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Abstract : At the time the DNA was observed m pus cells, by the Swiss scientist Johan Friedrich Miescher, back in 1869, no one knew what it 
does. Quietly and independently, the Czech abbot Gregor Mendel, working in his pea farms, had discovered the experimental basis of heredity. This 
was in 1860 It took almost a century to establish that the two discoveries were interrelated . it was the DNA that determines heredity. The discovery 
of the genetic code revealed the other function of the DNA, namely its role in the synthesis of proteins and enzymes.

The genetic codes, made of the triplet codons, but with huge degeneracy, imply hidden periodicities. The Founer analysis identifies this three 
period from the sharp peak at 1/3 frequency in the power spectrum It turns out though that the genetic code, or the three periodicity, is not there in 
the complete DNA. Only for low level organisms, the three periodicity exists through the whole sequence. In higher organisms, the protein coding 
regions responsible for the three periodicity, are few and far between Indeed, they constitute about 3% of the sequence for the humans. The 
function of the rest 97% remains unaccounted for These parts constitute the ljunk’ DNA

From the power spectrum of the ‘junk’ DNA, when the ‘white noise* is subtracted, a long-range hidden order is obtained. The sort of order, 
with the typical Mf spectrum, is ubiquitous in the physical world The analysis of the moments and the cumulants of the 'junk* DNA base distributions 
once again reveal the same long-range inverse power-law correlations of the bases In the language of the distributions, we have long range-tails. 
These tails make the second moments diverge, leading to deviations from the Central Limit and to L£vy type distributions. The 'junk* DNA base 
organisation is then analogous to the distribution function of anomalous diffusion and of Fractional Brownian Motion.

The analysis of the coding parts of the DNA show some differences. In the short-range there exists the three periodicity peaks in the 
power spectrum. However, for short coding sequences the organisation of the bases are near random, characterized by the Hurst index close to 
0 5 for the second moment. As wc go to larger coding sequences, by splicing out the intervening 'junk' DNA, or by going to the prokaryotic 
(lower organisms) DNA sequences, the long-range inverse power-law correlations reappear. The Hurst index, for the second moment, deviates a 
bit from 0.5

With all these data on short-ranged periodicities, and long-range inversc-power-law correlations, we are ready to model the DNA 
sequences. How to create symbolic sequences with long-range order of bases7 The Expansion-Modification algorithm creates such an order. In the 
Insertion Models sequences of different lengths are inserted, with the lengths distributed a la inverse power law. The Copying-Mistake Map is 
another model generating long-range order. Here the bases appear with the inverse power-law distribution in 'waiting times'. Simultaneously a 
point mutation is introduced to randomise the short-range behaviour. The relative strength of the long-range ordering and point mutation probability, 
is a parameter that is adjusted.

Keywords : DNA structure, genetic code, amino acids 

PACSNot. : 05.40 +j. 87.10.-fe, 87.15.-v

B-mail: tpje •  inahendm.iacs.res.in 
|To whom all correspondence be addressed
Dedicated to the memory of Kariamanikkam Srinivasa Kriihnan. bom December 4.1898. on his birth centenary.

© 20001A.CS



S Chattopadhyay, A Som, S Sahoo and J Chakrabarti

Plan of the Article
1 . Introduction
2 . An overview of DNA

2. L From peas to fruit flies
2.2. Here comes Niels Bohr
2.3. What the genes are made of
2.4. The DNA
2.5. The building blocks
2.6. The double helix
2.7. The DNA organisation
2.8. The DNA functions
2.9. The protein polymer
2.10. The protein structure
2.11. The genetic code
2.12. Experiments with the DNA
2.13. The DNA habitat
2.14. The DNA sequence
2.15. Order and fluctuations in the DNA sequences

