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Abstract : At the time the DNA was observed 1n pus cells, by the Swiss scientist Johan Friedrich Miescher, back in 1869, no one knew what it
does. Quietly and independently, the Czech abbot Gregor Mendel, working n his pea farms, had discovered the experimental basis of heredity. This
was in 1860 It took almost a century to establish that the two discoveries were interrelated . it was the DNA that determines heredity. The discovery
of the genetic code revealed the other function of the DNA, namely 1ts role in the synthesis of proteins and enzymes.

The genetic codes. made of the triplet codons, but with huge degeneracy, imply hidden periodicities. The Founer analysis identifies this three
peniod from the sharp peak at 1/3 frequency n the power spectrum It turns out though that the genetic code, or the three periodicity, is not there in
the complete DNA. Only for low lcvel organisms, the three periodicity exists through the whole sequence. In higher organisms, the protein coding
regions responsible for the three periodicity, are few and far between Indeed, they constitute about 3% of the sequence for the humans. The
function of the rest 97% remains unaccounted for These parts constitute the ‘junk’ DNA

From the power spectrum of the ‘junk’ DNA, when the ‘white noise’ 1s subtracted, a long-range hidden order is obtained. The sort of order,
with the typical 1/f spectrum, is ubiquitous in the physical world The analysis of the moments and the cumulants of the ‘junk’ DNA base distributions
once again reveal the same long-range inverse power-law correlations of the bascs In the language of the distributions, we have long range-tails.
These tails make the second moments diverge, lcading to deviations from the Central Limit and to Lévy type distributions. The ‘junk’ DNA base
organisation is then analogous to the distnibution function of anomalous diffusion and of Fractional Brownian Motion.

The analysis of the coding parts of the DNA show some differences. In the short-range there exists the three periodicity peaks in the
power spectrum. However, for short coding sequences the organisation of the bases are near random, characterized by the Hurst index close to
05 for the second moment. As wc go to larger coding sequences, by splicing out the intervening ‘yunk’ DNA, or by going to the prokaryotic
(lower organisms) DNA sequences, the long-range inverse power-law correlations reappear. The Hurst index, for the second moment, deviates a
bit from 0.5

With all these data on short-ranged penodicities, and long-range inverse-power-law correlations, we are ready to model the DNA
sequences. How to create symbolic sequences with long-range order of bases? The Expansion-Modification algorithm creates such an order. In the
Insertion Models sequences of different lengths are inserted, with the lengths distributed a la inverse power law. The Copying-Mistake Map is
another model generating long-range order. Here the bases appear with the inverse power-law distribution in ‘waiting times’. Simultaneously a
point mutation is introduced to randomise the shon-range behaviour. The relative strength of the long-range ordering and point mutation probability,
is a parameter that is adjusted.
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6. An assessment

1. Introduction

“In the study of Nature, there is the need of dual
viewpoint, the alternating interpenetration of
biological thought with physical studies, and
physical thought with biological studies”.

~Jagadish Chandra Bose

In the last decade, the DNA sequences have drawn physicists
anew. The works of Niels Bohr (Light and Life, Nature 131
(1933) 421) had earlier inspired a generation of physicists t0
look at the DNA to unravel its stucture and function. That the
laws of living matter must follow a regular rational pattern
was reassuringly emphasized by Erwin Schroedinger (What is
life? Cambridge University Press, 1944). The subsequent
explosion of interest led to the determinations of the structure
of the DNA, and, later, the genetic code, two notable
discoveries of the century.



Order and fluctuations in DNA sequences

The recent spate of interest in the subject stems, in part,
from the realisation that, despite the progress, the DNA eludes
anderstanding. Whilc the genetic code does isolate one of the
major functions, the "coding" regions are but a small part in
many of the DNA. The functions of the "non-coding”,
cometimes called the "junk" parts, remain unknown.
Amusingly enough, these "junk"”, "non-coding" regions are
the largest component of the DNA. It is improbable they are
there doing nothing,.

The investigations over the last decade have brought some
hints that the "junk” parts of the DNA do have a built-in
orgamisation. These parts have long-range correlations of the
inverse power-law form. Long-range order, the inverse power
tvpe, exists in many physical systems. Their precise physical
ongin remains ill-understood. Indeed, there is the well known
result in physics, that for one dimensional systems long-range
order is improbable. It is a challenge then to understand the
unmistakable correlations in the "junk" DNA.

The coding regions, in many cases less than 5% of the
DNA of higher organisms, have structure that is cqually
clusive. First, they show three periodicity, presumably due to
the presence of the triplet codons. Second, over "short"-to-
"imtermediate” range they have the random statistical
behaviour.

This review is about this intricate hidden structural
orgamsation of the DNA. It is divided into five parts. Part I is
a buef look at the DNA, the polymer, and its underlying
constituents called the nucleotides, or more simply, the
monomers. Part II gives a simple introduction to the spectral
analysis of symbolic sequences such as the DNA. It also
buiefly discusses the ideas of information-entropy and order.
Part II1 1s a bricf foray into random walkology on which a
good bit of the modern DNA correlation analysts 1s patterned.
In Part IV we discuss the underlying order of the DNA
sequences. There have been some effort at modelling of the
DNA sequences based on insights gleaned about its structure
in the recent years. We outline the framework of some of the
recent models. Needless to add, the modelling effort has a long
way to go. Part V asscsses the progress thus far.

The choice of topics has been dictated by our intent to
make this review accessible to specialists from many fields.
We would have liked to deal with some of the background
material in more detail, but are restrained partly by limitations
of space; more by limitations of our own knowledge.

There are many we would like to thank. Prof. Anjali
Mookerjee and Prof. A B Roy allowed us to present part of
this material to teachers from universities and colleges at the
UGC sponsored school at the Sivatosh Mookerjee Science
Centre, Calcutta. We arc grateful to Prof. S C Mukherjee,
who contributed substantially towards building up of our
?ahoratory; to Prof. Ashesh Nandy for much of the initial
Impetus, and to Drs. Chaitali Mukhopadhyay, Sujata Tarafdar

and Papiya Nandi for many useful discussions. The speakers
and the participants at the School of Complex Systems,
Jan 30 — Feb 3. 1995 [Indian J. Phys. 69B (1995)] provided
the initial spark; we thank them all.

2. An overview of DNA

“Living matter, while not eluding the laws of
physics as established to date, is likely to
involve other laws of physics hitherto unknown
which, however, once they have been revealed,
will form as integral a part of this science as the
formér".

! - Erwin Schroedinger

b

Al ab‘ul the time, in the later part of the nincteenth century,
when ghe doctrines of classical physics had reached 1ts height,
a fascinating and far reaching new disciplinc of 1escarch, far
removed from classical physics, was silently born. ‘The 1dcas
were conceived by Gregor Mendel, around 1860, at the
Augustinian monastery at Brno (Czechoslovakia), on
experiments with breeding of pca-plapts. The results were
published in 1866 in the obscurc Verhandlungen des
naturforschenden Vereines in Brunn (The Proceedings ol the
Society of Natural Sciences in Brno). Mendel had studied the
inheritance characters, such as plant height, colour of flower,
the shape of seed, of the usual garden peas, and concluded that
heredity works on clear, logical principles that arce
experimentally accessible and verifiable.

Curiously, Mendel's work went unnoticed for a good
thirtyfour years till 1900, about the time Max-Planck was
busy with his experiments on blackbody radiation. when three
scientists — Hugo de Vries, Carl Correns and Erich von
Tschermak independently conceived of and performed
experiments that showed heredity follows clear physical
principles. Studying the literature they realised they had
rediscovered the ideas of Mendel conceived more than three
decades earlier.

2.1. From peas to fruit flies :

The work of Mendel, confirmed now by De Vries, Correns
and Tschermak, paved the way for the rational scienufic
approach to the characteristics of living organisms; how these
are passed from one generation to the text. Within a decade
from 1900 experiments established that these informations
reside in the chromosomes and are passed on duing the process
of cell division. The term gene was used to describe the
objects residing in chromosomes that carry thesc
informations. No one yet knew what these objects were.
Figure 1 gives the idea of an idealized cell that, being the
structural and functional unit of a living organism, carries the
chromosomes.
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Figure 1. Diagram of an i1dealized animal cell.

It was about this time in May 1910, came the white-eyed
fruit fly from the laboratory of Thomas Hunt Morgan {1]. The
fruit flies exist in many different forms, and crossing them
together the "fly room" of Morgan created whole set of
varieties in accord with Mendel's ideas. Careful experimental
techniques developed by Morgan mapped the position of genes
in the chromosomes for the characteristic features of fruit flies
(Figure 2) [2].

Fruit flies, or Drosophila melanogaster as they are
technically called, because of their variety, provided the ideal
laboratory for the study of inheritance. The science of heredity
that began in the pea gardens of Mendel took off on the wings
of Drosophila melanogaster.
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Figure 2. Positions of 50 different genes on the 4 chromosomes of the fruit
fly, Drosophila melanogaster.

2.2. Here comes Niels Bohr :

Far away from garden peas and fruit flies a group of
physicists, inspired by Niels Bohr, began to work on the issue
of inheritance. The lecture of Bohr at an international congress

in 1932, published the following year in Nature, provided the
spur to physicists, trained in quantum mechanics, o work on
the ideas laid out by Mendel and Morgan. The questions
what genes were, are how they worked — haunted them. Max
Delbriick, a nuclear physicist from Gottingen (migrated to the
US in 1937), played a pivotal role in shaping the course for
the next three decades [3]. In 1940 he, along with Salvador
Luria and Alfred Hershey, set up the Phage group, consisting
of physicists, chemists and bilogists, that led, eventually, to
cracking the mystery of genes. The group was named after
bacteriophages, which are viruses that infect bacteria.

2.3. What the genes are made of :

That chromosomes have the constituents, the genes, that
determine heritage, led to intense exploration of the genetic
material. The analysis of chromosomes, by chemical methods,
established that are made of proteins and nucleic acids. This
was known by 1920. The nucleic acid, namely
deoxyribonucleic acid (DNA), or the protein, or a combination
of the two, i.e. nucleoprotein, must transmit the data of one
generation to the next. The early suspicion pointed the finger
at protein. The reason being, protein was known to be a long
polymer made up of 20 amino acid monomers. Since the
amino acid residues (i.e. the monomer units of protein) appear
in arbitrary order, the protein polymers could contain large
amount of information. In contrast, initially the structure of
the DNA was incorrectly determined. The constituents —
adenine (A), guanine (G), cytosine (C) and thymine (T) that
make up the DNA — were put together in a way that had
little possibility of storing the vast amount of information
required. By the late thirties it became clear, however, that the
DNA is a polymer of A, G, C and T and, therefore, could
exist in large number of variable forms suitable for storage ot
information, just like protein. The crucial evidence that it is
the DNA that stored the genetic data came from experiments.

In 1928, Frederick Griffith studied both virulent (disease
causing) and avirulent (harmless) forms in Streptococcus
pneumoniae, the agent that causes pneumonia, and found out
that the principle responsible for the transformation of bacteria
from one form to the other was actually the genetic material.
But he did not identify the transforming principle. Afterwards,
significant experiments in this direction were carried out by
Oswald Avery and coworkers (Rockefeller Institute, New
York) on the same bacteria. They used degrading agents
protease and ribonuclease enzymes to selectively degarde
proteins and nucleic acids respectively and study the
information carrying capability of the resulting geaes [4].
Alternatively, in experiments carried out by Alfred Hershey
and Martha Chase at Cold Spring Harbor Laboratory.
radioisotope labelling of protein and the DNA were carried
out. Proteins carry sulphur and can be doped with 35S. The
DNA carry phosphorus and were doped with *2P. The
information carrying agent in bacteriophage T2 was studied
with these doping agents. They concluded from the results that
the DNA carries the information [5).
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Avery's results appeared in 1944, but remained unaccepted.
Even with the Hershey-Chase experiment of 1951-52, there
remained some lingering questions. The determination of the
structure of the DNA by Watson and Crick in 1953
established the information carrying capability of the DNA
and 1aid at rest these doubts. Much later, in the 1970's, with
the advent of recombinant DNA technology, that injected pure
DNA in plants, insects, yeast, bacteria etc., the role of DNA
as the sole genetic material became experimentally
established.

2.4. The DNA :

In close parallel with the experiments and ideas put forward by
Mendel, Morgan, Griffith, Avery, Hershey, Chase and others
on mnheritance and the role of the DNA, another group of
scientists were busy unravelling its structure. The DNA was
isolated from pus cells by Johan Friedrich Miescher in 1869,
and the majority of its nitrogenous bases were identified in
1894. The sugar component of the DNA came to be identified

by Hammersten in 1900; the exact structure of the sugar
ingredient, the deoxyribose, was obtained by Levene by 1929.
By 1934, Caspersson had established its long chain polymer
form capable of existing in variable configuration of the bases
A, T, G and C. This variability confers it the potential to
store large amount of information. That the bases A, T, G and
C follow a definte compositional constraint was established in
1950 by Chargaff [6). The X-ray diffraction studies on crystals
of the DNA by Rosalind Franklin in 1952 showed the DNA
to be @ helix. The methodology of X-ray diffraction studies
were ¢stablished earlier by Maurice Wilkins. The final step
came §n 1953 by Watson and Crick, who put together all
these §nformations to arrive at the double helical structure of
the DNA [7].
]

2.5. ﬁe building blocks :

The #nonomers

Tie DNA is made up of a chain of four monomers, arranged
in arbitrary order. The monomers, also called nucleotides, are
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in turn made of three distinct entities : the sugar, the

nitrogenous base and the phosphoric acid.

The sugar : It is made of a ring of S carbon atoms, labelled
from 1' to §'. The reason for the primes we explain later. It
has the form of sugar called ribose, out of which at the 2'
position an oxygen atom is removed. Hence the name 2'-
deoxyribose (Figure 3a).

The pitrogenous bases : The nitrogenous bases come in
four different types, labelled : A for Adenine, T for Thymine,
G for Guanine and C for Cytosine. Hence the four monomers
may be denoted by the symbols A, T, G, C. Out of the four,
A and G are called purines and are both made of two rings
(Figure 3b). T and C have single-ringed forms (Figure 3b).
The positions of atoms in the bases are labelled from 1
onwards. It is for this reason the positions in the ribose are
denoted by primes. These four bases attach on to the site 1' of
the ribose sugar.

The phosphoric acid : The phosphoric acid group attaches
to the 5' carbon of the ribose sugar. The phosphates that
attach could be the monophosphate, the diphosphate or the
triphosphate. The individual phosphate groups are labelled o,
B and ¥, with the convention that the o-phosphate attaches on
to the deoxyribose (Figure 3c).

The polymer

The monomers put together in a chain form the polymer,
also called the polynucleotide. The individual monomers
attach to the other through the phosphate groups. The a-
phosphate attaches to the 5' position of one ribose and 3'
position of another forming the linkage (Figure 4). Of the
a-, B-, y-phosphates, the B and the y detach during
polymerisation, leaving only the a to provide the connecting
links of one ribose to the next.

