,k)/dx =-g/2 fcc(x)O'[A(y.K), c(y,x),c(y,x)],

dc (x,x)/ dx =-[a’A“X)/19'[A()'.K).C()’.K).E(y,x')],
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We shall show that as these arc integrated w.r.t. k. they preserve the form and yield an
FFFBRS of the generic form :

P(xK)=9(x,0)+ 8 s [9(x,0) 1O [¢(y,0)]
and sctting k= 1,and ¢ (x, 1) =@’ ; we obtain the FFBRS ;
()= (x)+8 s [(X) 1O [9(V)].

Sketch of the proof :
Imaginc integrating the equation
A9 (x,K)/ dK =8 o [ 9(1,K) 1O [B (1K)

straightforwardly. We then have

P (x. k)= 0(1,0)+ [dK' & oo | 9(x. k) 1O [P(y,x")].

This equation 15 difficult to evaluate because r.h.s. contains explicitly the quantitics we
arc trying to evaluate. But here the simplification comes essenuially from the nilpotency of BRS.
Iticads to simplifications in two places : [ 1] in 8y, [@(x, k)] the k-dependence can be dropped
. so that we can formally simplify :

P0K) = P(v.0)+ 6 s | 9.0V 1 dK' O [9(y.x")].

and 2] the integral, though it formally involves the unknown, can still be explicitly evaluated.
To sce how this works, we evaluate ©' in terms of ¢(0) by writing the differential equation
for@':

dO'|k]/ dx = 6¢[(x,K)]|6 ©15¢
=6016¢6 yps $l(xX))O [x]
= flo(x,x)]O |x].

This is solved to yield

O [¢()]=0 [¢(O)]exp (] fo(y.x )] dK". (M

As of now we still have implicit ¢(x ) dependence. Here, nilpotency of @' comes to
rescuc. We expand f[@(y, )] aroundx =0 :

floO )= flo(,O)+x[8 f/ 8RS/ SK]+..ooene. _

Now, each term on the right hand side except the first is proportional to @' | ¢ (0)]. In
view of the fact that the right hand side contains a factor of @’ ¢(0)] and that @29 (0)].=0,all
higher terms in the expansion of fin (1) can be dropped. Hence,

O'[x]=6 [O]exp{x f[¢(y.0)]}.

Secondly, in

de(x,K)/ dK = 8 e [$(x,6)]O'[¢(y, X))



142 Satish D Joglekar

a similar expansion for 8, (¢ (x, k)] can be carried out ; with a similar conclusion. Then we

have

do(x,x)/ dK = 8 ppc [ 9(x.0)]O [¢( v, 0)]exp i f19(0)]).
This can now be casily integrated to yicld :

O(x.K) = (x.0)+8 e [$(x.0IG [@(y.Miexpx f -1}/ |
and, in particular, putting k=1, and letting ¢| 1] = ¢’

¢ (x)=0(x)+8 gl 9(2)]O| ]

which 1s the FFBRS 1n question. [We remark that only specific forms of @] @]'s in the FFBRS
above can be obtained from some local @’[@]]. We note that this is also a non-local
transformation; however, unlike finite gauge transformations, it has been evaluated explicity.

The non-local transformation, cven 1in DR has a non-trivial Jacobian. This Jacobian, as
we shall see is responsible for the differing effective actions in a parr of gauges.
4. The Jacobian

We express the vacuum to vacuum amplitude in two gauges
<00 >=W = [ Dexplis’; (4]) 3
=[Dg expliS;, [9]) . (il

We seek a field transformation ¢ — ¢ such that W of (i) with S:,', in Lorentz gauges
when cxpressed in terms of ¢, becomes converted by this field transformation into W of
(i1) with Sc’” an cffective action for another gauge choice. Now, under ¢ —> @’

W W=[D¢ Ji¢ lexp{iS,, (¢ 1}, since the action S* is invariant under FF BRS.
For many cascs, the Jacobian for the non-local transformation can effectivel y be replaced
by exp {iS (9]} withS ,[¢"]alocal action. In such cascs, the transformation takes you from the

effective action in Lorentz gauges to that in some other family of gauges. Then the Jacobian
explains the difference between the two effective actions.

The mathematical condition for the cffective replacement/ = exp {5, } is formulated

in terms of the Jacobian for the infinitesimal transformation as :

0=[DY(11/ J11 df 1 dx)-idS \(x.x).x1/ dic) exp (ilSL, +5,1).

5. General prescription and examples

The general prescription for constructing an FFBRS from onc family of gauges to another is
then :

la]  Establish a continuous route of interpolating gauges [if necessary] from onc
family to another ;

[b]  Postulate an infinitesimal ficld-dependent BRS. The form of the infinitesimal
gauge transformation scrves as a preliminary hint.



Finite field-dependent BRS [FFBRS] transformations etc 143

[c]  Using the form for the interpolating Seﬁ if necessary guess a form for S, ¢ xl.

{d]  Evaluate the Jacobian for an IFBRS in step [b]. This is casily cvaluated compared
to that for an FFBRS.

