indiah J. Phys. TIA (3), 377-385 (1997)

1JP A

— an international journal

Disturbances in piezo-quartz transducers subjected to a
flow of current in the semiconducting boundary layer

T K Munshi

Department of Physics, Kharagpur College,

P.O. Kharagpur, Dist. Midnapore, West Bengal-721 305
K K Kundu

Department of Physics, Gty College,

Calcutta-700 009

and
R K Mahalanabis

Department of Mathematics, Jadavpur University,
Calcutta-700 032

Abstract : The mechanical responses in piezoelectric plate transducers
(quartz) with rigid backing when the transducer is subjected to a flow of
current in the semiconducting boundary layer have been investigated in
the present study. The semiconducting layer is thinner than the quartz
plae by at least one order of magnitude. It is found that the order of
disturbance in case of a thin layer of intrinsic semiconductor InSb (at the
temperature T" = 77 K) covering the piezo-quartz is very high compared to
n-type As-doped germanium of an extrinsic semicond uctor at "= 300 K.
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1. Introduction

The studies in the disturbances of a piezoelectric

material

TIA(3)-19

from the stand point of mechanics of
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continuous media have been initiated by U[1-4]1. The
effect of an electron stream or of a conducting
layer on the electromechanical disturbances have
engaged a number of researchers [(5-7]1 by a number of
decades The present study seeks to investigate the
response in piezoelectric transducers (quartz)
sub jected to a flow of current in the semiconducting
boundary layer. These types of problems are very
much used in different brar ches of Acoustic
Engineering particularly in piezoelectric amplifiers

(8,71 and in different biomedical applications (10].

!
2. The Problem and the Fundamental EquatiT:s

Let us consider a piezoelectric tran‘ducer.
piezo-quartz (X-cut) acted on by an electron \stream
flowing outside it. In order to avoid the difficulty
of getting the very small distance between the
electron stream and the piezo—quartz, we cover the
surface of the latter with a semi-conducting layer
in which motion of electric charges is ’produced by
applying a voltage. The layer will play the role of
an electron (or hole) guide. The choice of the
semiconductor depends on the required aensity of
carriers. We have considered the case of germanium
(low concentration of carriers) of the n—-type
extrinsic semiconductor with arsenic at room
temperature T° = 300K and a thin layer of intrinsic
semiconductor InSb (high mability of electrons) at
the temperature of liquid nitrogéh T = 77K covering
theA piezo—quartz. The semi-conducting layer is

thinner than the quartz plate by at least one order
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of magnitude. The transducer is rigidly backed at
poth ends [7,81. The influence of internal and
external damping is disregarded £11,12], The
influence will be greater than in the quartz itself
as a result of interactian between the
semi—conducting layer and the piezo—quartz. We have
taken X—axis is along the normal to the surface of
the transducer in the upward direction, Y-axis is
along the length and Z-axis along with these two
axes form a rectanqular system .

We now, proceed to derive the differential
equation to calculate the mechanical respaonse with
the fundamental equations.

The equations representing plane compressional
wave prapagation in the x—direction in a

piezoelectric material [2,5] are given by

~ -~ 5 _
D = Ec + he 25 (2)
&x
where, c - elastic constant; ¥ - the displacement

in the x direction;
T — normal stress in the thickness direction; E -
electric field strength; D — electric flux density
in the x-direction; £ - dielectric constant and h -
the piezoelectfic constant of the material.

The equation of motion is

o &k /58° = 6T/6x 3

where p is the density of the material.

The current in the semi—conducting layer is

expressed as

J = an_pE_ + aD_ 6n_/5x (4)
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where, J = electron current density, n. tota)
number of electrons in the conducting band, E =
total electric field in the semiconductor,q =

electron charge (absolute value), u = mobility of

electrans and Dn = Diffusion constant = kT 'u/q ()
where T’ is temperature in absolute value. The
interaction constant between the disturbed electric
field Es in the semiconductar and~ tgat E in the
transducer is defined as Es/E = o (&)

Then the total field in the semiconductor is

expressed by the equation E Eu + AE n

where Eo = constant outer field and AE = pd{turbed
field, which is composed of the perturbed field in
semiconductor and in the transducer. So that \

AE = E_ - oE (8)

Denoting now by qnc

i wn

Pac the electric density in

the semiconductor, the velocity of the electron

stream can be related to the electric field by the

equation “PacVe = “pecEc ’ ) (&2)
Bearing in mind that, Pac = poc+fpe’ Ve T vo+v, Ec
= ED+AE and, Vg T pED we qet~

-v =uAE = y(Es—aE) (10)
where, f — a coefficient less than 1. The fraction f

accounts far a division of space charge between the
conduction band and bound states in the energy qgap.
The continuity condition af the chargesl in

semiconductaor is div j - 6pec/6t =0 (1)

which after linearization assumes the form
2 2
- 2)
6p/6t+fv06pe/6x+poeév/6x fDné pe/éx (1

The divergence condition in the transducer is
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divD = £6E/6x (13)
where E is the sourcelss field of the action on the
transducer of the electran stream in the
semiconductor.