There is a sense of direction in the polymer. One end
(phosphate at 1' carbon) is the P-terminus, the other end has
the 3'-OH terminus. Thus we have the polymer running, so to
speak, from 5' to 3' as the two ends are different.

The polymer can have arbitrary number of monomers in
any arrangement of A, T, G and C. When we talk of the DNA
sequence, we mean the sequence of A, T, G and C in this
polymer chain.

2.6. The double helix :

That the DNA is a polymer mode of A, T, G, C monomers
tied together through phosphate links was known prior to
1953. The work of Wilkins on X-ray diffraction and its
application to crystals of DNA fibers by Rosalind Franklin in
1952 established that the DNA has a helical shape [8). It was
left to Watson and Crick to show that DNA consists of two

S Chattopadhyay, A Som, S Sahoo and J Chakrabarsi

polymer chains, both of A, T, G, C, in the shape of double
helix. Of the two polymers, one runs from §' to 3'; the other,
the complementary polymer, runs in the opposite direction,
i.e., from 3'to 5. The two polymers are held together by

s 9 5
‘0-P— 0~CH,
o o !
Ko
0o x
0-#=0

wd
0,

Figure 4. Structure of a trinucleotide, as it runs from 5' to 3'
direction. If X is H, the sugar is a deoxyribose one and so the
structure is DNA. If X is OH, the sugar is a ribose one and 5o the
structure is RNA.

hydrogen bonds runing between the nitrogenous bases [9,10]
(Figure 5).

The distance between the polymer chains is such that the
purines (A and G of two rings) of one polymer connects two
the pyrimidines (T and C of single rings) of other. Indeed A
connects through two hydrogen bonds to T; G connects
through three hydrogen bonds to C. While we are not going to
be discussing the energetics to the macromolecules, clearly the
triple bonds between G and C imparts greater stability to
chains that have higher G or C content. The A binding to T,
and G binding to C of the complementary chain makes the
helix satisfy: the compositional contraint observed by

Chargaff,
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3 5

Figure 5. The two antiparaile] DNA strands are connected together
by non-covalent hydrogen bonding between paired bases. A and T
are connected by two hydrogen bonds; while G and C are held
together by threc hydrogen bonds.

2.7. The DNA organisation :

The DNA we know, from experiments of Avery, Hershay-
Chase, is the genetic material. The initial experiments were
carried out with low-level organisms, such as bacteria and
bacterophages. Questions remained whether in the higher
organisms the DNA played the same exclusive role. The
proteins present in chromosomes, could they carry
information on heritage? Some of these questions were laid to
rest with the advent of Recombinant DNA Technology in the
seventies. Here pure DNA is introduced into the cells and.its
effects are observed. The experiment with recombinant DNA
technology establishd the central and the exclusive role of the
DNA as the genetic material.

Before we look at the major functions of the DNA, let

us briefly summarize the organisation of the DNA in the
cells.

The DNA occurs in the chromosomes or in the
mitochondria of higher living organisms, called the
cukaryotes. In the eukaryotes, the chromosomes, the
mitochondria, the golgi bodies are distinct structures inside the

cells. These structures are surrounded by membranes. The
cukaryotes could be unicellular, or have many cells.

In contrast the prokaryotes, such as bacteria, are organisms
that do not have structures such as the nucleus, mitochondria
etc. well segregated inside the cells.

There could be several chromosomes, and in each
chromosome can reside several genes (Table 1).

Tahle 1. The average number of genes present in cach chromosome varies
among species.

Name:of the Total No. of Total No. of Genes  Genes/Chromosomes
Orgagism Chromosomes (Approx.) (Average)

E. wn: (Bacteria) 1 2,800 2,800
Baker§ Yeast 16 8.750 350
Humah 23 50,000 2200

The DNA molecule, the long bi-stranded polymer, has
discrete segments called genes. These discrete segments are not
discontinuous but are connected to one another by intergenic
DNA sequences [11]. The length of the intergenic regions
vary. In lower organisms, the intergenic regions are usually
short, or could be absent altogether. In higher organisms,
most of the genes are well-separated with long intergenic
DNA regions.

The genes are segments of the DNA located on one of the
strands of the bipolymer. The strand carrying the gene is called
the template strand, and the sequence is read from the 5 to the
3' direction. The template strand differs from gene to gene.

The gene itsclf is not one continuous segment, but is
interspersed with DNA sequences that do not carry known
genetic functions. The parts of the segments of genes that
carry genetic information are called exons; the regions in
between are called introns [12, 13] (Figure 6). A gene may be

genel _| l‘ gene2
exon? | exon3 exonl exon2
intron2
inf
on or
anking
region

Figure 6. Any two non-overlapping genes are separated by an intergenic or
flanking region. Again a gene may be divided into a number of exon (i.e.
coding) and intron (i.e. non-coding) regions.

interrupted with many ‘introns. Table 2 shows the variation
in the number of introns for a few human genes. For lower
organisms, the introns are shorter, or may be absent
altogether.
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Table 2. Number and proportion of introns differs in different genes of the
same organism, ¢ ¢ human

Name of the Total Length  Total No. of  Proportion of Intron

Human Gene (kilobasc) Introns (% length)
Insulin 14 2 67
Serum albumin 18 13 88
Phenylalaninc 90 25 97

hydroxylase
Cystic fibrosis trans-

membrane regular 250 26 98
Dystrophin 2,300 99

> 100

2.8. The DNA functions :

The function of the DNA was summarized in 1958 in Crick's
Central Dogma. Simply stated, the DNA sequences in the
genes make the RNA (ribonucleic acid) that make protein
[14]. It is these proteins that allow organisms to carry out the
multitude of functions necessary for living. The RNA is
almost a copy of the DNA sequence, with one of the
nitrogenous bases thymine is replaced by uracil, denoted by
the symbol U (Figure 7). Thus the DNA is responsible for
synthesis of all the proteins [15] (enzymes that catalyse
reactions are proteins too).

[ [

c C.
H-——T/ \? -0 H- -7
H——N\c _N—H NN

il
0
Uracil
Thymine @
m
or methyl - U

Figure 7. Uracil (U) 1s present in RNA; whereas Thymine (T), nothing but
the methylated Uracil, 1s present in DNA.

The detailed chemical pathways that lead from the DNA
to the RNA to the proteins is beyond the scope of the present
review. These chemical pathways are summarized in Figure 8
[16).

We now discuss in brief the proteins, their structures,
and the genetic code. The genetic code gives us the mapping
of the monomers of the DNA, namely A, T, G and C, to the
monomers, i.e. the amino acids of the protein polymer.

DNA

Replication
(Duplication of DNA) 1

SIS MU A SRRV

RPNV
DNA l

SV

RNA T ranscnpti
pLion
' (synthesis of RNA) 1 m RNA

cytoplasm

nuclear envelope l

Protein Transiation
synthesis
of protein)

ribosomc

protein

Figure 8. The Central Dogma of molecular biology . The DNA rephcates s
information through replication; the DNA gives nse to messenger RNA
(mRNA) during transcription; i eukaryotic cells, the mRNA 1s processed by
splicing and migrates from the nucleus to the cytoplasm; the nibosomes
“read" the information coded in mRNA and use it for protein synthesis by
translanon

2.9. The protein polymer :

The protein is a polymer of monomers called amino acids,
sometimes also called peptides (the polymer in this language
is called the polypeptide). The monomers, i.e. the amino acids
are twenty in number; their structures are given in Table 3.
They are joined together by chemical bonds, called the peptide
bonds shown in Figure 9.

RITHHO 'R
RN
=N-C~C-N-C-C-N-C-C-
[T ) LI Lt
HHIO JR{ HHO

Figure 9. The peptide bond is formed by the interaction of two amino acids
with the elimination of water between the NH, and COOH groups.

2.10. The protein structure :

The protein structure given in Figure 10(a) is usually referred
to as the primary structure. The polymer that is protein, in its
"denatured” form assumecs its primary structure; usually
though the structure of the polymer exists in levels of folded



Order and fluctuations in DNA sequences

Table 3. The categories, symbols and structural formulae of 20 different amino acids.

Name Symbol Structural Formula
Aliphatic nonpolar side chains
Glycine Gly (G) H 1»C1 H~COO~
NH, T
Alanine Ala (A) H, L C|H-—-COO" '
' |
. | NH, ™
M
i )
Valine Val (V) i /C ] T—C H—~COO
i X
- H,C LN, *
HiC_
Leucine Leu (L) /CH—-CH; ,-C|H—-COO -
H,C NH, *
cH,
N
cH,
N
Isoleucine e () /CH ~—ClH—-COO’
CHy  fm, e
Aromatic side chains @-—(H,A-—CH—-COO -
Phenylalanmine Phe (F) '
NH,*
Ho—@—cn, [CH—COO-
Tyrosine Tyr (Y) ILH, -
. —CH, C'H—-COO"
Tryptophan Trp (W) : }!H NH,*
Hydroxyl-containing side chains HO—-CH,4+CH—-COO "~
Serine Ser (S)
NH,*
Threonine Thr (T) CH,—CH4+CH—-COO~
OH |NH, *
Acidic side chains ~O0OC—-CH, ClH—C()O"
Aspartate Asp (D) NH,*




10

Table 3. (Cont'd.)
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Name Symbol Structursl Formuia
Olutamate Glu (B) “00OC—-CH,~CH,4CH-COO"~
NM,*
Amidic amino acids
Asparagine Asn (N) H,N—C-—CH,-»C!H—COO'
NH, *
Glutamine Ghn (Q) H,N—ﬁ -CH,~CH,~<-C|ZH-COO’
NH,
Basic side chains
Lysine Lys()  *HN—-CH,—CH,—CH,—CH,+-CH-COO"
NMH, ¢
Arginine Arg (R) HN-CH,—CH,—-CH,+CH-COO"~
* NH,*
S\
NH,
NH,*
Histidine His (H) I
ClH;“"CH—Cm-
C _..(lZH
* HN NH
X’
]
Sulfur-containing side chains e
Cysteine O (C) HS—CH,4CH-COO
NH,*
Methionine Met (M) HnC~S—CH,—CH,<>(|:H_Coo-
NH,*
Imuno acid Pro (P) o0~
Proline '
* H,N —(H
|1
H H
< S

CH,
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forms labelled secondary, tertiary and quaternary structures
(Figure 10).

(@) residue

intramolecular H boading N
in globular protein YY

imtermolecular H bonding 7 YYYYY
between different chains A

in fibrous protein e b

o -heliz A - pleated sheet

(b)

) M‘%%/
sheet
- «c-helix

area of folding with no regular
secondary structure (random coil )

(c)

sequence, at the primary level (which depends on the sequence
of the DNA it is made from), determines the tertiary structure
of the protein. Thus built into the DNA exists the
information on the amino acid sequence that in turn
determines the folds of its structure [17].

2.11. The genetic code :

About 1953 when Watson and Crick put together, from the
known' results, the structure of the DNA, the work on the
genetic code began in earnest. It continued through the fifties
and wps not completed until 1966. A large group of
scientigts— Crick, Yanofsky, Brenner, Ochoa, Nirenberg,
Mai i, Khorana, Leder and others— unravelled the genetic

Sin&e the amino acid monomers are twenty in number it
was clegr carly on that the nucleotide bases (remember they are
4 in nutnber— A, T, G and C), have to work in combination
to give rise to these twenty variety. Clearly two of them can
make upto 4 x 4 = 16 varieties. Three of them can make upto
4 X 4 X 4 = 64 types. Thus, three is the least number of the
DNA monomers necessary [18]. However, since three of them
can make 64 different types, while the amino acids number
just twenty, the genetic code has a high degeneracy (codon
degeneracy) [19,20). The genetic code, as obtained in 1966, is
summarized in Table 4 [21].

)

Figure 10. The structure of a protein in four hierarchics. (a) The primary
structure of a protein describes the order of covalently linked amino acid
residues. (b) The secondary structure, cither a-helix or S-pleated sheet or a
combination of both, shows the role of CO-NH hydrogen bonds, either
intramolecular or intermolecular in nature. (c) The rertiary structure
describes the way the chains with secondary structure interact through the
side chains of the amino acid residues to form a 3-D shape. (d) The
quaternary structure describes the interaction, through weak bonds, of the
polypeptide subunits.

It is to be noted that the quaternary (or the tertiary, or the
secondary) structure, upon heating, or upon chemical
treatment with urea, denatures to the primary form made up of
the sequence of amino acids. Upon renaturation, i.e. upon
cooling for instance, it resumes spontaneously its correct
tertiary structure. It is assumed, therefore, that the amino acid

Table 4. The genctic code.
2nd base in codon
U C A G
Phe Ser Tyr Cys U
U Phe Ser Tyr Cys C
1st Leu Ser STOP STOP A 3d
Leu Ser STOP Trp G
Leu Pro His Arg v
C Leu Pro His Arg C
Base Leu Pro Gln Arg A base
Leu Pro Gin Arg G
Ile Thr Asn Ser U
A lle Thr Asn Ser C
in lle Thr Lys Arg A n
Met Thr Lys Arg G
Val Ala Asp Gly u
G Val Ala Asp Gly C
codon Val Ala Glu Gly A codon
Val Ala Glu Gly G
Legend :

Amino acids specified by each codon sequence on mRNA Key for the
above table :

Phe : Phenylalanine Ser ' Serine  His : Histidine Glu - Glutamic ac1d

Leu : Leucine Pro : Proline  Gin : Glutamine Cys - Cysteine
lle : Isoleucine Thr : Threonine Asn : Asparagine Trp - Tryptophan
Met : Methionine  Ala : Alanine  Lys : Lysine Arg  Arginine
Val : Valine Tyr : Tyrosine Asp : Aspartic acid Gly * Glysine

A = adenine G = guanine C = cytosine T = thymine
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Aside from the codes given in Table 4, there are several
other features that are important to note.

(i) Stop Codons : Some triplet combinations, namely,
UAA, UGA and UAG do not code for amino acids.
Presence of them in the RNA stops the process of
protein synthesis. These are therefore called stop
codons (Note that U stands for uracil).

(ii) Start Codon : The triplet AUG that codes for the amino
acid methionine also acts as the start codon. The
protein synthesis begins at the position AUG occurs.
In the final protein methionine may initially occur at
the first position only to be removed later by further
processing.

Non-universality of the Codes : The genetic code,
given in Table 6, back in 1966 appeared universal.
Subsequently small deviations have been observed, first
in mitochondrial DNA sequences, later in some nuclear
sequences as well. Some of these deviations from
universality are summarized in Table § [22].

(iii)

Table S. Examples of some nuclear and mitochondrial non-standard
codons.

Name of the Location of the Codon Codes for Universally
Organism Genes codes for
Protozoa Nucleus UAA, UAG Glutamine  Termination

Candida Nucleus CUG Serine Leucine

cylindracea

Baker's Yeast  Mitochondna UGA Tryptophan Termination
CUN?*, Threonine  Leucine
AUA Methionine  Isoleucine

Drosophila Mitochondria UGA Tryptophan Termunation

melanogaster AGA Scrine Argimne

AUA Methionine Isoleucine

Mammals Mitochondria UGA Tryptophan Termination
AGA, AGG Termination Arginine
AUA Methionine  Isoleucine

*N stands for any nucleotide.