3. Spectral decomposition, algorithmic complexity, 
entropy and order
3.1. From symbols to numbers
3.2. Fourier transform
3.3. Fourier transform of S
3.4. Periodic boundary conditions
3.5. The inverse transform
3.6. The reality of Sm a
3.7. SmM(0)
3.8. Excluded volume effect
3.9. Frequencies and Periodicities
3.10. Correlations
3.11. The structure factor
3.12. The Wiener-Khinchin relation
3.13. The power spectrum
3.14. Randomness, algorithmic complexity, information 

entropy and order
3.15. Information entropy
3.16. Determination of K
3.17. Shannon information entropy tends towards 

extremum
3.18. Shannon information entropy and order
3.19. Spectral analysis o f complexity, short and long 

range order
3.20. Spectral measure of complexity and order
3.21. The smoothed Fourier spectra and the long-range 

order

4. Random walks, Fickian and fractional Brownian 
diffusion
4.1. Random walks
4.2. Continuum limit
4.3. The chain rule
4.4. The moments o f the distributions
4.5. Generating function o f random walk
4.6. The central limit theorem
4.7. General solution of the chain rule
4.8. Continuous time random walk (CTRW)
4.9. Diffusion-Fickian and fractional Brownian

5. Measurements on the DNA : order, fluctuations 
and modelling
5.1. Short range order—the peak at f  -  1/3
5.2. Other periodicities
5.3. Repetitive segments
5.4. The mosaic model
5.5. The scale dependence o f the f  - 1/3 peak
5.6. Wee frequency enhancement
5.7. The Hurst analysis
5.8. The 1/f behaviou r o f the power spectrum
5.9. The DNA walk
5.10. Perspective on the DNA walk
5.11. The one dimensional PuPy walk
5.12. Detrended fluctuations
5.13. Four-dimensional walk
5.14. Base organisation in DNA
5.15. DNA modelling
5.16. Facts and Physics o f evolution
5.17. The DNA tertiary structure

6. An assessment

1. Introduction
“In the study of Nature, there is the need of dual 
viewpoint, the alternating interpenetration of 
biological thought with physical studies, and 
physical thought with biological studies”.

-Jagadish Chandra Bose

In the last decade, the DNA sequences have drawn physicists 
anew. The works of Niels Bohr (Light and Life, Nature 131 
(1933) 421) had earlier inspired a generation of physicists to 
look at the DNA to unravel its stucture and function. That the 
laws of living matter must follow a regular rational pattern 
was reassuringly emphasized by Erwin Schroedinger (What is 
life? Cambridge University Press, 1944). The subsequent 
explosion of interest led to the determinations of the structure 
ot the DNA, and, later, the genetic code, two notable 
discoveries of the century.
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The recent spate of interest in the subject stems, in part, 
Irom the realisation that, despite the progress, the DNA eludes 
understanding. While the genetic code does isolate one of the 
major functions, the ’’coding" regions are but a small part in 
many of the DNA. The functions of the "non-coding", 
sometimes called the "junk" parts, remain unknown. 
Amusingly enough, these "junk", "non-coding" regions are 
(he largest component of the DNA. It is improbable they are 
ihcrc doing nothing.

I'he investigations over the last decade have brought some 
hints that the "junk" parts of the DNA do have a built-in 
organisation. These parts have long-range correlations of the 
inverse power-law form. Long-range order, the inverse power 
(vpc, exists in many physical systems. Their precise physical 
origin remains ill-understood. Indeed, there is the well known 
icsult in physics, that for one dimensional systems long-range 
order is improbable. It is a challenge then to understand the 
unmistakable correlations in the "junk" DNA.

The coding regions, in many cases less than 5% of the 
DNA of higher organisms, have structure that is equally 
elusive. First, they show three periodicity, presumably due to 
the presence of the triplet codons. Second, over "short"-to- 
"intermediate" range they have the random statistical 
behaviour.