[e]  Impose the condition meant for validity of the replacementJ — exp {iS NE

This condition leads to constraints on ©' and the coefficients and the form for S,. If
then this condition can be fulfilled ; one has found the FFBRS under consideration.
Example
Gauge | : Lorentz type gauges
Gauge 2 : The general BRS-anti-BRS effective action of Baulieu and Thierry-Mieg. The S is
given by :

i =S,=ld* x 112419+ A2 +5;

S, = [d*x((1-a/12)dc De+(a/2)DTIc+a/ 21 —a/2)Ag (fTe)(fEc)
We note that gauge 1 is a special ¢ase of gauge 2 | o = 0] and hence there is no need to
construct an interpolating gauge. An inspection of the infinitesimal gauge transformation

[or: 0 — b ] suggests the form for O'. It is given by

©'10(x.1)) =il £ ¢ (y.x) ¢ P(v.x) 7 (3, K0 dy.

We note the kind of terms present in the second cffective action. We make an ansatz for S :

S, [0(xK); K| ={Bx/2-EPK’) gl €T fee=2Px /Al fdeAcc
The imposition of Jacobian condition leads to B= - EAg. Setting =4 & x,
we obtain,

Sy +S =5,
of Baulicu and Thierry-Mieg.

An identical discussion applies to connecting FPEA [A] = FPEA [A'] and FPEA [A] = FPEA
[Quad. Gauge). Here FPEA [A] stands for thc Faddeev-Popov effective action with the gauge
parameter A[11].

We now turn to the application to the Axial Gauge problems.

6. Axial gauges

Lorentz gauges have been used widely in Standard model calculations principally because of
simplicity of Feynman rules, Lorentz covariance, and availability of a gauge parameter to
simplify calculations and check gauge independence. They do however need Faddecv-Popov
ghosts and these complicate Feynman diagram calculations, OPE etc. Hence another class of
gauges have found favour in calculations : the axial gauges ;

n.A =0 ; where n is a 4-vector.
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The main advantage of axial gauges 1s that they arc formally ghost-free and hence this
reduces the number and simplifies Feynman diagram calculations. In fact, some of the very first
calculations in QCD were done 1n this gauge. There are however two main disadvantages : [1]
the lack of manifest covanance | 2] more importantly, the problem of interpreting the 1/1.g type
singularitics. The second problem does not exist in Lorentz type gauges : The 1/42 type
singularities arc correctly dealt with by adding i €10 g2 Ad hoc prescriptions have been given
: |a] The Principle Value Prescription [PVP][2] [b] The Mandelstam-Leibbrandt Prescription
[MLP] [ 14]. But these incvitably run into difficulties of various kinds [15,16]. One prescription
for a special kind of axial gauge A, + A A, = 0 has been derived [17] in canonical quantization
framework.

We expect that since the Lorentz type gauges have no prescription problem. if a
transformation to axial gauges were available. we could derive the correct prescription for axial
gauges. The FIFBRS transformation could also enable us to express axial gauge Greens’ functions
in terms of Lorentz type greens” functions. This could in particular be used to remove the
reported anomaly [7] 1n the anomalous dimensions n the two gauges. We follow the same
procedure as outlined earlier. First we understand the n.A = 0 gauge as the A — 0 hmut of the

gauge with
S, ==1QA] AP d'y
[together with the corresponding ghost term].

Then we construct an intermediate gauge-fixing term
S==1/QMI1-pr2.A+Pn. AV d*x
[+ corresponding Ghost term).

From these, we make an ansatz for@ and S [18] :
0" =iy [d*y&(3)(3. A~ n.4)"(y)
S1000). K=& (k). A) +&,(x) (. A) +& ,(K)(D. A) (0. A)
+& ()& Mc+ & (x)EMc

(Al ficlds are here functions of x: A =A (x. k) elc.)

and impose the Jacobian condition in Section 4. We then obtain as one possible solution the
following :

&, (k)=[1-(1-x)*]/24A y=1
E,(K)=-Kk*124

&) =x(xk~1)/A

G4(K) =K =~£(K)

This allows us to construct an explicit FFBRS from the Lorentz, type gauges to the axial type
gauges. We shall now outline one of the applications of the result : viz. towards deriving the
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prescription for the 1/n.q type singularitics in axial gauges. To exhibit our procedure [19], we
note that the I/q singularities in the Landau type gauges is correctly dealt with by the cffective
rcplaccmenl q* - ¢* + i€ This amounts, in practice. to an addition of a term ~i€A , A 12+igcc
to the S . This takes care of the singularity problem in the Lorentz type gauges. We then start
with:

ol _ oL R u -
S(” —Seﬁ—lEA”A 1241€ cc

and perform the FFBRS that has been conslrucled Of course. S oy Will be invariant under this
transformation. But the added terms in S will now generate new non-trivial and nonlocal
terms €8S |of order g]. Thus, taking dcwunl of the Jacobian terms S ﬂ | @] transforms into .S‘,”
[¢’] where

S.101=5 101~ ieA’, A* 12 +i€ ¢+ €8 S.

The cffect of the newly found term on the propagator is to be evaluated. We expect this term to
give the manner in which the polcs in the propagator are shifted away from the real axis. This
work 1s in progress [19].
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