In as far as is known, the departure from the genetic code
of Table 4, are rare. The results of 1966 continue to hold for
most of the coding regions.

Table 6. Variations in the length of the DNA segments among different

Name of the Genome size Total No. of Average Length of

Organism (kilobase) Chromosomes  DNA/Chromosome
(kilobase)
E. coli (Bacteria) 4,000 1 4,000
Baker’s Yeast 20,000 16 1,250

Drosophila

melanogaster 165,000 4 41250
Human 3,000,000 23 130,000
Salamander 90,000,000 12 1,500,000

2.12. Experiments with the DNA :

The present knowledge about gene structure is mostly due 1o
the enormous applicability of 'recombinant DNA technology’
The DNA molecule created invitro by ligating together pieces
of the DNA that are not normally contiguous is termed i
‘recombinant DNA technology'. The r-DNA technology
comprises of all the techniques involved in the construction,
study and use of those molecules. At the heart of this
technology are the nucleic acid enzymes acting as tools that
allow the DNA and the RNA to be manipulated [23].

2.12.1. Enzymes

Restriction endonucleases are a group of enzymes which
actually initialized the development of this technology and
naturally deserve the most importance. A restriction
endonuclease cuts DNA moleculs only at a limited number of
specific nucleotide sequences (Figure 11a).

iiifii_ll_*_@ DS

Restriction Endonuciease

111 FT"?‘?‘T""‘TT”
3'—L—-¢L—¢L —0—0—0—0—0— 5§
(a) ,
$ —A—C—C —-(;——J\—-—A——‘r—-c-—-*r——c:,—2 tempiate
36— A—C—2 pomer
1 DNA Polymerase
§$~uA —C—C—G—A—A—T—C—G— 3
y—t —g—9— ¢c— ' —1—8—G—C— §
newly synthesized strand
(b
§'=~—0—0—0— —0——0—0—0~—0~-Q——0— 3’
3—0—0—0— —0—0— 0—0—0—0—0—§

1”“!'“

§ —0— 0—0—0—0—0—0—0—0—0— ¥
y —0— 0—0—0—0~—0—0—0—0—0— §
(¢

Figure 11. Three important classes of enzymes, frequently used
recombinant DNA technology. (a) A restricion endonucleuse cleaves
double-stranded DNA only at specific sites. (b) The basic reaction of @
DNA polymerase : 8 new DNA sirand 1s synthesized tn the §' 10 ¥
direction. (c) A DNA ligase joins together two individual fragments of
double-stranded DNA.
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DNA polymerases make complementary copies of
DNA templates and are useful in the production of labeled
probes, DNA sequcncing and also DNA amplifiction
(Figure 11b).

DNA ligases are the enzymes that repair single-strand
discontinuities in double-stranded DNA molecules in the cell.
The purificd form of this enzyme joins the DNA molecules
together to form a recombinant DNA (Figurc 11c¢).

2.12.2. Analytical technigues

A number of recombinant DNA-based analytical techniques
124] have been found to have tremendous impact in the
medical sciences. ‘Southern blot analysis’ is one of those
diagnostic techniques; it transfers bands of DNA from an
agarosc gel to a nitrocellulose or similar membrance and is
used to detect specific sequences contained on a DNA fragment
generated by restriction enzyme digestion within a mixture of
all the restriction cnzyme fragments of genome. It also sets
the basis of ‘restriction fragment length polymorphism
'RFL.P) linkage analysis’® and ‘DNA fingerprinting’.

RFLP is a mutation that gives rise to a detectable change
in the pattern of fragments obtained when a DNA molecule is
.ut with a restriction endounclease. The restriction fragment
narkers that demonstrate close inkage analysis; it has become
1 mcans of screening individuals for defective genes
‘esponsible for genetic diseases.

DNA fingerprint analysis is just a variation of
RFLP analysis in which the probe hybridizes to the
wypervariable regions or HVRs. Its uses include forensic
dentification, indentification of parentage and also the
valuation of the success of bone marrow transplants.

DNA sequencing is another strong and informative
INA analytical technique that determines the order of
wcleotides in thc DNA molecule. DNA can be sequenced
:ither chemically, by the Maxam and Gilbert pocedure [25], or
‘nzymatically, by the Sanger method [26]; the latter is easier
ind qualitatively superior to the chemical method. The
nvention of the automated DNA sequencer has now provided

in enormous pacc in the field of research in molecular
nology.

Polymerase chain reaction (PCR) is another very
wwerful technique [27] that enables multiple copies of a
INA molecule to be generated by enzymatic amplification of
arget DNA molecule. For each round of synthesis, the
mount of DNA is doubled. Thus, 30 rounds yield more that
0% 10” copies of a region of DNA from one molecule. It
1ses are mainfold. Genes susceptible to mutations that cause a
lisease can be quickly amplified and sequenced. PCR helps to
Cf!fiily detect viral or bacterial infections. It has also got a lot
f importance for forensic uses. Thus PCR, DNA sequencing
ind Southern blot analysis, acting in concert, has put the
-DNA technology at the foremost position in the present
vorld of molecular biophysics.

2.13. The DNA habitat :

To appreciate the meaning of the mathematical analysis that
the DNA scquences are subjected to in the lollowing, we
discuss briefly where and how the DNA resides. [t is known
that the DNA resides in the nucleus of cukaryotes or in the
nucleoids of the prokaryotes. The DNA is also tound in the
mitochondria of all cukaryotes and in the chloroplasts ol
plants: (eukaryotes). The mitochondnal and the chloroplast
DNA synthesize proteins necessary for the function of these
two bodies inside the cells. The genetic code for the
mitocKondrial DNA differs in a few mstances from that of thé
nucleadr DNA. Intercstingly the majority of the proteins
requirdgd for the mitochondrial functions are synthesized in the
nucleys and transported to the mitochondria. Why the
milocl’ondrla has to work as a scparate centre for protemn
synthesis remains unknown.

The DNA residing 1n the nucleus, in chromosomes, is
being referrcd to as the nuclear DNA 1t is with them that we
concermn ourselves through this review

The DNA molecule is split into a number of segments
each contained in one chromosome. The total number of
chromosomes vary from one organism to another. The lengths
of the DNA segments vary from chromosome to chromosome
(28]. Table 6 gives some of these varations for a few
samples.

The dimension of the chromoseme falls in the 10°¢ meter
range. The DNA scgments that fit into them could be scveral
centimeters in length. It is known that chromosomes contain
mixturc of the DNA and the proteins. These protemns (called
histones) help thc DNA to wind around and compacuty inside
the chromosomes In the cukaryotes, and in the prokaryotes,
enzymes help in the process of compactification. The DNA is
said to supercoil with their aid.

The process of compactification has to follow numerous
constraints to allow freely the synthesis of proteimns to occur.
As the process of synthesis follows from one end towards the
other, the DNA has to untangle at least locally [29]. The
question of whether DNA compactification can allow for
knots remains unanswered.

2.14. The DNA sequence :

The DNA molecule, the bistranded polymer, as we have
noticed, is made up of monomers, called nucleotides A, T, G§
and C. The two strands are complemcntary, that is, the
specification of nucleotide sequence of one strand completely
specifies the sequence of the other. A and G in one couple to
T and C in the other respectively through hydrogen bonds that
keep the bistrand together. The specification of sequence in
one, therefore, is sufficient.

The template strand is the one that takes part in the initial
stage of protein synthesis. The DNA sequence of the template
strand, by convention, is read from 3' to §' direction. The
template strand synthesizes the complementary RNA
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molecule. The DNA sequences that are presented are of the
non-template strand in the 5' to 3' direction. The reason is that
the RNA strand is a copy of the non-template strand (except
for thymine, T replaced by Uracil, U), and amino acid is
formed from this RNA sequence. The convention, therefore, is
to describe the non-template strand.

The DNA bipolymer is made up of genes and intergenic
regions. The intergenic sequences usually are much larger than
the genic sequences. The genes, in turn, are made up of the
coding, i.e. the exons, and the non-coding, i.e. the intron
rcgions. The intron regions for higher eukaryotic beings far
cxceed the exons.

The coding regions, the exons, carry the triplet codons.
The codons are degenerate in the sense that many triplets give
rise to the same amino acid. The second position of the codon,
except for the case of scrine, is nondegencrate; the first
position is degencrate; and the third position has more
flexibility. The exon region begins with the start codon and
ends in the stop codon.

The exon region is preceded, in the immediate vicinity by
promoter regions that alert biomolcculer agents responsible
for the protein synthesis about the upstream coding sequence.
The exons are interspersed with non-coding intron regions.
The part that the introns play remains unknown. The
composition of the sequence of human genome, about 6
billion base pairs long, gives a view of the rclative
proportions of coding (exon), non-coding (intron) and
integenic regions [30]. This is given in Table 7.

Table 7. Broad subdivisions of the human genome, approximately 6,000,000
kb in length, with about 50,000-100,000 genes, split into 23 chromosomes,
cach containing a single, linear. double-stranded DNA molecule

Table 8. A fcw examples of repetitive human DNA.

Famuly Location Average size of  Number of copie,
Repeat Unit (bp)  of Repeat Unit,
Telomeric Telomeres 6 2-3x 1ot
Hypervarinble  All chromosomes, 9-64 Ix 104
often near tclomercs
(CA),/(TG),  All chromosomes 2 7 % 106
Alu Euchromatin 250 7% 105
Kpn (L) Euchromatin 1,300 6x 10%

Human Genome
(approx 6 x 10° bp)

+ 4

I T
Genes and generelated Intergenic or
sequences extragenic DNA
<10% >90%
l I
Coding Non-coding
DNA DNA

The coding sequences for the same protein, histone say, is
not the same as we go from one species to another. Even
within a species there are small variations in the coding
sequences for the same protein. For the non-coding regions the
fluctuations are more.

For the eukaryotic sequences it is known that
subsequences of varying lengths repeat many times. This is
true for intergenic regions as well as for the introns [31].
Table 8 gives an idea of these repeats for the human

sequences,

2.15. Order and fluctuations in the DNA sequences :

The DNA sequences, by convention, refer to the series of
nucleotides, A, C, G, T, read on the non-template strand fron
5" to 3' direction. The reason for the non-template strand has
becn discussed carlier.

The question that arises naturally is : What are the
characteristics of these DNA sequences? For one, we know
that as far as the coding sequences arc concerned the genetic
code is important. The triplct codons sit side by side. In
c¢DNA (coding DNA) there does exist an order, albeit of short
range. The cDNA, however, is but a small part of the DNA
sequencc. What happens for the introns and the intergenic
regions? Does order, or correlations, exist in them? If they do.
what do they physically imply?

It has been argued that the scquence carries all the
physiobiological information. So far only a small part of
it, namely the genetic code. has been deciphered The
information stored in the other regions remamns to be
understood.

In these other domains, the introns and the intergenics. are
the sequences of the nucleotides (A, T, G and C) random? [{
thcy are random, perhaps they do not carry any usclul
information. If they are not random, how far arc they from the
random sequences? What are the nature of correlations? As we
have noticed the sequences for the same specics have small
fluctuations. As we go from one specics to another the
fluctuations increase. The further apart the species are in the
scale of evolution the larger are the fluctuations. An
understanding of the fluctuations, as opposed to order, is
important for evolutions. What gives rise to thesc
fluctuations? Are they purely random, or is there a method to
this madness? Clearly, any arbitrary fluctuation does not lead
to a viable new organism, but some do.

3. Spectral decomposition,algorithmic complexity,
entropy and order

“At the end of his life, John von Neumann
challenged mathematicians to find an abstract
mathematical theory for the origin and evolution
of life. This fundamental problem, like most
fundamental problems, is magnificently difficulit.
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Perbaps algorithmic information theory can help

to suggest a way to proceed”.
~Gregory J Chaitin

Given the nontemplate sequence in the 5' to 3' direction how
does its Fourier transform (FT), or more precisely Discrete
Fourier Transform (DFT), look like? What do we get from
the Fourier spectra? Before we get to answer some of these
questions let us lay out how we arrive at the Fourier spectra of
symbolic sequences composed of symbols A, T, G and C.

3.1. From symbols to numbers :

The symbolic DNA sequences made of the nucleotide bases
first need to be converted to numbers. Consider a sequence of
four symbols, such as :

S (A, C, G, T) =S = GTGCACTCCCA The sequence has
the length 11, i.e., it has 11 symbols in all. It is made up of
four subsequences : (i) the G sequence : G0G 00000000
(i) the T sequence : 0 T0 000 T 00 0 O (iii) the C sequence
:000CO0COCCCO(iv) the A sequence :0000A 00
000A

The G sequence, denoted Sg is thus
S¢=10100000000;
the T sequence, Sy, is
Sr=01000010000; similarly
$¢=00010101110
$4=00001000001.
The symbols, now, have been changed to numbers.

3.2. Fourier transform :

The Fourier transform (FT) method, in many cases, is
basically an efficient computational tool for performing some
common manipulations of data. For some other problems, FT
or the related “power spectrum’ is itself of intrinsic
importance. With the help of FT, a periodic function f{x) of
period 27 can be expanded (probably in an infinite series) in
terms of sin kx and cos kx, where k = 0, 1, 2, .... In essence,
the FT separates a function into sinusoids of different
frequency which sum to the original function. It distinguishes
the different frequency sinusoids and their respective
amplitudes [32-34].

The discrete Fourier transform (DFT) [35] is a
modification of FT. DFT of any sequence is practically not a
continuous function, but a sequence itself that coresponds to
equispaced samples in frequency of FT of the signal. A digital
computer works only with discrete data; so numerical
computation of the FT requires sample values, and DFT
significantly helps in implementing effective algorithms for
the computation.

The fast Fourier transform (FFT) is a modified DFT
algorithm that, though implemented independently by a
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number of workers over the last 30 years, became generally
known from the work of Tukey and Cooley in 1965 [36]
FFT reduces the number of computations from something on
the order of M2 1o M log M, M being the length of the
sequence given.

3.3. Fourier transform of S :

The Fourier transform of S, given in (2), made of four
symbols, is taken to mean the transform of the four
subsequences Sg, S7. Sc. and S,. From these four separate

_ transforms the power spectrum of S is constructed.

It is to be noticed that the assignment of numbers to

. sequence, such as S, is not unique. It depends on convenience.
" For instance one could assign +1 for purines and -1 for

pyrimidines in S and construct the Fourier transform. The
assignment of number depends on the feature of the sequence
being studied. In our assignment we have assumed all the

- bases A, T, G and C to be independent, without a prion

correlations.

Define the quantity S, ,, where the subscript m refers to
the position along the sequence S, and a takes the values
G TCA

Sm.a =1, if the a symbol occupies position m

= (), otherwisc. (h

The DFT of the subsequences are defined as :

M
sa(qn) = #2 sm.a cxP ("’iqn ’ m)- (2)

where S, (g,) is called the DFT of S,, o, M is the total length
of the sequence S measured in number of bases, g, are related
to the frequencies as discussed below. The g, take the values
determined from periodic boundary conditions.