This review is about this intricate hidden structural 
organisation of the DNA. It is divided into five parts. Part I is 
a bncf look at the DNA, the polymer, and its underlying 
constituents called the nucleotides, or more simply, the 
monomers. Part II gives a simple introduction to the spectral 
analysis of symbolic sequences such as the DNA. It also 
hi idly discusses the ideas of information-entropy and order. 
Part III is a brief foray into random walkology on which a 
good bit of the modern DNA correlation analysis is patterned. 
In Part IV we discuss the underlying order of the DNA 
sequences. There have been some effort at modelling of the 
DNA sequences based on insights gleaned about its structure 
in the recent years. We outline the framework of some of the 
recent models. Needless to add, the modelling effort has a long 
way to go. Part V assesses the progress thus far.

The choice of topics has been dictated by our intent to 
make this review accessible to specialists from many fields. 
Wc would have liked to deal with some of the background 
material in more detail, but are restrained partly by limitations 
of space; more by limitations of our own knowledge.

There are many we would like to thank. Prof. Anjali 
Mookerjee and Prof. A B Roy allowed us to present part of 
this material to teachers from universities and colleges at the 
UGC sponsored school at the Sivatosh Mookerjee Science 
Centre, Calcutta. We are grateful to Prof. S C Mukherjee, 
who contributed substantially towards building up of our 
laboratory; to Prof. Ashesh Nandy for much of the initial 
impetus, and to Drs. Chaitali Mukhopadhyay, Sujata Tarafdar

and Papiya Nandi for many useful discussions. The speakers 
and the participants at the School of Complex Systems, 
Jan 30 — Feb 3, 1995 [Indian J. Phys. 69B (1995)1 provided 
the initial spark; we thank them all.

2. An overview of DNA

“Living m atter, while not eluding the laws of 
physics as established to date , is likely to 
involve other laws of physics h itherto  unknown 
which, however, once they have been revealed, 
will (orm as integral a part of this science as the 
form er".

£ - Emin Schroedintfci

At ah^ut the time, in the later part of the nineteenth century, 
when the doctrines of classical physics had reached its height, 
a fascinating and far reaching new discipline of icscarch, far 
removed from classical physics, was silently horn. The ideas 
were conceived by Gregor Mendel, around I860, at the 
Augustinian monastery at Brno (Czechoslovakia), on 
experiments with breeding of pea-plants. The results were 
published in 1866 in the obscure Verhandlungcn des 
nalurforschenden Vereines in Brunn (The Proceedings ol the 
Society of Natural Sciences in Brno). Mendel had studied the 
inheritance characters, such as plant height, colour of flower, 
the shape of seed, of the usual garden peas, and concluded that 
heredity works on clear, logical principles that arc 
experimentally accessible and verifiable.

Curiously, Mendel's work went unnoticed for a good 
thirtyfour years till 1900, about the time Max-Planck was 
busy with his experiments on blackbody radiation, when three 
scientists — Hugo de Vries, Carl Correns and Erich von 
Tschermak independently conceived of and performed 
experiments that showed heredity follows clear physical 
principles. Studying the literature they realised they had 
rediscovered the ideas of Mendel conceived more than three 
decades earlier.

2.7. From peas to fruit flies :
The work of Mendel, confirmed now by De Vries, Correns 
and Tschermak, paved the way for the rational scientific 
approach to the characteristics of living organisms; how these 
are passed from one generation to the text. Within a decade 
from 1900 experiments established that these informations 
reside in the chromosomes and are passed on duing the process 
of cell division. The term gene was used to describe the 
objects residing in chromosomes that carry these 
informations. No one yet knew what these objects were. 
Figure 1 gives the idea of an idealized cell that, being the 
structural and functional unit of a living organism, carries the 
chromosomes.
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Figure 1. Diagram of an idealized animal cell.

It was about this time in May J 910, came the white-eyed 
fruit fly from the laboratory of Thomas Hunt Morgan [1 J. The 
fruit flies exist in many different forms, and crossing them 
together the "fly room" of Morgan created whole set of 
varieties in accord with Mendel's ideas. Careful experimental 
techniques developed by Morgan mapped the position of genes 
in the chromosomes for the characteristic features of fruit flies 
(Figure 2) [21.

