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Abstract: Granular composite systems show very interest
ing temperature-dependent conduction properties particularly in the low 
temperature regime. Some recent experiments on them tend to sl)ow Mott 
variable range hopping behaviour alongwith dilution dependent exponents. 
Here we propose a semi-classical percolative picture and a model random 
resistor cum tunneling-bond network (RRTN) for the composite systems 
in general to understand their low-temperature behaviour.
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I. Introduction
The temperature (7’) dependence of the conductivity a(T)  of dis

ordered systems has long been a subject of great interest, particularly in 
the low temperature region, because one expects the effects of quantum 
fluctuations due to disorder and/ or other types of scattering mechan
isms (say, due to Coulomb interaction between charged carriers) to be 
very prominent there. For example, for an Anderson insulator at low 
temperature, Mott proposed his variable-range hopping (VRH) law [1],

tr{T) oc expl-CTo/T)’ ], (1)
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where To is a characteristic temperature (or, energy) scale that de
termines the domain in which phonon-assisted hopping among localized 
states at different energies contribute significantly. For a homogeneous 
d-dimensional solid 7  = l/(d + 1); 7 = 1/4  in 3D. For a pure system 
with Coulomb interaction, Efros and Shklovskii [2] found that 7  = 1/2 
whichyis true in any dimension. Aharony et al. [3] argued that random 
walk of a quantum particle on fractal-like structures should give rise to 
a generalized VRH formula:

<r(T) = <r„(r./7y«p[—(71/rri, (2)
with the temperature dependent prefactor T~* where s  > 0 [4].

In a recent experiment [5] on a carbon-black—polymer composite, 
evidence of superlocalized states due to Coulomb interaction was re
ported, and fitting with eqn.(l) gives a value of 7  = 0.66 ± 0 .02 . Su
perlocalized states are such that their wave functions decay faster than 
exponential, namely ift(r) ~ eip(—icLM), with p  > 1. In another ex
periment [6] with proton-doped polyaniline networks, it was found that 
the exponent 7  increases (VRH, eqn. (1)) systematically from 0.25 to 
1 upon decreasing the volume fraction p of the conducting component. 
They did also try the eqn.(2) to fit the low temperature data but that 
resulted in a large uncertainty in the exponent s. Such large valties of 
7  > 1 /2  gives us the first clue that just dilution or percolative aspects 
of a system may give rise to a continuously changing exponent with 
dilution.

In this peliminary work, our attempt would be to understand the 
behaviour of conductivity against temperature only from a percolative 
aspect. Some indications of dilution-dependence is also reported here. 
We use our recently proposed model [7] of lattice-based random resistor 
cum tunneling-bond network (RRTN) and examine whether the VRH 
[eqn.(l)] or its generalized form [eqn. (2)] may be fitted, given each that 
microscopic conducting/ tunneling element follow a known temperature 
behaviour.
2. The Model

The kind of RRTN we consider has proved to be very appropri
ate in studying the nonlinearity and the associated physics. We take 
a square lattice in 2D. Conducting bonds are thrown at random at a 
certain volume fraction p. The rest (1 — p) fractions are insulators. Now 
we allow tunneling through the nearest-neighbour (nn) gaps of two con
ducting bonds if a voltage is applied externally .across the two opposite 
ends 01 such a network through two electrodes. As we treat the problem 
semiclassically, we may think of a tunneling bond (t-bond) sitting at
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each such nn gap (unit lattice spacing) whose t — v characteristic was 
considered to be piecewise linear for simplicity.

To evaluate the temperature-dependent conductivity of such a net
work we assume that all Hie t-bonds are active and that the whole mac
roscopic system is in an Ohmic regime. Given that all the t-bonds are 
conducting, we find that for infinite size systems the percolation threshold 
comes down from pc = 0.5 for a RRN to pct ~ 0.181 for a RRTN [7] 
in 2D. We consider the volume fractions (p) which are between pa  and 
pc. The temperature (T) behaviour of each conducting (ohmic) bond is 
simply assumed to be <r0hm = a/71, where a is constant. The t-bonds 
are assumed to have an activated behaviour: ax — c exp(—b/T),  where 
6 and c are also constants.
3. Results and Discussions