3.4. Periodic boundary conditions :
Periodic boundary condition (PBC) means that the original
series S, of (2), is extended with the condition :

SmeM.a = Sm.a- 3)

Imposing this extension on (2) determines the possible values
of g, as follows :

l M
Sa(qn)=WZSM*M,aC_W'("”M)» 4)
This implies :
et M =1, 5)
Thus, gn = %— 'n, ©6)

where n takes integer values 0 to M-1 in steps of 1.

It is to be remembered then that DFT of S,,, ,, defined in
(2), with the choice of g,, (6), implies the periodic boundary
condition (3).
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3.5. The inverse transform :
The eq. (2) gives
M
Sal(qn) = 7'- Z Sm.c €Xp (—iq,.m).

-1

2 Sa(gq)exp (ig, m)= V'l'ﬁ‘zzsm a

n-0 m=1 n=0

x exp (i(q, —qn)m)

Now,

M-

M
VMY, Sna 37 3, oxp
m= n=0

(i(q, - guIm). (D

u
3»

It is known that
q M
w2

M

p (a4, = 4a )m)—l ifm=0;
=0, ifm=0. 8)

Likewise TI'Z l(q,, —gy)m)=1, ifn=n";
=0, ifnzn )
Then, considering n=n", (7) becomes
M1
D Suld) xXp (igam) = VM. 5, 4. (10)
So Sma = J!/14 ZS,,(q..)cxn (igym). an
n=0

This gives us the inverse or reciprocal transformation of (2).

3.6. The reality of S, « -

The sequence S, 4 (11), consists of clements that are real.
Thus,

1 v
Sma = 7;,"2 Salgy ) et = vaa
n

(12)

1 .

This is ensured if
S‘(‘ln)=su(2’5"(lu)- (13)

The DFT spectrum has this symmetric form following from
the reality of S,,, o

37 Spal0):

When n is set at zero g, = (), the scries (2) gives :

N,
Sq(0) = —pliar,
o (0) T
Thus, S, (0) is just a measure of the number, N,, of symbols
of type a in the sequence of M bases.

(14)

3.8. Excluded volume effect :

For the sequence S, 4 (2), cach position has an occupant,
A or C or G or T. No point of S, o is ecmpty. Thus :

ZS,,,',,=lforanym. (15)
[+4

In terms of the DFT  S,(q,), this translates into
ZS,,(q,,)=0:fnrn¢0. (16)

3.9. Frequencies and periodicities :
The periodic boundary condition gives (6), i.e.
qn = _A,T" ’
where n takes values from ) to (M ~ 1). The frequencics, /.
defined from g, = 27f, gives

(17
The periodicity is the inverse of frequency and is given by %

3.10. Correlations :

The correlations are usuaily defined with periodic boundary
conditions (PBC), sometimes they are, thercfore, called the
circular correlations.

For the sequence S, 4. €g. (2), the correlations K5
sometimes also called auto-correlations, arc defined as :

M
1
Kq[}(l)=ﬁzsfn.asnx+l,/3' (18)
m=1
where, as usual, the S, , satisfy (3), the PBC. The PBC
implics :

Kaﬂ(l)'-:Kap(M‘fl) (19)

3.11. The structure factor :

The structure factors, F,,p, of the sequence S, ,. eq. (2), arc
defined as [37] :

Fop(4n) = Sa(qn)Sp(q,) (20)

Thesc quantitics, because of the symmetry of S,(g,) about the
point g, =  (following from the reality condition of S, ,.
(13)) are also symmetric about the point g, = 7.

Sum-rules

The structure factors, defined in (20), satisfy a set of sum-
rules. These sum-rules, derivable from the definitions, are

M-1
0 Z Fap(gn)= Zsm aSm.p = 8apNa

m=1

2n
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where N, is the number of bases of types a.

M-l
n=1
1 NaNp
=m[6”ﬂ_Tl' (22)

where it is to be noticed, the sum on the left-hand-sidc does
not include the zeroth harmonics.

3.12. The Wiener-Khinchin relation :

The structure factors, Fop(qy,), arc related o the correlations
K qp through the Wiener-Khinchin relation

M-1
K"ﬂ(l) = —A-li Z Fﬂ'ﬁ(qn )P""I" ,' (23)
n=0

We conclude, therefore, that given the Fourier coefficients of
Su.a We can calculate via the structure factors, all the
autocorrelations that exist in the sequence.

3.13. The power spectrum :

As S, o are all real,

Sm.n = S,:x_a- (24)
Now from (11),
| M-1
Sma = M Zslt(qn )exp(ig,m).
n=0
So, Sm.a === ) So(qn)exp(—ig,m) (25)
W n--0

Since ¢, = 2w n/M, [where 27/M is the fundamental of period
and n varies fromOto(M - 1). Let ¢, =21 —gq,,.

So, (25) becomes
M-1

= 7;‘7 Z Sy (27 - q,; Yexp(ig, m)exp(2mim)
n=()

Sn

m.x

M-I
1 . .
= i E Sa (27 - g )explig,m)
n=0 [since, exp(2@im) = 1].
Thus, it can be written as

M-
Sna = o 2 SeGH- ) expligm). 26

n=0
So, from (25) and (26)
Sa(qn) =S5(27~q,). @n
Sa(gn)=Sa(27~g,). (28)
Similarly, Sp(qn)=S3(27 - gp), (29)
S[;(qna)=sﬁ(2n’qn)- (3()’

Again from (20)
Frx/i(qu )= Sy (qn )S/;(qu ).
So, using (28) and (29), (31) becomes :
Fop2r-q,)=5,(2n~ g, )SI}(ZII —q¢y) (3D

3nh

and, on the other hand. using (27) and (30), (31) becomes :
Fga2m—g,)=S3(27~ q,)S, (27~ ¢,). (33)

Using (32) and (33), the equation (20) becomes

i
H
v
§
}
H

Fup (2 =g,) = 53(q,)Su(q,). (34)
{ Now, comparing (20) (34),
Faﬂ(qn):: F[ia(zﬂ_qn)* (35)

"And for the diagonal structure factor, i.e., power spectrum

Foa(qy) = Foa 2 ~q,).

This is a symmetric function of g, with the centre ol
symmetry at g, = &. Therefore, if g, is plotted as a function of
g only half of the S(g,,) values arc independent and the rest is
just the mirror image of it.

306)

As a stands for any of the four nucleoudes (A, C, T, G)
in DNA, the power spectrum, also known as spectral density,
of a DNA sequency can be calculated by summing over the
four possible values for A. C, T and G as follows :

F(g,)= 2 Foua (g,

a=A.C.T.G

37

The power spectrum F(q,) is sometimes denoted by S(f).
where fis the frequency.

3.14. Ramdomness, algorithmic complexity, information
entropy and order :

The concept of randomness and order in scquences are
inversely related. The random sequence does not have any
order. In the ordered case the knowledge of somc ol the entrics
can dctermine acurately what the others are. This is not
possible for the random case. Most sequences that one finds
are somewhcre in between. They may have a certain degree of
randomness, or order. The question we address now is - how to
characterisc this amount of randomness {38]?

To begin let us think of a symbolic sequence of two
monomers A and B. How do we test for the randomness? The
first step would be to carry out the trequency test. If the
sequence is random, the proportion of A and B must be equal.
Thus if Ny (Np) is the number of A(B) in the sequence of N
entries

Na_Np
N N’

for the sequence 1o be random.
|

(38)

Even though this condition must be satisfied, i.c., it 1s
necessary, it does not assure the randomness of the scquence.
The scrics : ABABABABAB...does satisfy (30), but is not
random.
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The step next is to carry out the frequency test of words of
length two ie., in this case : AA, AB, BA and BB. These four

must appear in equal proportion. That is
L e Al o
t be satisfied. It is, once again, necessary that the random
soqueace must have (39), but (39) does not assure of

(39)

The step next is to form words of length : three. In this

cash there are 2} = 8 possibilities, they must all appear in

| proportion : the word of length four, 24 = 16 in number,

be in equal proportion. The words of length a, 2" in
number, must all be in equal proportions.

Curiously, even if all these frequency tests are carried out,
and all are satisfied, the series could still not be random. The
well known counter example in the Champ's series (named
after David Champemowne who first found it out), which
consist of ten monomers 0,1,2,3,4,5,6,7,8,9 in the sequence |
234567891011 1213 141516 ... In view, therefore,
randomness is difficult to define and test.

An alternate approch towards defining randomness and
(complexity) of sequence came from the theory of information
and algorithms, sometimes called the algorithmic information
theory. The definition of the randomness came in the sixties
by Kolmogorov (39], and Chaitin [40]. To generate the
random sequence, according to the hypothesis, requires
algorithm (i.e., program) that is as large as the sequence itself.
Stated differently, random sequences are incomprzssible in the
algorithmic sense.

While the definition of the random sequence from
the theory of algorithms is not particularly useful for our
purpose here, we show now that the theory of information,
the concepts of information entropy developed by Shannon,
does provide some measure of order and disorder in
sequences.

Before we get there, let us discuss the measure of
randomness and complexity of sequences following
algorithmic information theory. The degree of randomness,
or complexity, of the sequence may be measured in terms
of the length of the minimal algorithm needed to generate
the sequence. For the completely random sequence, the
length of the minimal program equals the length of the
sequence. On the other extreme are ordered "or less
complex sequences that may be generated by few bits of
algorithm,

Given general sequences of N bases, they may be
categorised in terms of their complexity. Thus one of these
may be complexity N-2, another of N-100, and so on. The
exact value of the complexity below which the series is no
longér random remains arbitrary. This uncertainty in
quantifing randomness (or complexity) implies that the
complexity of a sequence is roughly equal to the size of the
minimal algorithm. Consider all the series of size N. We

can plot number of sequences of complexity m aganist
n [n taking the maximum value of N]. It is clear that the
number of ordered sequences are few, the majority of them are
fairly random.

3.15. Information entropy :

If we toss a coin, there are two possible outcomes. When we
throw a die, the number of possible outcomes is six. This
number of possibilities, i.e., the available number of states, is
related to the Shannon information [41].
If R, denotes the number of outcomes, the Shannon
information entropy (SIE), denoted by /, is defined to satisfy
I be additive for independent events. Thus, if we have two

independent events with R, and R, possible states, the total
number of outcomes R = R;R,. The constraint of additivity of

I requires

I(R]R2)=1(R|)+I(R2) (40)

Thus, /(R) = K In (R). Where K is the normalisation facto
that we can fix conveniently.

Consider a binary sequence of 0 and 1 of N symbols. Let
us say N, of them are 0; N, and 1. In this casc, the number of
possible outcomes R, of a series of Ny zeroes and N, ones

clearly is

N
R= Nyt v “h

R denotes the number of independent messages that can be

sent using N zeroes and N, ones. The SIE, denoted / is just

the log of the available states. Thus,
I=KInR=K[InN! —InNy! —InN;!]. (42)

If we assume that N, Ny, and N, are large numbers, the
Stirling's approximation to the log of factorials of large
numbers may be used, i.e.

InN!=N(nN-=1). (43)
Thus, The SIE, in this approximation is

I=K[N(InN =1)= No(In Ny = 1) = N;(In N; = 1)], (44)
with Ny + N, = N.

It is covenient to define the average SIE as I/N, which,
in this Stirling approximation, becomes :

T L

NIyt yIy (45)

The quantities —NN-Q and -,H,— are the frequencies, [see (38)], or

proportions of zero and one. If we denote these proportions by
Po and p;, we get

i=—-K2p, Inp,,

where j takes values between 0 and 1.

(46)
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3.16. Determination of K :
For the general binary series of N bits, the possible outcomes

R is : R = 2N. If the SIE for the case is normalised to N,
we get

KIn2N =N, (CY))
Thus, K =logy, Rand I =log,; R 48)

3.17. Shannon information entropy tends towards extremum :

The SIE, we have seen, depends on the frequencies p;, (46).
Changes in p, lead to changes in SIE. SIE is related to the
numiber of available possibilities (or States). It has been
proposed that this number tends to be a maximum. Thus :

- p,Inp; 49)
is an cxtremum, subject to the constraint
2=l (50)

3.18. Shannon information entropy and order :

The SIE is a function of the frequencies or the properties of

the various bases. For a purcly random sequence all the
frequencies are equal, and the SIE becomes one. While for an
ordered scquence the SIE tends to zero. The SIE of sequences
range between these two extremes of zero and one, and provide
a measure of the randomness, complexity and order in the
sequence.

3.19. Spectral analysis of complexity, short and long range
order :

We have scen that the Shannon Information Entropy,
SIE, denoted by the symbol /, gives a mcasure of the degree
of complexity of the sequence. It turns out that a refined
version of this measurc, sometimes called the metric
cntropy, is given by

I= limn—)large {“%zpj(”) log pj(")} )

where p;(n) refers to words of length n and the subscript j goes
over the number of such words. For the binary scquence
clearly j takes 2" values.

(51

While this measure of complexity of the sequence has
some mathematical sense, in practice the n — large limit
makes this definition difficult to implement. It requires
measuring frequencies of large word lengths. This is usually
possible for sequences where the algorithm for its generation
is known, such as the Thue-Morse sequence. If on the other
hand, n is kept small, we arrive only at short range
correlations of the monomers. The long range order has to be
separately analysed.

3.20. Spectral measure of complexity and order :

The parallel approach to complexity or order comes from
spectral analysis. This measure, sometimes called the
structural entropy of the sequence, is given by

(52)

M-1
I =Y In Faq(qa).

n=l

where F 4, (20), are the diagonal elements of the structure
factors of the sequence. The structure factors do satisty some
constraints, namely the sum-rules (21) and (22).

The structural entropy, under condition (21,22), 1s
extremum. This extremisation leads to the solution
Fog(gn) =< Foy > INoOte < Foq >= Fuy ), for all ¢,. For the

,random sequence we expect no peak and troughs in the spectra,
‘z e., all the Fourier harmonics are of cqual strength. Thus, the
prcsenue of the sharp peaks or troughs in the spectra denotes
ideviation from randomness and they are, therefore, ordered
lscquences.

{  The logarithmic dependence of I, on Fyn(g,) makes it slow
.and insensitive. A more praclical measure is

Faq(gn (gn)
(X(I n
2 <F.,,> ln <Fpu>' (33)
For the complete sequence the structural entropy is
1= 1,. (54)

While the short range order generally leads to sharp peaks of
F oo and, therefore, can be read off from the power spectrum
(37), or the structural entropy / (53), the long range order
requires careful analysis.

3.21. The smoothed Fourier spectra and the long-range order :

The short range order leads to peaks in the power spectrum, or
the structural entropy, and are easy to identify; for the long-
ranged order special methods are necded. One such technique,
called the method of normalised sweep, often referred to as
Hurst's method, is now discussed [42].