Fruit flies* or Drosophila melanogaster as they are 
technically called, because of their variety, provided the ideal 
laboratory for the study of inheritance. The science of heredity 
that began in the pea gardens of Mendel took off on the wings 
of Drosophila melanogaster.
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*• Echimu eye shape 
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-  Cross vcmlcss 
wings

► Cut wings
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•-Vermilion eyes
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Figure 2. Positions of 50 different genes cm the 4 chromosomes of the fruit 
fly. Drosophila melanogaster.

2.2. Here comes Niels Bohr:
Far away from garden peas and fruit flies a group of 
physicists, inspired by Niels Bohr, began to work on the issue 
of inheritance. The lecture of Bohr at an international congress

in 1932, published the following year in Nature, provided the 
spur to physicists, trained in quantum mechanics, to work on 
the ideas laid out by Mendel and Morgan. The questions 
what genes were, are how they worked — haunted them. Max 
Delbrwck, a nuclear physicist from G5ttingen (migrated to the 
US in 1937), played a pivotal role in shaping the course for 
the next three decades [3]. In 1940 he, along with Salvador 
Luria and Alfred Hershey, set up the Phage group, consisting 
of physicists, chemists and bilogists, that led, eventually, to 
cracking the mystery of genes. The group was napned after 
bacteriophages, which are viruses that infect bacteria.

2.3. What the genes are made o f :
That chromosomes have the constituents, the genes, that 
determine heritage, led to intense exploration of the genetic 
material. The analysis of chromosomes, by chemical methods, 
established that are made of proteins and nucleic acids. This 
was known by 1920. The nucleic acid, namely 
deoxyribonucleic acid (DNA), or the protein, or a combination 
of the two, i.e. nucleoprotein, must transmit the data of one 
generation to the next. The early suspicion pointed the finger 
at protein. The reason being, protein was known to be a long 
polymer made up of 20 amino acid monomers. Since the 
amino acid residues (i.e. the monomer units of protein) appear 
in arbitrary order, the protein polymers could contain large 
amount of information. In contrast, initially the structure of 
the DNA was incorrectly determined. The constituents — 
adenine (A), guanine (G), cytosine (C) and thymine (T) that 
make up the DNA — were put together in a way that had 
little possibility of storing the vast amount of information 
required. By the late thirties it became clear, however, that the 
DNA is a polymer of A, G, C and T and, therefore, could 
exist in large number of variable forms suitable for storage of 
information, just like protein. The crucial evidence that it is 
the DNA that stored the genetic data came from experiments.

In 1928, Frederick Griffith studied both virulent (disease 
causing) and avirulent (harmless) forms in Streptococcus 
pneumoniae, the agent that causes pneumonia, and found out 
that the principle responsible for the transformation of bacteria 
from one form to the other was actually the genetic material. 
But he did not identify the transforming principle. Afterwards, 
significant experiments in this direction were carried out by 
Oswald Avery and coworkers (Rockefeller Institute, New 
York) on the same bacteria. They used degrading agents 
protease and ribonuclease enzymes to selectively degarde 
proteins and nucleic acids respectively and study the 
information carrying capability of the resulting genes 14]. 
Alternatively, in experiments carried out by Alfred Hershey 
and Martha Chase at Cold Spring Harbor Laboratory, 
radioisotope labelling of protein and the DNA were carried 
out. Proteins carry sulphur and can be doped with 35S. The 
DNA carry phosphorus and were doped with 32P. The 
information carrying agent in bacteriophage T2 was studied 
with these doping agents. They concluded from the results that 
the DNA carries the information [5],
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Avery's results appeared in 1944, but remained unaccepted. 
Even with the Hershey-Chase experiment of 1951-52, there 
remained some lingering questions. The determination of the 
structure of the DNA by Watson and Crick in 1953 
established the information carrying capability of the DNA 
and laid at rest these doubts. Much later, in,the 1970's, with 
the advent of recombinant DNA technology, that injected pure 
DNA in plants, insects, yeast, bacteria etc., the role of DNA 
as the sole genetic material became experimentally
established.