In all the works we consider below, we have chosen a=100, 6= 100, 
c=10  and several values of p from 0.18 to 0.5. As the system has dilution 
(and so disorder), the resistor elements corresponding to the ohmic and 
the tunneling bonds combine in a complex way in the tenuous current 
carrying portion of the network resulting in a non-trivial, non-monotonic 
conductance (in 2D this is also conductivity) as a function of the temper
ature T.  As T increases, the conductance for the ohmic bonds decreases 
and that, for the tunneling bonds increases. When the strength (con
ductance) of the two types of elements are comparable, the conductivity 
attains a peak value of trm at a T  = Tm. A typical such behaviour is 
shown in Fig.l(a) for p  = 0.18 and for different sizes of the squares 
from L = 20 to L  = 100. In Fig. 1(b), we show the same curves after 
scaling each axes by the peak values and find that all the graphs fall on 
top of each other. Because there are two opposing types of temperature 
behaviours in the two different types of bonds (ohmic and tunneling), 
it is certainly expected that there will be a crossover from some kind 
of exponential (in the low-71 regime) to some kind of power law beha
viour (in the asymptotic high-71 regime) in the macroscopic sample. We 
had tried several plausible functional forms including both the VRH and 
the generalised VRH, but the generalized VRH law showed least fitting 
errors. This is consistent with the Aharony et al. [3] work. Thus we 
restrict ourselves to least-square fittings with eqn.(2).

First we found that it is necessary to fit the data for quite low tem
peratures compared to Tm. The overall fitting of the curves in Fig.l upto 
about the peak temperature gives a 7 ~ 1.2. But, fitting only with the 
low temperature (for 7 < T  < 20) data shown in Fig.2 for L = 20 clearly 
indicates that 7  ~ 0.64 gives an excellent fit whereas 7  = 1.2 gives a 
systematically bad fit to this section of the data. The low temperature 
fit further gives s  — 4.11 and 7q = 1355. Since the value of s seems to
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Fig. 1(b)
F ig .l(a )  : Behaviour of conductance (<r(T)) against temperature (T) for different 
system sizes (L) and for a fixed volume fraction (p). (b): This figure shows the scaled 
conductance (<r/(rm) against scaled temperature (T/Tm) for all curves in Kg. 1(a). 
All the data points are shown to collapse for three different system sizes (L)l
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F ig .2: Fitting of data is shown (for 
a limited region) for a typical cr(T) 
against T curve by generalized VRH 
formula (eqn.(2) in the text). The solid 
line shows a better fit where the fitting 
is done for a small range of data in the 
low temperature (T) regime. The dot
ted line is a bad fit where the fitting is 
done for a large range of T  (upto around 
the peak of the curve); only a portion of 
that is shown here.

Fig.3 This figure shows the scaled con
ductance (<r/<rm) against scaled temper
ature (T/Tm) for three different volume 
fractions as indicated in the figiire.
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be somewhat large, we tried  a replacem ent of the algebraic function in 
the prefactor by exp (T o /T )a . B ut it did no t work out as well as eqn.(2).

Next we looked a t the results for different volume fractions. In 
pig.3 , we have shown the scaled conductivity versus tem peratu re  graphs 
for three different volume fractions p=0.18, 0.4 and 0.5. T hat the 
curves donot fall on top of each other indicate that the exponents are 
p-dependent. Indeed the trend  of the graphs indicate th a t 7  seems to be 
increasing with p. F u rther work in this direction is under progress.

Some words of caution m ay be appropriate here. If the fitting func
tion em ployed is a  perfect representation of the data, one expects a 
relation betw een 7o and Tm which should also involve the volume frac
tion p and possibly other m icrostructural param eters. We did not find 
any clear relation  betw een these quantities.(even at a  fixed p), by scan
ning all the cases we stud ied  so far. This may imply that the function 
given in eqn .(2 ) does no t seem to be an unique representation of the 
data. To check th is  we generated m ore da ta  at as low tem peratu res as 
we can reach (5 <  T  <  7 for the  param eter range chosen above) w ithout 
compromising on our convergence factor for relaxation and rem aining 
within reasonable am ount of com puter tim es. O ur results show tha t in
clusion of the lowest a ttainable tem peratu re  range, tends to change the 
exponents s and 7 . T hus, a  m ore com plicated function than  the one in 
eqn.(2) m ay be  m ore appropriate. B ut in keeping with the lite ra tu re , we 
restricted ourselves currently  to the m ost general function proposed so 
far by A harony e t  al., as given in eqn.(2). We would like to point out 
here tha t it is no t th a t only our results does no t seem  to be represen
ted uniquely at all the tem peratu re  ranges by eqn.(2). Indeed, recent 
experim ents [6 , 8 ] cannot also fit th is function uniquely; they seem to  
find large uncertain ties in the exponent s and hence on 7 , and this will 
certainly m ake the relation betw een T0 and Tm very murky.

In sum m ary then we have studied the low tem peratu re  behaviour 
in a random  resisto r cum  tunneling-bond network (RRTN ) and ob
served non-triv ial generalized M ott-like variable range hopping beha
viour whose characteristics seem  to change with dilution. Further one 
needs to include the  very low tem peratu re  regions of the da ta  to obtain  
the idea for a reasonable fitting function for tem peratu re- dependent 
hopping conductivity.

71A(3)-I7
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