At site m of sequence the smoothed out S, [see (2)] is
defined as follows :

_ |-
sn:,"n-o i da.m'

where m, clearly is the window over which the average is
being defined. The deviation from this average & is

(55)

m
S(m )= Y (Sam —Sa) (56)
where m lies between m and m + my + 1. The difference
between the maximum of &(6p,,) and the minimum of &
(6min) determine the sweep W :

Wolmm+mg -1)=6, (m,m) =8y, (m, i), (57)
the standard deviation
4 12
5= L S5 -5 (s8)
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If we define the normalized quantity W (norm) as
W,

Wa
we can determine an average <Wq(norm)> by varying the
chosen site m over the whole sequence. This same quantity for
the random sequence (of identical base composition) is denoted
by

(59

(Wq (random, norm)).
The difference between the logarithmic derivative, with respect
to the window size my, of <W, (norm) > and <W, (random,
norm) > determines the long-range order in the following way.
Let
din < W_(norm) > - dln < W, (random, norm) >

nmo
= Hqo(seq.mg) - Hg(random, mg)
=AH,(mg). (60)
K H,(seq.mg) > Hy(random, my ), (61)

the correlations are called persistent. They are antipersistent if
the reverse, namely

H,(seq.mg) < H,(random, mg ) (62)

is true.

The AH,(mg), [60] tends to zero above some myg,
called m,,,. if the correlations in the sequence are of the short
range. If AH,(my) is not zero as my is increased, we have
long-renge order.

4. Random walks, Fickian and fractional Brownian
diffusion

"The phenomenon of Brownian motion has been
known since the time that van Leeuwenhock first
peered through a microscope. Although it must
have been regarded as a nuisance by early
microscopists, Brownian motion has played a
significant role in the development of our
understanding of the physical world".

—George H Weiss

Deviations from randomness bring order. Randomness leads to
the characteristic distribution of the monomers (for the DNA
sequences the monomers are called the bases; for the protein
sequences the amino acid monomers are referred to as the
residues) over the polymer chain. The measurement of the
distribution of the bases characterise order and fluctuations in
the sequences. The random walk approach to sequences is to
study and model the distribution of the bases [43, 44].
Diffusion of the particles in a medium was reported by the
Dutch physician van Lecuwenhock, and was subsequently
rediscovered by Robert Brown. This diffusion process of
particles is known as Brownian motion. It turns out that the
normal diffusion process follow the distribution functions of

the random walker, i.e., Gaussian. Hence, all the moments of
the distribution are finite. In contrast, there are other diffusivc
processes, many encountered in Biophysical systems, wherc
the moments are not finite, these processes are, therefore,
anomalous.

The random walk, underneath its randomness, hides somc
subtle regularities. The reason for the regularities may be
ascribed to its fractal nature. For instance, the mean squarc
displacement follow a fairly regular pattern. Random walk is a
statistical fractal i.e., it is generated by an algorithm that has
a stochastic element in it. The regularities may be ascribed to
the fractal structure. The Gaussian distribution, so
characteristic of random walk, 1s scale invariant. This lack of
the scale point to its fractal nature The regularities, such as
the mean square displacement as a {unction of the number of
steps, are ascribed to fractal correlations. The deviations, for
sequences, from these regular relations are important
charactenistics.

4.1. Random walks :

The mathematical theory of the random walk is based on the
following simple steps. We illustrate these steps for the one
dimensional walker that can move right or left with known
probabilities. The steps are

(a) Find the probabilities the single step to right, and the
single step to left.

(b) Fourier transform the probabilitics to determine the
characteristic functions of the random walker.

(¢) For an arbitrary number n of steps, obtain the
characteristic function by raising the single step
characteristic function to the power n.

d All the mathematical properties, namely, moments, the
distributions etc. are derivable from the n-step
characteristic function.

Before we illustrate these mathcmatical steps in detail
let us, for motivation, work on the one dimensional
random walker.

For generality consider the random walker on the one

dimensional lattice; p the probability of the step to the right,
q the probability of the step to the left (Figure 12). Clearly

p+g=1. (63
If we consider the function [45]
pek + ge-tk, (64)

clearly, it corresponds to the Fourier transform of the single
step probability, namely,

f(x) = pd(x-1) + gé(x+1). (65)
Thus, [64] is the single step characteristic function. It is easy
to verify that the probability, after 2 steps, is given by

(pe'* + ge )2 = ple?it 4 g2e-2k +2pg  (66)
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i.c., the coefficient of e¥2% is the probability the walker is
at site $2; the 2pq gives the probability the walker back to the

-4 0 +1
(a)
q pqatpq p
il e
2 +]
tb)

Figure 12. Demonstration of a one-dimensional random walk. (s) If
a random walker starts at O site, after one step he will be either at +1 or
at -1. (b) After one step, the probability that he ends at site +1 is p and
that at site ~1 is q. After 2 steps, he might end at any of the sites +2, 0,
~2; therefore, the probability that he ends at +2 is pZ, that at 0 is 2pq,
and that at -2 is ¢2.

starting point, zero, after two steps. Generalizing to n steps,
the characteristic function becomes
(pe* +qe*)". 67

Thus, the probability the walker is at site +m(n2m 20)
is just the cofficient of e™* in the above characteristic
function. Since we have the. completeness of the e#
functions, namely,

1 ‘ikl
e '[: U-m) = §(1—m). (68)

we can obtain the probability P,(m), the random walker is at
site m after n steps as

P,(m)=21—‘- J: (pet +q¢-“)‘e“dk. (69)

Evaluating the integral, using (68), for the casc p=g "5‘-
we get

'(M)a(%).' [%(no-m)!j'f%(n-m)!] @

Note that when 7 is even (odd) m takes even (0dd) values.

Large a :
When the number of steps » is large, i.c., n))1, we use
Stirling formula

nl= mﬂ"; exP ("ﬂ).

in order o simplify (70).
If we take log, Stirling formula takes the form

)

ln(n)!:%ln(2mt)+n. In(n)-n. 72)
From (70), we get
InP,(m)=—n.In(2)+ In(n)!
—m_pem gy
In P,,(m)=-n.ln(2)+—;-ln(2nn)+n.ln(n)
—n-zIn [2;:(";"')]
(n+m), (n+m) (n+m)
i Rl b S
- 3 [oatm] o5m
(n-m) (n-m)
X ln-——i———+-——-—2——~. (74
Simplifying (74), we get
1 1 1( m? 2
In P,(m)=iln(—2—ﬁ)+7(%—-l;—). 75)
And from (75), we get
2l m: m?
P,(m)=(2nm) Z exp (-2-'17 - 571') (76)

Hence, as n)) 1, one obtains the gaussian form for P,(m) as

2

P.(m)= (2n7t)°5 exp an

4.2. Continuum limit :

If the lattice spacing is a and T denotes time interval between
the steps, then

X =ma (7%)
is the net displacement in time
t=nt. (719

The probability of displacement between x and x + dx in ime
t denoted P (x, 1) and satisfies

P(x, t)dx = P,(m)dm, (RO)
as n — oo, T~ oo and g — oo.
P(x, 1)dx = = m) 4 K1
Thus, (x,1) = g A0 | 5y | -dm (81)
-‘ JZ
Therefore, P(x,:)a(-i;tDt)’iexp(-mJ, (8

with D:: H
The probability distribution function, P (x, 1), tor the casc
P=q -i— in the continuum limit, is a Gaussian.
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The generalisation to the case of the d-dimensional lattice
with 2d possible step directions, to the nearest neighbour, is
straightforward. The single stcp characteristic function is

Pk =Y, (pie +ge ), 83)
=1
where ) (p, +¢,)=1
The n-step probability, as earlier, is
P,(k)=[P(0)]". (84)

The probability distribution function P,(x) in real space after
n steps, may be obtained from the Fourier transform of P, (k).

In the continuum limit, for the case when p, and g, all arc
cqual, we get the d-dimensional Gaussian function.

4.3, The chain rule :

It is to be noted that the probability distribution functions in
real space satisfy the chain rule

Pan(m)= Y P(m=m) P, (mo) (85)
my

and the law of conservation of probability z P,(m)=1.

In the Fourier transformed space, the characteristic functions
satisfy the chain rulc. Written out the chain rulc takes the
form

P(k,t)= P(k.ty)P(k,t—1). (86)

4.4. The moments of the distributions :

The moments denoted, 4, of the probability distributions are
averages of powers of displacements from the starting point.

My =(xt), (87)

where the brackets arounds x/ mean the average value of .
The average of a function g(x) for the probability distribution
P(x) is given by

(ex))= Jg(x)P(X)dx. (88)

Thus, W ={(xy= jx‘ P(x)dx. (89)

Since the characteristic function

P = [ Pryeinas = [ 3 X piy g

K
il k!
=Y S, (90)
thus, My =111 [coefficient of k! in P(k)]. on
Expressed diffcrently,

d'P(k)

=D 92)

k-0
For the Gaussian distribution, all moments are finite.

Clearly then the characteristic function of the single step
defincs all the important parameters of walk. Raised to power
n, it yields the n-step characteristic function. The Fourier
transform of the n-step characteristic function determines the
spatial distributions. Derivatives of the n-step-characteristic
function determine all the moments of the distributions.

4.5. Generating function of random walk :

The probability function P,(x), i.e., the distribution after n
steps, is rclated by the chain rule to the probability
distribution function of a single step P;(x) as follows :

P.()= [ Pix=x). Py (. ©3)
In terms of the characteristic function, we know that

P (k) =[P (0)]". (94)
Thus, P,(x)= -2-1771 [P O)]" e 2uk. (95)

The random-walk generating function G(x, z) determine many
important properties of the process, and is defined as

G(x,2)= Y 2P, (x). (96)
n=0
Using (94), we have
1 e~k 1
G(x, Z)='2—n J-r:mdk. (97)

Similar generating functions may be defined for walks on
periodic lattice points are at

l=la,. (98)
Periodicity of the lattice implies
b L, ...... )= +N, b, ... )
=(h,L+N, ... Y= (99)

where N is the period in each direction. The chain rule on the
lattice means

Poa(D=Y PU=-1)P, (1), (100)
2

where P, is the probability distribution function after n stcp

on the lattice. On the lattice the characteristic function are

defined with the periodic boundary conditions, i.e., the k are

restricted to k = 22 m/N. Thus, in analogy with (95), we
have

Py(l) =ﬁ17f2 [P(K)])" exp (=ik.l).  (101)

The lattice walk generating function is
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v-ll !

Gl.)= Y Pull).2" Nllzzl ky (102

4.6. The Central Limit theorem :

No matter what the moments of the distributions arc, provided
the first and the second moments are finite, these
distributions, to the first approximation, are Gaussian
asymptotically. This is the statement of the Central Limit
theorem.

Proof : We know, from the definition of the charactcristic
function

Pi(k)= J-e”‘ VP (x).dx

=J'(1+ikx-1/2.k2x2+...)P,(x).dx

=l+ik<x>-1/2.k2<x2>+..., (103)

where the brackets <> denote the averages values.

Note that P1(0) = 1 and P(k) < 1. For other values of k,
the Central Limit theorem approximates P (k) keeping only
the first two moments, which are assumed to be finite. The
integral (103) is thus assumed to be dominated by the region
of small k. In this approximation if <x2> is replaced by o2,
the variance, defined as

0 =<xl>-<x>?, (104)
0'2/\'2
then, P, (k) =cxpin| ik <x>-— 5 (105)
Taking the Fourier transform of (105), we get
] ~(x=n<x>)?
F) = — 106
Pa(x) o2 °xp 20%n t- (106)

This is the lowest order approximation as per the Central
i.imit theorem.

4.7. General solution of the chain rule :

The Central Limit theorem assumes the existence of the first
and the second moments of the probability distribution
functions. Provided these moments are finite, the distributions
in the asymptotic region become Gaussian.

Are there distribution functions that do not approach the
Central Limit? The answer to this question came from the
work of Paul Levy. Consider the characteristic function of the
form

fitk)=exp{-b;1 kie},

where 0<ax <2,
When a becomes 2, f{k) is the characteristic function of the
; (:aussnan distribution. For & < 2, some of the moments, in

pdrmular the second moment, is divergent. If we look at the
) . Probability distribution function in real space, i.e., the Fourier

(107)

transform of f, (k), only for a few values of a the analyue
form of the pdf exist. In general, the asympiotic structure,
i.e., the distribution at large x has the power law form

ab

f(x) ~1xl - pr(a)sinma /2. (108)

mlxla+
These distributions, with divergent sccond moments, do not
clearly approch the Central Limit. The Fourier Transform

exists in closed form only for a few special cases :
(1) For =1, we have the Cauchy distribution

1

———— 08
w(x2+b?) (109)

flx)=

(2) a=2 corresponds to the Gauss distribution and

3 a= —f;—lcads to Zolotarev distribution, which has the
form :
1 4 p2/3 2 173
I«(x)-\/.——AW || 773 ] xp{-5575  (110)

where W | (x) is a Whittaker function,
2'6
The distributions like (107) were first obtained by Cauchy.
That for a > 2, they are not positive definite was not
recognised by him. The constraint that the probability
distribution be positive for all x keeps o < 2.

4.8. Continuous time random walk (CTRW) :

If the time between sucessive steps are not fixed but vary
with a certain probability density we have continuous
time random walk. Mathematically, if T; is the time of the
i-th step, then [46]

t = TIH - Tv
is identically distributed indepcndent random variable.

If the probability density for the time interval between
sucessive steps is called I;(#), then /,(f) is the probability
density for the time at which the n-th step is taken. Clearly,
the chain rule yields :

r
I,,(t)=J.OI.(T).I,,_,(t-T)dT. (1)
Since the above is weitten in terms of integral over time,
the Laplace transformation are appropriate over the usual
Fourier decomposition. The Laplace transforms of 1,(r) is
denoted 1,(s) and it satisfies

In(s)":[ll(s)]"-

We want to calculate the probability density P (x,r) that
the walker is at x in time ¢. Let us denote by J(7) the
probability that the time between successive steps exceed or
equal ¢, then

(112)
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P(x,t):Zp,,(x)ﬂl,,(T)J(t— TdT.  (113)
n=0

The Laplace transform of J(t) is :
1-1(s)

uw=j7"mjjmmwe: (114)
(4] (]
Thus, if P(x.s) is the Laplace transform of P(x,?), then
1—-14,(s)
WXJ)=——ﬁ——}EpAXLH%ﬂ. (115)

n-0

Comparing with (96), we find that the form is like that of the
generating function. The z which did not appear to have any
physical meaning in now related to the waiting time
distribution. Thus,

l,—lt \

o l“’l(“‘)J’
Plx,s)= 27s 1 - p(k)(s)’
just as in (97).
We can use the expression above that does not depend on the

structure of P(x) but only on course properties such as the
moments.

(116)

4.9. Diffusion-Fickian and fractional Brownian :
The Chain rule (85) is fundamental to the problem of random

walk. Under certain assumpations, this rule

4o
P(x)= _ﬁ..(.\'—,v).p(y).dy (17

may be written as a differential cquation of the probability
functions.