Now from Eqs. (2) and (13) it follows that

SE/6x = SE)Sx + h &2 /6%

Therefore . E =E + h 88/6x (14)
Next from the continuity condition of tangential
field E in the transducer and the semiconductor, we
find that

Es—aE =E - h 68/6x

~
ar, E = [Es+h &L /6x] /1+a (13)
Again divergence condition in the semiconductor is
cséEs/éx = —Pg (16)
Therefare 6E/6x = -[ p_n/e_t+ha 8% 16x%] /1+a a7

where 7 is the ratio of the cross sectional area of
the semiconducting layer to that of the transducer.
Now from Eqgqs. (2), (3) and (17) we get

&k 164" -a" 6L 16x"~hep_n/p(1+ade_ = O (18)

where, a® = [c—hzc/1+a]/p
Fraom Egs. (10), (12) and (17) we get
pe+fvoépe/6x + p pnpe/cs(l+a)

2 2 2 2 _
fDné peléx + poeuohé E/6x/(1+a) = O (1?)
Now. eliminating Pa from Eqs. (18) and (19), we get

2 2
[ 676 + fv°6/6x + pbeyn/c5(1+a) fDné /76x7])
x [&2r/6¢° - a*86%r/6x%)

+ poe(h/ua)’pane 5% léxz/csp =0 (20)



382 T K Munshi, K K Kundu and R K Mahalanabis
3. Solution of the Prablea
Taking Lapl.u:e transfora of Eq. (20) and cmi“ﬂﬂq
¥ = exp(mx) be a trial solution and for saall valueg
of t it takes the fora
2
fDn- -fvu--(p + p“pmlc-(l'ta)) = 0 21
where p is the Laplace transform paraseter.
Then the general solution is
E=A exp(n x) + B exp(n x) (22
where m and - are the roots of the Eq. (21) and A,

B are constants to be determined froa boundary

vonditions. ,
For a rigidly backed transducer we assune{ the

stresses and displacgnents at the ends;\ are
continuous. To obtain the solution of the prubleh we
attach to the extremities x = 0 and x = X two
mechanical systems and denofe the corresponding
quantities by the symbols 1 and 2. Acc9rdingly, the

boundary conditions become

(F) =) . (F) =(F),, Q) =) , (&)=
where F‘ and Fz are the values of F(stress) and (‘
and tz are the values of f (displacement) at the two
boundaries, i.e.. at x=0 and x=X respectively.

From (1) we get T + hD = céf/6x. Applying
Gauss Law at the surface of the transducer we get
D=Q/yz and F=Tyz. From above two, we get
F+hl = yzcodf/6x
y and z are the dimension of the piezoquartz bar.
Vol tage across the transducer is given by

Ix Edx = ~{(\» —(V)Q) = V(say)=—h{(®) —(()u}+QX/cyz
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or V= - -(2‘) a}+ﬁ/c
where C = gyz/X is called the static capacitance of
the tranﬁdl-":""- _

Taking into consideration impulsive voltage
function V = Voé(t) where 6(t) is the Dirac delta
function, we get V = V,/@ and by using conditions of
continuity of forces and displacements as stated
abave, we get

£, =V, YD, /2h pvptar
+Q ﬁb: fh/yzc - 1/hC}/2 Yp+a“

. 2
where, a fV°/4Dn + poeyn/cs(li'a)
To get its inverse transfora, the mechanical

disturbance in the transducer, we proceed [12,13)
£, = Vu'/fDn n . erf(vya’t)/2hva’
+ uﬁ'ﬁ; {h/yzc - 1/hC } exp(~a't 't *"%/2 ¥n (23)

Cerf - error functionl

4. Discussion

Here we bhave considered two examples of
semiconductor caovering the piezo—quartz. Let us
consider i) a thin layer of the intrinsic
semi—conductor InSb (at the temperature of liquid
nitrogen, 77K) covering the piezo—quartz and ii) the
case of n-type As-doped germanium covering the
piezo—quart; at 300K. The standard values of the
material constants are taken from [2,5,8], The
variation of the mechanical disturbance produced in
the piezo—quartz transducer subjected to a flow of

current in the semiconducting boundary layer with
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time is found to be parabolic in nature (Fig.1) and
is the order of 10 C m in case of (i) and in the
case (ii), the variation of the disturbance is found
to be of the order of 10 'Za.

The disturbances consist of twa parts - an
expanential function and an error function of time.
Here we have considered two examples of
semiconductor covering the piezo—-quartz. It is
interesting to note that when a piezo-quartz is

covered by a thin layer of intrinsic semiconductor

35
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Figure 1. The variation Figure 2. The variation
of disturbance wvhen covs of dimturbance whan cave
red by a thin layer of -red by a thin layer of
intrunsic semiconductor germanium with arsenic
InSb at ?77K. at 300K.

InSb at the temperature of 1liquid nitrogen the
values ofthe mechanical disturbance increases almost
10? times than when a thin layer of germanium of the

n—type extrinsic with asrsenic at room temperature
covering the piezo—quartz.
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