Suppose that the steps are taken at regular, small time
intervals AT. The walker has taken a large number n of step
so that

nAT =1 (118)
is finite. If we expand P, (x), we have
PIHI(*‘):P(J")'*'A’-'{ZP—((;MA (119)
t
If the jumps are in small steps, then
—y)= _yGpan) 1, 9%p(x)
Pa(x-y)= Plx,) - y==2=d gyt =™ (120)

Assume that the moments of p(x) are of the following type
l 400 l 4‘0‘5,
ﬁjxp(x).dx=v; mjx~p(x).dx=0; (121

the other higher moments are negligibly small.

For the case where the probability of walk to the left and
right are identical, the first moment, proportional to v, is also
zero. Thus the Chain rule leads to the simple differential form
for p(x,1)

If we compare with the usual Brownian diffusion, we recove
an identical equation for the density distribution. The usual
diffusion, (sometimes referred to as the normal diffussion, o
Fickian diffusion) is governed by the Fick's law on the density
distribution.

J=-DV,, (123)
supplemented by the equation of continuity

dp _
-aT'f'V..I—-O

where, the current density J is given by

(124)

J=p.v,, (125)

v, being the drift velocity.
Putting the above two eqns. together, we get

P_pdp

ot ox?
Thus, the density distribution function for normal diftusion
has the same form as the probability distribution when the
first moment vanish, the second moment is finite, the highe
moments negligible. The solution of (126) gives usual
Gaussian Function

(120)

Px,n)= -,—cxpl ~—‘1£[-)7:| (127)

(47h1)2
Comparing with (82), we have the usual random walk
distribution excecuted by Brownian motion. In this case the
second moments, as a function of the number, n, ol steps.
goes as
<x> ~n. (128
The normal Brownian motion is characterised by the above
scaling behaviour of the 2nd moment. If we write
(129)
H, the Hurst index, is 1/2 for normal diffusion.

What happens if the second moment is not finite. The
sccond moment is related to the correlation function K, as

{ '
<xzu)><wajdﬂKuﬂ. (130)
0

Thus, the finiteness, or the divergence of thc second moment
is related to how the correlations behave as a function of
distance. If the correlations do not fall rapidly, and the integral
on the r.h.s. of (130) is not convergent, the second moment
diverges. This brings us to the Levy type probability
distribution. These are allowed solutions of the Chain rule. In
this case, the <x2> goes as

<x!> ~ ¥ (13n
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where H differs from % The case where the Hurst index

differs from %- is called the Fractional Brownian Motion

(FBM).

5. Measurements on the DNA : order, fluctuations
and modelling

"The wonderful features which are constantly
revealed in physiological investigations and differ
so strikingly from what is known of inorganic

matter, have led many biologists to doubt that a -
real understanding of the nature of life is possible &

on a purely physical basis... I think that we all
agree with Newton that the real basis of science
is the conviction that Nature under the same
conditions will always exhibit the same

e b g ey Tt £

regularities. Therefore, if we were able to push .
the analysis of the mechanisms of the living .

organisms as far as that of atomic phenomena, we
should scarcely expect to find any features
differing from the properties of inorganic matter".

—Niels Bohr

We have seen in Chapter 1 tha the DNA, the long chain
of biopolymer, carries information from one generation to
the text. These biopolymers synthesize proteins necessary for
living. They are made of monomers denoted by A, T, G and
C.If the sequence of the monomers in one of the strands of

040  0.60
frequency(f)

Figure 13(a). Frequency (f) of nucleotides is plotted against Power
Spectrum, S(f). The peak at { = 1/3 appears 10 be the maximam one for the
exons of different genes; while for the respective introns, no such peak at f
= 173 is noted. This figure shows the exons of alpha-giobin gene from goat
(WW!).
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Figure 13(b). Frequency (f) of nucleotides 1s plotted against Power
Spectrum, S(f). The peak at f = 1/3 appears to be the maximum one for the
exons of different genes; while for the respective introns, no such peak at |
= 1/3 15 noted. This figure shows the exons of alpha-globin gene from Horse
(GenBank M17902).
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Figure 13(c). Frequency (f) of nucleotides is plotied against Power
Spectrum, S(f). The peak at f = 1/3 appears to be the maximum one for the
exons of different genes; while for the respective introns, no such peak at f
= 173 is noted. This figurc shows the exons of alpha-globin gene from
Rhesus Moakey (GenBank J04495).

the polymers is known, the sequence in the other strand is
obtained by replacing A by T, and G by C, or vice versa. The
order of the sequence of these four monomers determine all the
information there is in the DNA. The sequences, by
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convention, are given for the non-template strand from the 5'
to the 3’ direction.
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Figure 13(d). Frequency (f) of nucleotides s plotted against Power
Spectrum, S(f). The peak at f = 1/3 appears to be the maximum one for the
exons of different genes; while for the respective introns, no such peak at f
= 173 is noted. This figure shows the introns of alpha-globin gene from
Xenopus (GenBank X14260).
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Figure 13(e). Frequency (f) of nucleotides is plotted against Power
Spectrum, S(f). The peak at f = 1/3 appears to be the maximum one for the
exons of different genes; while for the respective introns, no such peak at f
= 1/3 is noted. This figure shows the introns of alpha-globin gene from
Chicken (GenBank V00140).

The sequences may be roughly divided into three distinct
parts. First there are the genes that code for proteins, and there
is the intergenic DNA. Inside the genes the sequences divide

into the exons and the introns. The exons are the ones coding
for proteins, the introns come in between  the exo - regions
For prokaryotic organisms (roughly the lower organisms) the
DNA sequences, almost in its entirety, code for proteins. The
cukaryotic genes, on the other hand, consist mostly of the
intergenic regions and the introns. The protein coding parts,
the exons, are few and far between.
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Figure 13(f). Frequency (f) of nucleotides 1s plotted against Power
Spectrum, S(f) The peak at f = 1/3 appears to be the maximum one for the
exons of different genes; while for the respective introns, no such peak at |
= 1/3 is noted This figure shows the introns of alpha-globin gene from
Orangutan (GenBank M12157).

5.1. Short range order— the peak atf = 1/3 :

Analysis of periodicities, or short-range correlations, are made
via Fourier spectrum analysis (2). In the protein coding
regions the triplet codons are arranged one after another leading
to the important three periodicity [47]. In the power spectrum
(37) of the sequence, we expect therefore to see peaks at 1/3
frequency. On the other hand for the introris and the intergenic
regions no such peaks are expected. Figure 13 gives us the
power spectrum of exons and introns. The f = 1/3 pcak
distinguishes the exon regions from the rest of the sequence.
Identification of protein coding regions for long sequences is
an important exercise for the DNA sequences. Clearly the
Fourier spectrum, or more precisely the peak at f = 1/3, can
distinguish between the coding and the non-coding regions
[48]. Such a program has some difficulty in identifying the
beginning or the end of the exon region. The beginning of the
exon and the end of the exon may, however, be identified from
the start and the stop codons. It is to be remembered that therc
are pseudogenes that have f = 1/3 peak, but do not code for
proteins.

For the exon regions interspersed between introns the
problem of identifying the beginning and the end remains. For
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these segments there are no start codons, nor the stop codons.
The f= 1/3 pcak analysis for these regions merely provide the
rough location of the exon segment. These exon regions may
he identified by chemical identification of the corresponding
m-RNA (see Chapter 1).

5.2. Other periodicities :

Aside from the usual 3 period corresponding to the codons,
therc are other important periodicities reported for genomes of
organisms. Some of these observations are summarized in

Table 9 [49].

‘Table 9. The power spectrum, upon increased averaging, gives rise to
distinguishing peaks at different periods in different categones of living
o1 gansms

Category Peaks at Period (7= 1/f)

o 3 6 9
Pnimate present - present
Rodent present - -
Maminal present -
Vertebrate present - present
Invertebrate present present present
Plant present - -
Bactena present -
Virus present - -
(hganelle present - -
Bactenophage present - -

5 4. Repetitive segments :

For higher cukaryotes the exons arec a small part of the
sequence. This coding region may be about 5% of the length.
When we take account of the mtrons and other segments (such
as the promoters, leaders, trailers and other regulatory sites)
we arc still left with about 80% of the scquence that remains
unused. For lower cukaryotes the complete sequence, or most
of 1t, are used.

It is now known that a good part of the DNA are made up
of repetitive segments, i.e. scgments, almost identical to one
another, repeated many times over the sequence. These
repetitive scgments fall into two types :

(i) Highly repetitive DNA : These may be repcated several
hundred to several million times in the sequence.

(ii) Moderately repetitive DNA : These are repeated upto
several hundred times.

Indced, the repetition frequency is almost continuous.
Some of these repeated sequences do have functions. For the
others no functions have been discovered so far. The Fourier
spectrum can potentially identify the repetition periods and the
frequencies.

To summarize, the DNA of higher cukaryotes contains
subsequences that repeat as many as a million times in
identical or very similar copies.

27

5.4. The mosaic model :

The mosaic model of genetic structure says that the sequences
consist of more of less independent units stretching roughly
over thousand bases. The protein coding sequences have
lengths of that order. Thc model simply says that the
composition of the mosaic units can vary from one to anothe
giving rise to a deviation from random correlations amongst
the mosaic units [50).

5.5. The scale dependence of the f = 1/3 peak :

: It may be interesting to recall the scale dependence of the thiee

! periodicity for some well known sequence such as the Thue

14

3

§Morse (TM). The TM sequence is generated by the
1 substitutions [51] :

’ A ->AB,
B~ > BA.

It is well studied that three periodicity does play a domnant
role in the structure of the TM sequence.

The structure factor Fu, in TM scquence at the pomt
4 = 27/3 may be studied as follows. Take a window of size |
and measure F,, (g = 21/3). Increase the window size and find
how F4,4 scales with the window size 1. The results, derived
theoretically, yield :

F,M(q='2~T”) I-a, (132)

In3

where =2~ TVA therefore, 1 - o =~ (.585.

In practice, it is convenient to study the normalized
structure factors (20) defined as

Fap
FN()R = __A ,

N (133)
AA

where F,4, the average value, is defined in (22) [52].

Similar analyses for thc DNA sequences for the fou
bascs A, T. G and C are shown in Figurc 14. The monotonic
forms of the curves point towards a long-range organisation in
these scquences.

5.6. Wee frequency enhancement :

The analysis of the diagonal structure factors, £,,(q,) of
the spectra, reveal interesting structures. Some of these
diagonal clements, in the wee region, i.e. the low frequency
region, appear to be well above, almost 10 times, the mean
level. This is generally not truc for all thc diagonal
elements, but only for some of them. This result clearly
hints towards an overall long-range organisation in the
sequences [53].
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Figure 14, The normalised structure factors (22, 133) for A, C, G and T,
calculated from the genome of bacteriophage PHIX174, are plotted against
window size L.

The structural entropies of the sequences have been studied
as well. They indicate a clear deviation from the purely
random order. The distribution of the structural harmonics
may be compared with the expected distribution, for the same
nucleotide composition, of a random sequence. For the random
sequence the distributions are of the Rayleigh type. They are
supposed to fall off exponentially. In the real sequences,
however, the exponential fall-off is not observed.

5.7. The Hurst analysis :

The Hurst Analysis, presented in (55-62), has been over the
DNA sequences. The results are presented in Figure 15. The
deviations of the measurements from random realizations of
identical composition point towards a long-range order in the

DNA sequences [53).
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Figure 15. The Hurst's curves (55-62) for A, C, G and T in the genome of
bacteriophage PHIX174.

3.8. The 1/f behaviour of the power spectrum :

The long-rang behaviour of correlations, K, are directly related
to the low-frequency dependence of the power-spectrum
(sometimes also referred to as the spectral density), denoted
here by (7). If the power-spectrum is given as (37) :

F(q,)=S(f)~—7. (134

f
with B > 0, then the corresponding correlations arc given as
[49,54],

K== (135)
The Band v are related as (23)
v=1-4. (136)

The case of B = 0 gives a random sequence. Since v ranges
between 0 and 1, it is not possible to define a range for the
correlation function. It is non-zero for all x.

It is important in the analysis of 1/f spectra to take out
the white-noise. This may be done by comparing the sequence
with the decimal figures of 7 of of same length [49]. The
subtraction of the white-noise remains somewhat ambiguous
[55]. and we shall discuss this point subsequently. The results
of the analysis is summarized in Table 12.

5.9. The DNA walk :

The DNA walk is an alternate approach towards understanding
the organisation of the bases in the DNA sequences. While the
short-range periodicities are most clearly appreciated in the
Fourier spectra, the longer range correlations amongst the
bases and their distributions become transparent in the walk
models (See Chapter 3).

The basic idea is to associate the sequence with walk. The
ways to do it are many and the choice depends on what
features of the sequence one is interested in studying. For the
DNA sequences consisting of 4 bases, we illustrate below
some possible choices.

(i) One-dimensional Walk : There are many possibilitics
here. Any two of the bases could be taken to signal the
walk step of one step, +1, to the right; the other two,
the walk step -1 to the left.

The most popular of these choices is the purine-
pyrimidine (PuPy) [56] walk where one moves in opposite
directions depending on purine (A,G) or pyrimidine (C,T). We
shall discuss the PuPy walk in some detail in the ensuing
pages.

(i) Two-dimensional Walk : Once again there are many
choices here. Any two of the four bases may move
us in +1 step along the x-axis; the other two
could be chosen to move us +1 step along the
y-axis. Since the two-dimensional walk is but a
minor variant of the walk in 1-d we do not consider it
here.

(iii) Four-dimensional Walk : The walk in 4-d is unique
and directed. Here the A, C, G and T are all
independent axes along which the sequence makes the
walk. A moves +1 in the A direction, C moves +!
in the C direction, G moves +1 in the G direction
and T moves +1 in the T direction. The sequence
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1s uniquely mapped to the walk, unlike in the
lower dimenstons where the mapping is not unique

(49.551.

We shall discuss this 4-d walk as it is of intcrest to us.
Since it treats all the bases independently, it does not
yntroduce spurious corrclations unlike in the lower

dimensional walks.

5.10. Perspective on the DNA walk :
The basic strategy of the walk models may be summarized as
follows :

(i) Plot the walk and mecasure the averages of quantities
such as moments, displacements efc. and find out how
they scale with the number of steps.

(i) Compare the scaling behaviour to that of random walk
(13n.

If there are significant deviations in scaling there cxists
correlations in the sequences.

(iit)

It is necessary to find out if the scaling propertics
change with the number of steps. Such changes would
imply existence of hidden scales in the sequences. They
imply deviations from purely fractal behaviour.

(iv)

(v) Characterisc the correlations and the deviations from
randomness and fractality. Find out how these relate to
the physiological characteristics of the organisms.

In practice therc are several pitfalls that one has to look
out for. These arc

(a) The proportions of A, C, G and T in most sequences
are different. Thus, while comparing with the “random"
sequence, the randomncess needs to be clearly defined.
The differences in the proportions of the bascs arc
referred to as the strand bias.

(b) All the sequences we are dealing with have finite
lengths. The cxon sequences are typically of length of
the order of few hundred to a thousand. The ctfect of
the finite size needs to be carefully analysed.

(c) The repetitions, the mosaic structure, sometimes also
called the "patchiness"”, of the scquences need to be
carefully kept in mind in investigating the nature of
the corrclations.

The walk is particularly suited for investigation of long-
range correlations that may not appear as peaks in spectral
analysis. These long-ranged organisation may not be due to
the repetitions in the DNA sequences. The plots of walks, the
analysis of the moments, cumulants, and their scaling
properties reveal the existence of hidden scales of the
sequences.

5.11. The one-dimensional PuPy walk :

Thc purine-pyrimidine (PuPy) walk has been the subject of
major investigation over the last few years. The reasons for

this focus on the PuPy walk is mainly because of its simple
mathcmatical framework. If the DNA scquences have to be
modelled on 1-d walk there are many possible chowces, the
PuPy walk is really as good as any (55).

The basic steps of the PuPy walk arc as follows — The
walker steps right, u(i) = +1, if pyrimidine (C or T) occurs at
the i-th position along the DNA chain; the step is to the left.
u(i) = -1, if purine (A or G). The positive steps correspond to
concentration of pyrimidines; the negative steps to purines.

The statistical quantity of interest for this 1s the root mean

square fluctuation from the average displacement. The quanuty
FK() is thus

Fi(l)=< Ax(1)? > - < Ax(1) >2. (137)

/
where Ax(l)= x(ly+1)=x(ly) and x()) = Zu(i).

1-0

The averaging <> indicates that /j has to be varied through
the sequence.

The mecan square fluctuations F(/) may be related to the
correlation functions defined in (18). The correlations above
mean are defined as

K(l)= -A'?Zu(t(,)uuo +1)- (—K'd-zu(lﬂ )]

The relation is

! i
F2(h=YY KG-D.

1=1 =l

7

(138)

(139)

The measurements of F(l) can disunguish between the
following possibilities :

(1) If thc bases are randomly arranged, K(/), the
correlations, are zero except for K(0), which is equal to
1. Thus

FX(l)~1,

as expected of the random sequence.

(140)

(ii) If there are short-ranged correlations extending upto a
length of €, then

K(l)~cxp]—él. (141

However, asymptotically i.c. as [ — oo, the corrclations are
random; thus

Fiy~1,
for large [» &.

(iii) When there are no characteristic length in the walk, the
correlations K(1) are likely to be power laws, and the
F2(I) also follows the power law bchaviour (131)

F(ly~1e,

(142)

(143)
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where « is deviated from 1/2. Note the value of o = 1/2
characterizes Brownian motion, t.e. random walk.

The results of the analysis of the scaling of F(I) vary for
the exons and the introns. For the exon rcgions, a is found to
be near to 1/2. For the introns there is a significant difference,
adiffers from 1/2.

The data for the introns and intergenic regions show that o
is substantially morc than 1/2, indicating the long-rangc
correlations in these regions. For exon regions the log-log
plot is not lincar; the slope changes from 0.5 for small 1 to |
for large 1. The exons are interrupted by long intron regions.
If the fluctuation analysis is confined to a single patch of the
cxon region (as opposed to splicing the patches together to
form the complete gene or coding region), the value for o is
near (o (.5. The value varies from one protein coding region
to another. This indicates that the exon patches, despite the
short-ranged periodicities, have somewhat lower longer range
correlations, compared to the introns, upto the size of the
patch,

The results of the PuPy walk has (o be intcrpreted with
caution. The rcasons are :

(i) The long-range corrclation studies from the power
spectrum give somewhat different results. They show

?!p" behaviour for the power spectrum [49).

(i) The components of the correlation matrix Ky obtained
in the PuPy and the power spectrum are differcnt.

What is the meaning of the long-range order? Docs it have
some physical implications in terms of obscrvable
biophysical effects?

An independent check on the order in the coding regions
came from the GRAIL ncural network approach. The GRAIL
neural algorithm is trained to identify the protein coding
regions in the DNA sequences. The GRAIL was fed random
uncorrclated sequences generated artificially. It was also fed
artificially produced long-ranged ordered scquences of sizes of
about 10° bases. Amongst the random sequences several were
identified by GRAIL as exon sequences. A less number,
amongst the ordered ones, were picked up by GRAIL as
candidate exons [58].

The value of the exponent o may be caiculated for small
windows of nucleotide bases. This is done in an approach
called DFA (detrended fluctuation analysis). The minimum
value of & usually falls on the coding regions; the maxima on
the introns. Bascd on these results software has been developed
that identifies the approximate region of the exons as opposed
to the introns. This software has had reasonable success.

The intron regions contain tandem repeats such as
AAAAAA. Such repeats do not occur in the coding regions.
This may be one of the reasons for the organisational
differcnce between them. Yet, as we move away by about
1000 bases, which is typical size of the protein coding regions

of a gene, the F(I) typically undergo crossovers, indicating
changes in the proportions of the four nucleotides in (b,
scquences. Beyond these approximate 1000 bascs, the
existence of the long-range order in cxons secms to be
indicated in some mescarements, Thus upto about 1000 bascs,
that is within one protcin coding region, the arrangement 1«
almost random.

5.12. Detrended fluctuations :

In the analysis of long-range order, it is important 1o
chminate the effects of hidden underlying bias in the
sequences. For the PuPy the major bias 1s that purine and
pyrimidine do not occur in equal proportions in the sequences
This hidden bias of compositional complexity needs to he
climinated to establish the existence of the real long-range
order [59].

The effect of different G + C content, i.e. purine density
at different parts of the scquence may be climinated by
detrending.

For this purposc the DNA, sequence is divided into
smaller segments. The total number of symbols M, divided

. M
now into - subscquences cach of length I, The subsequence:
arc lebeled by the index s. The bias in the box s 1s

sl

R,(x):-;— x(n). (14
n=(v=1)l+1
The detrended variable x;(n, s) is defined as
xp(n,s)=x(n)—nBy(s) for (s-NHI+1<n<sl. (145
The variance over the segment is
crz(s,l)=% ‘2’ xj(n.s). (1461

n=(s~ )1+l
. .,2 . M
The fluctuation F7(!) is the average of over 7~ segments and

depends on the scgment size /. Once again, from the behaviow
of F}(l), namely

Fi()~ 21 (147

allows the evalution of H. If H is close to 0.5 we have
random walk. For H > 0.5 we have long-range correlated
sequences.

For introns H has been shown to exceed 0.5. Fo
intronless scquences H is near 0.5 below a certam
characteristic length, and exceeds 0.5 for larger lengths [60].

5.13. Four-dimensional walk :

The walk in 4-d treats all the bases A, T. G and C
independently and, therefore, does not introduce spurious
corrclations in the system. Since the bases A, T, G and C
signal +1 step move in the A, T, G and C directions, this is a
directed walk that never turns back [55].
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The characteristic function of a single step is (83) :
Pi(k) = pe® + pre® 4 poed + poette, (148)

Y " Y T
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.

Figure 16. Window size (1) is plotted against corresponding average
second moment (47) for the beta-globin geae from Xenopus (GenBank
Y00501). We have two curves, one for the experimental values while the
other for the theoretical values drawn from the analytical calculations for a
sequence with same base composition. The (al) shows the plots of line
connecting points for the cxons; here solid circle (@) symbol represents the
theoretical values and hollow triangle (A) symbol represents the
cxperimental values.
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Figure 16. Window size (1) is plotted against corresponding average
second moment (u3) for the beta-globin gene from Xenopus (GenBank
Y00501). We have two curves, one for the experimental values while the
other for the theoretical values drawn from the analytical calculations for a
sequence with same base composition. The (a2) shows the power law fitted
plots for parts of the exons; here the solid lines represent the theoretical
curves and the dashed lines represent the experimental curves. In cach
case, the theoretical curve shows the moments for the random sequence
with base composition (i.e. the proportion of A, C, G, T) same as the DNA
sequence. The deviation of the experimental curve from the theoretical one
indicates correlation.

where p; is the probability of a step in the i-th dircction.
Using the law of convolution (84), the characteristic function
for n steps is
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Figure 16. Window size (1) is plotted against corresponding average
second moment (u3) for the beta-globin gene from Xenopus (GenBank
Y00501). We have two curves, one for the experimental values while the
other for the theoretical values drawn from the analytical calculations for a
sequence with same base composition. The (bl) shows the plots of hne
connecting points for the introns; here solid circle (@) symbol represents the
theoretical values and hollow triangle (A) symbol represents the
experimental values.
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Figure 16. Window size (1) is plotted against corresponding average
second moment (y2) for the beta-globin gene from Xenopus (GenBank
Y00501). We have two curves, one for the experimental values while the
other for the theoretical values drawn from the analytical calculations for a
sequence with same base composition. The (b2) shows the power law fitted
plots for parts of the introns; here the solid lines represent the theoretical
curves and the dashed lines represent the experimental curves. In each
case, the theoretical curve shows the moments for the random sequence
with base composition (i.e. the proportion of A, C, G, T) same as the DNA
sequence. The deviation of the experimental curve from the theoretical one
indicates correlation.
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P,(k)=(pae™ + pre™ + pge™s +pcet )", (149)
The probabilitics p,. py. pg. pc arc obtainable for the
sequence. They arc the proportions of A, T, G and C
respectively. Thus;

_ No. of times the symbol i appears in the sequence

! Total no. of bases
The moments of the distributions are calculable from the
characteristic function of n-steps, (91-92). The first and
second moments arc given by

uy=l=1.pf +1.p.

(150)

pa =I[(L=1)(pj + p} + &+ p2)+1]). (15D

where [ stands for the window size.

Figure 16 shows the typical plot of y, as a function of the
window size . The deviation from the theoretical cxpression
(150-151) points to the internal organisation in the DNA
sequences.

The Figure 16 shows that for small values of the scale the
sequences may be steeper than the theoretical prediction. The
second moment

py =I[(0=1(p} + pp+ pE + pE)+1],  (152)

for a window of size [ is just the square of the vector distance
between the end points. This is averaged over the whole
sequence. Thus a steeper slope indicates an increasc in
persistence. These persistence may continue through the
sequence, Or may crossover into antipersistence at a higher
scale. Figure 17 illustrates the mecaning of persistent/
antipersistent behaviour.

We look at the local values of the sccond moment as we
move along the scquence, the typical behaviour is illustrated
in Figure 18. The tandem repeats lead to sudden hugh rise in
the local moments. Otherwise, they arc distributed as shown
in Figure 18.

5.14. Base organisation in DNA :

To summarise the results of the measurcments on the DNA
sequences, we have :

(i) Introns and Intergenc Regions : No universal short-
range periodicity. Existence of the long-range order is
noted. The autocorrelations for these segments show an
inverse power law decay. The typical form of this decay
has the structure

1
Km,(x)~7,-. (15"‘)
(i1) Exons : For these segments there is the short-ranged

periodicity typified by the sharp peak of the power
spectrum at f = 1/3. This is presumably due to the
triplet codons sitting along the exon segments.

As we go to distances larger than 3 bases, the exon bases
enter random fluctuations with no significant correlations.
Further out, that is, as we move from one gene onto the next,

there begins, once again, an inverse power law structure of the
autocorrelations.

The above characterisation of the various segments of the
DNA points towards the complexity of the sequences. As the
sequences are subdivided into segmcents these segments do not
show randomness. The sequences behave somewhat differently
at diffcrent scales [see Chapter 2].

There are some indications that the long-range
behaviour, in particular thc exponent B in (134), may be
characteristic of phyla to which the DNA belongs [49)

(See Table 10).

Table 10. The vanation among different categories of living organisms
the value of 3, averaged over a number of sequences from each category

Category Avg [ Value
Primate 0.77
Rodent 0.81
Mammal 084
Vertebrate 0.87
Invertebrate I
Plant 0.86
Virus 0382
Organelle 0.71
Bacteria 116
Bacteriophage 102

The long-range order, i.¢. non-zero values of B in (134),
is sensitive 1o the mecthod of analysis. Clearly log S(/)
vs log fin (134) when plotted ought to give rise to a straight
line with slope of —B. In practicc the above plot is rarcly
linear, The subtraction of white noise may takc the plot a bit
more linear. A linear fit in the low frequency region can then
give us the value of 8. However, there is no conscnsus on the
frequency region where the fit is (o be carried out. Further,
the data for B, presented in the literature [49,56], averages
over phyla. The variations in B from the averages appear as
meaningful as the averages themselves. Morce important is to
find an unambiguous method for determining 8. We note here
that the averaged B valucs obtained for the sequences from
Genbank arc [56] :

(i) for exons: B=0.00 £ 0.04,
(ii) for non-coding regions : B=0.16 £ 0.05.

5.15. DNA modelling :

The results above place constraints on modelling of the DNA
sequences. The evolution of the sequences as we go from the
prokaryotes to the eukaryotes requires carcful understanding.
The modelling has to account for this evolutionary pattern and
identify the underlying physical laws.
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Broadly there have been three different approches to
the DNA modellings. All of these models carry out sequence
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Figure 17. The second moment, g (152), for the persistent nature of
A or C (i.e. one A or C is followed by another A or C respectively),
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Figure 18. The second moment is plotted against the number of windows for
lﬂmmm4.mmnlmdhmuxdinmmﬁonof
the a-globin gene from Xenopus (GeaBank X14260).

mainpulations, i.e., update a sequence by means of some
rules.

(I) Markov chain models

Here the assumption is that the last base “emits" the one that
follows in the chain. In more sophisticated versions of these
mode]s the last n bases "emit" the base that follows, the so
called n-step Markov process.

The difficulty in the Markov Chain models is that they
rarely have long-range order that is so characteristic of the

DNA sequences. The inverse power law of correlations are
difficult to generate.

(II) Cellular automata approach

Here local law of updating is proposed that is supposed to
mimic the rules of the DNA mutations. Once again, starting
from the local updating rules the long-range correlation
structure shows, usually the exponential fall off, as opposed
to the inverse power-law behaviour [61].

There are some candidate cellular automata models that do
thave possibilities of inverse power law correlations [62].
“These propagate local effects with a low randomness level.
{These "edge-of-chaos" models have been studied widely. There
%llso exist models of cellular automatas with solitonic
wconfigurations and sometimes leads to 1/f type spectrum.
%’l‘hcsc topics take us beyond the scope of the present review,

{III) Inflationary models

These are models that generate the sequence starting from a
single or a few bases. We have touched upon the well known
Thue-Morse sequence in our discussions of the f = 1/3 peak.
There are methods of sequence generation that provide the
correlation structure shown in the DNA sequences. Here we
discuss some of these inflationary models.

(i) Expansion-modification system [63]

The expansion modification is an algorithm to generate a
sequence that has long-range inverse power law correlation of
symbols. In its simplest form the algorithm is :

Step 1 0
Step i+ 1 11 0 00 1
Probability 1-p P 1-p P

Clearly the algorithm generates a binary sequence of 0 and 1.
The algorithm, stated in words, changes 1 to 11 with
probability 1-p, or to 0 with probability p. Similarly 0
is changed to 00 with probability 1-p, or to 1 with
probability p.

When p is small, the sequence generated show a lﬁ
power spectrum with f close to 1. By changing the value off p
we can get other values of B. Thus by choosing appropriately,
it is possible to maintain the value of B of the starting
sequence.

It is known that 3 depends on the category of the organism
as shown from the analysis of the Genebank data. The control
parameter p, sometimes called the mutation rate, in that sense,
signifies the differences in the evolution of gene categories.

(ii) Insertion models [64]

The "model" of evolution by "mutation" of bases as proposed
in the expansion modification system fails to address the issue
of repetitions observed in the DNA sequences. These
repetitions suggest that the dominant mechanism of evolution
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could be the process of duplication of segments, followed by
the insertions of these duplicates at various sites along the
sequence. The general observation is that the duplicates may
undergo some mutations, while the original segment (from
which the duplicates are made) remain unmutated and in tact.
In other words, the working original is left untouched, while
the duplicated copies are subject to evolutionary process. In
the Insertion models the idea is to begin with scgments that
are repeated many times 1n the DNA sequences. Take for
instance the LINED segment which has a length of 6139
bases. This segment codes for protein. In the human genome
the LINEI or its vanations appear about 107000 times. 1f we
look at the genome of Chimpanzce, which 1s quite close to
the humans in the evolutionary scale, the LINEI or its
fragments appear 51000 times. Thus the differcnce in the
LINEI content between human and Chimpanzec is large. This
difference has come about in a short time in the scale of
evolution.

Since the LINEI is a protein coding segment the
insertions of LINE1 so many times in the sequence imply the
followings :

1. The corresponding protein is required in large quantities
for the biological systems such as humans and
Chimpanzee. Chearly humans require morc of this
protein.

2. Since these are coding regions, the bases aic arranged in
more-or-less random order. The fluctuations F(/) scalc as

F2 ()~ vz, (154)

There are sinular other segments which repeat over the

sequences. ALU for instance is a protein coding stretch of 290
bases that is found several times in the sequences.

The idea of inscrtion model 15 to develop a complex

sequence by insertions of simple random segments. The
algorithm is summarized in the following two assumptions :

(a) The probability of finding a repeated segment of length
L in the sequence goes as

P(l) ~ 7;7 (155)

where u is an adjustable parameter that is related to the
exponent of the inverse power law of the long-range order.

(b) The segments do not have any long-range order in
them. These parts may have short range order or
periodicities and may be modellcd by n-step-Markov
processes, with small values of .

This insertion model of evolution leads to the Levy walk
that has inverse power law correlations in the long-range. The
correlation exponent a is related to the control parameter y as
follows :

a=1forus2
=2-4/2 2<u<i

=1/2 u23. (156)

Thus the case of u between 2 and 3 is of interest. In thig
case the distribution P({) has a diverging second momen|
The first moment, however, is finite. Note that the
distribution P(l), given in (155) does not have any special
length scale.

As I increases, the fluctuations F(I). in the log-log plot of
F(l) vs [, increases and asymptotically, for very large values ol
1, rcaches the value of = 0.9.

A gencralized version of this model allows for deletions
and also nsertion of ntron clements according to the
distributton law (155). Starting with a statisticall
uncorrclated stretch of myosin heavy chain (MHC)
coding scquence, the delation-insertion model has tried to
chalk out the cvolutionary pattern of the MHC genc.
The value of « increases as we go up in the evolutionary
chain.

(iii) Copying mistake map (CMM) (65]

The expansion modification system creates a sequence with
long-range inverse power law correlation of arbitrany
cxponent On the other hand the insertion models and 1t
generahsations create long range order by inscrtions and
random dclations of random segments distributed as an inverse
power law of the length of the segments. Both these methods
of sequence generation model aspects of the DNA sequences
They are, however incomplete and do not have an unificd
approach to the different parts, i.¢., the coding and the
noncoding regions of sequences.

The Copying Mistake Map (CMM) by contrast takes an
unificd view of the DNA sequences. The CMM s based on
the following observations :

(@) The fluctuations F(0), defined in (137), scale differenth
than the usual random walk. The usual random walk
lcads to the Gaussian probability distribution. Since
the correlations have inverse power law behaviour, the
corresponding probability distribution, must have long
tails typical of the Levy. The "diffusion" is thus of the
anomalous variety.

(b) This anomalous diffusion and long range order 18
generated in CMM by modeling thc DNA sequences
la' continuous "time" random walk. The waiting "umc”
distribution is chosen to generate the long-rangc
corrclations.

(¢) Simultaneously, a point mutation, of the white noisc
varicty, works to randomisc the sequences.

(d The strengths of these two opposing ingredients, the
one that brings order; the other that randomuses, arc
adjusted to fit the DNA sequences.

The precise physical understanding of the waiting "time”
in the DNA continuous "time" walk remains unclear. These
waiting times are chosen to have the inverse power law form
with finitc first moment.
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In the general diffusive process, the diffusive vaniable x
is related to the stochastic variable, such as velocity v, that
causes diffusion as :

(12(1))=(12(0))+2(vz)j(:dt'];dt”l((l”). (157)

where K(1) are the correlaton of the stochastic variable

(v(0) u(1))
(v2)

For the processes that are stationary, the correlations depend
only on the ume difference

K= (158)

t-0=1

If the correlauons are of the normal type, there exists a time
scale 7 such that

r=J:K(t)dr.

The correlations usually decay quickly so that 7 is finite. The
eq (157) in this case simply result

(159)

(x2(n)=(x2(0))+2Dr, (160)
where the diffusion coefficient
D=(v?)rt. (161)

The Central Limit theorem for this case works and one has
asymptptic Gaussian form.

If on the other hand T is not finite, we have the anomalous
case. A simple way to realize this is when the correlations
have inverse-power law behaviour

K(r)-'%- with0<f<l1. (162)

The correlation time ¢ diverges; the Central Limat is no longer
realizable.

It turns out that the correlation function is related to the
waiting time distribution w(r) for changes in the stochastic
variable w(f). The correlation X is related to w as follows :

'r(T-:)co(T)dT.

K== (163)
J" Ta(T).dT
'

o) - ;},- (164)

with 2 < u < 3, B in (162) ranges between 0 to 1, since

p =U- 2.
Thus the waiting time distribution of the form (164) leads to
an inverse-power correlation, resulting in anomalous
diffusion. The connection with anomalous diffusion becomes
transparent with

Thus if

(x2)=p2H

where H=2-p/2.

Thus H ranges form 1/2 to 1, indicating deviation form the
normal diffusion exponent.

(165)

It is known that above behaviour arise from characteristic
function of the Levy form :

P(k, 1) = exp {—b|k|".t}. (166)
with a@ = u - 1. It is known how to generate this type of
waiting time distribution by using deterministic maps. We
shall not concern here with this exact form of the update
algorithm required to generate the inverse power distribution
(164).

For the DNA sequences the bases are the stochastic
variable and may be chosen to assume 1 valucs depending on
purine or pyrimidine (say). The analogy with diffusion
means that in this case there are the possible choices of
velocities, v,. However the long-range correlation of bases
ensured by the waiting time is not sufficient to generate the
DNA sequences. A further noise that randomises is introduced
as follows :

v, is updated a la deterministic map that produces (164)
with probability £
v; is updated to 1v; with prcbability 1 - &.
The second moment <x?> under the action of the
deterministic plus the random updates takes the form :

(x2())=APH + BI,

where the factor H now is solely determined by the
deterministic map that has the power law waiting distribution
The difference between the intron containing and intronless
sequences are obtained by varying 1 - €, the copying mistake
probability. The ratio

A €

B 1-¢
when B is larger than A, suppresses the long-range effects.

(167)

(168)

5.16. Facts and Physics of evolution :

It is important to remind ourselves of the simple facts about
the DNA evolution.

(i) In the prokaryotic genomes, in the majority of cascs.
the bases are all used for protein coding The introns
and the intergenic regions arc, by and laige, absent
This ‘economy’ of base arrangement help these
biological entities to reproduce on very short time
scales (The reproduction entails the duplication of the
genomes). It is also known that the prokaryotic gencs
contain less of repetitions. These coding scquences are
characterised by long-range inverse power law
correlations.
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{(in As we move “up” in the scale of biological evolution
into higher and higher cukaryotes we have

() The appearance of the introns and the intergenic regions
marked by long-range power law corrclations.

(b The relatively short coding regions have almost random
arrangement of basc pairs. However when the introns
arc sphiced out, and all the exons are put togcther, the
data 1eveals the appcarance of the ubiquitous long-range
correlations.

(¢) 'The appearance of the introns and intergenic stretches
do slow down the process of genome duplication and
conscquently the time it takes to reproduce.

(d) The large amount of basc repeats in these organisms
usually point towards the increased nccessity of certain
proteins and enzymes. Since these proteins are required
in larger amounts, they have to be produced more
relative to the others. Hence the repeats.

(¢) The structural complexity of the sequences is indicated
when it 1s subdivided into smaller segments. The
segments do not have similar staustical character.
While the introns have order, the small exon elements
appear disordered, but with a peak at f=1/3 in the
power spectrum.

5.17. The DNA tertiary structure :
The DNA, or more preciscly the nuclear DNA, occurs in
chromosomes in conjunction with proteins. The DNA,
stretched out, could be as long as a meter in length, such as in
thc humans. Insidc the chromosome, however, they remain
coiled into a region of 10°% meters.

There has been an effort towards understanding the long-
range corrclations in terms of the constraints on the DNA
coiling, i.e., the tertiary structure ol the chain. The intial few
steps of sizc reduction is brought about by the proteins (called
histones) around which the DNA complex binds into spiral.

In a recent work properties of polymers we studicd under
the following conditions [66] :

(i) that the polymer be confined to the minimal volume,

(ii) that they remain knot-frece. This follows from the
requirements of the duplication and the transcriptions of
the genes. This kind of packaging of polymers, callcd
the crumpled globule structure, seems to require a long-
rangc correlation of the bases with the Hurst index of
2/3. Interestingly, the Hurst index of the intron and
the intergenic regions of the DNA sequences are ncar
this value.

6. An assessment

“In Nature’s infinite book of secrecy
A little can I read”.
~William Shakespeare

‘There has been an upsurge of interest amongst physicists in
the DNA in recent years. The discovery of the structure of the
DNA and the subsequent deciphering of the genetic code mark
two high points of research of this century. Yet, there are
parts and features of the DNA that remain beyond our grasp.
These parts, amusingly enough. constitute the bulk ot the
DNA. They have been called the “junk™ DNA, and swept
under the rug. The recent interest of physicists stems from the
belief that the “junk”™ DNA is ready now for another attempt at
deciphering.

It began in the carly part of the nineties when the unalysis
of the power spectrum of the DNA showed that it goes like
—1,};, where f is the frequency. Simultaneously, the gcaling
behaviour of the sccond moment of the DNA distribution
showed that the Hurst index deviates from 0.5. In this analysis
the DNA sequence was considered to be a sequence of purines
and pyrimidines. The sequence was thought of as a walk on
these purines and pyrimidines. Normally, if purincs and
pynimidines are distributed randomly over the sequence, the
mecan squarc displaccment from the origin (the starting point)
should go as the number of steps raised to the power twice ot
the Hurst index of 0.5. If we detect a deviation from 0.5 tor
the Hurst indcx, the sequence has long-range corrclations.

The detection of deviation from the value of 0.5 of the
Hurst index came first for the “junk™ parts of the DNA. These
“junk” parts, made of the introns and the intergenic regions.
therefore, have inverse-power-law correlations over the long-
range.

For the exons, i.e., the coding rcgions, there are short-
ranged periodicity, of period 3, arising from the triplet codons.
Over intermediate ranges, the exon sequences, curiously
enough, show random arrangement of purinc-pyrimidine
bases. As we go further away, putting the exon scgments
together by splicing out the introns, the long-range order does
scem to return. The order, however, 1s weaker.

Usually, that is in good majority of circumstances studied
in the physical world. we are familiar with correlations that
dic off exponentially. We know, however, that ncar the second
order phase transition, corrclations exist over all length scales.
Near this sort of transition, the systems have no preferred
scale, and therefore, are scale invariant. Interestingly, in onc
dimensional systems this type of behaviour is not common,
cven unexpected.

The inverse-powcer-law correlations, seen in the DNA, arc
observed in many other natural phenomena. The ftractal
property is generally held to be responsible. For fractals imply
the absence of any intrinsic scale. Inverse-power-law correlatcd
systems do lack the decay lengths so characteristic of
exponential correlations. Thc DNA, in that sensc, shows
fractal nature.

The regularities shown in random walk are well studied.
All the moments cf the underlying distributions are precisely
predictable. The random walk is a fractal, albeit a statistical
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tractal. The Hurst index for the second moment is -% The
deviation from this value for the Hurst index for the pNA

implices :
(i) that the DNA base distribution is a statistical fractal;

(ii) that the base distribution has long-range tails.

This kind of distribution does not follow the Central,
Limit. Instead, the general solution of the chain-rule oft
probability distribution functions given by Levy is.
appropriate. The walk executed in purine-pyrimidine bases,
appear more like anomalous diffusion or Fractional Brownian,
Motion.

If the DNA are indeed statistical fractals, and have fairly
rcgular features, it must be possible to generate sequences
with features of the DNA. Most of the DNA modelling are:
cfforts in this direction. The symbols are manipulated and:
sequences generated to have features statistically similar to the:
DNA sequences.

A pmen v -

ety

The progress in understanding the regularities in the DNA
have been rapid in recent years. Therce is a lot, however, that
remains to be understood.

The presence of the long-range order requires careful
analysis. The base composition of the scquences arc not
uniform. That is, the bases A, C, G and T, occur in different
proportions in the sequences. An added unavoidable feature is
the tiniie length of the sequence.'The exon sequences are
short, running upto about 500 bases. The introns arc
somewhat longer, upto several thousands. The intergenic
sequences arc the longest.

To define the long-range correlations it is necessary to
subtract out the corrclations in the random sequences of the
same basc compositions (or the strand bias as it is technically
called). An unambiguous elimination of this background
determines how much of the long-range correlation that
remains.

The sequences have large number of repeats of identical or
ncarly identical subsequences. The long-range corrclations,
according to some analysis, is due to these base repeats. The
physical meaning of the corrclations continues to clude
complete understanding.

Much of the effort has gone into the analysis of purine-
pyrimidine walk. That DNA is just a walk on purinc-
pyrimidine is but half the story. The correlations obtained
from the power spectrum, and the ones from purine-
pyrimidine walk, refer to two quite different aspects of the
sequences. Taken together, they do not completely define the
long-range statistical properties of the sequences. The
completc walk in A, T, G and C is required for model
building. In the full 4-d walk in A, T, G and C space, the
diagonal as well the off-diagonal correlations are required.
Without them, the model building effort will remain
incomplete.

The notion that the DNA is fractal-like, once again, is just
a part of the story. In practice the DNA scquences have many
scales.

There have been efforts at relating the tertiary structure of
the DNA to the long-range order. The Hurst index of order 1s
close to the number calculated for knot-free coiling of DNA
into crumpled globules. The physical meaning and the
purpose of the order require further attention.

The story that began almost a century-and-a-half ago in the
laboratory of Meischer and the pea farm of Mendel has come a
long way. There is but a good bit that remains untold.
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