2.4. The DNA :

In close parallel with the experiments and ideas put forward by 
Mendel, Morgan, Griffith, Avery, Hershey, Chase and others 
on inheritance and the role of the DNA, another group of 
scientists were busy unravelling its structure. The DNA was 
isolated from pus cells by Johan Friedrich Miescher in 1869, 
and the m ajority of its nitrogenous bases were identified in 
1894. The sugar component of the DNA came to be identified

by Hammersten in 1900; the exact structure of the sugar 
ingredient, the deoxyribose, was obtained by Levene by 1929. 
By 1934, Caspersson had established its long chain polymer 
form capable of existing in variable configuration of the bases 
A, T, G and C. This variability confers it the potential to 
store large amount of information. That the bases A, T, G and 
C follow a definte compositional constraint was established in 
1950 by Chargaff [6]. The X-ray diffraction studies on crystals 
of the DNA by Rosalind Franidin in 1952 showed the DNA 
to be t  helix. The methodology of X-ray diffraction studies 
were Established earlier by Maurice Wilkins. The final step 
came $n 1953 by Watson and Crick, who put together all 
these Informations to arrive at the double helical structure of 
the DIjA [71.

2.5. building blocks :

The |nonomers
The DNA is made up of a chain of four monomers, arranged 

in arbitrary order. The monomers, also called nucleotides, are
tlueteoiid*



S Chattopadhyay, A Som, S Sahoo and J Chakrabartl

in turn made of three distinct entities : the sugar, the 
nitrogenous base and the phosphoric acid.

jhf! «upar ; It is made of a ring of 5 carbon atoms, labelled 
from T to 5'. The reason for the primes we explain later. It 
has the form of sugar called ribose, out of which at the T  
position an oxygen atom is removed. Hence the name 2'- 
deoxyribose (Figure 3a).

The nitrogenous bases : The nitrogenous bases come in 
four different types, labelled : A for Adenine, T for Thymine, 
G for Guanine and C for Cytosine. Hence the four monomers 
may be denoted by the symbols A, T, G, C. Out of the four, 
A and G are called purines and are both made of two rings 
(Figure 3b). T and C have single-ringed forms (Figure 3b). 
The positions of atoms in the bases are labelled from 1 
onwards. It is for this reason the positions in the ribose are 
denoted by primes. These four bases attach on to the site 1' of 
the ribose sugar.

The phosphoric acid : The phosphoric acid group attaches 
to the 5’ carbon of the ribose sugar. The phosphates that 
attach could be the monophosphate, the diphosphate or the 
triphosphate. The individual phosphate groups are labelled a, 
p  and y, with the convention that the a-phosphate attaches on 
to the deoxyribose (Figure 3c).

polymer chain*, both of A. T, 0 , C, in the shape of double 
helix. Of the two polymers, one runs from S' to 3*; the other, 
the complementary polymer, runs in the opposite direction, 
i.e., from 3* to 3*. The two polymer* are held together by

»■ ?  »•  o -r-  o - c h ,
No

0 X
*o-r=o

BASE
H|C

K v t
0  X1
Io

The polymer
The monomers put together in a chain form the polymer, 

also called the polynucleotide. The individual monomers 
attach to the other through the phosphate groups. The a- 
phosphate attaches to the S' position of one ribose and 3' 
position of another forming the linkage (Figure 4). Of the 
a-, /?-, y-phosphates, the J3 and the y detach during 
polymerisation, leaving only the a  to provide the connecting 
links of one ribose to the next.

There is a sense of direction in the polymer. One end 
(phosphate at 1’ carbon) is the P-terminus, the other end has 
the 3’-0H terminus. Thus we have the polymer running, so to 
speak, from 5' to 3' as the two ends are different.

The polymer can have arbitrary number of monomers in 
any arrangement of A, T, G and C. When we talk of the DNA 
sequence, we mean the sequence of A, T, G and C in this 
polymer chain.

2.6. The double helix :

That the DNA is a polymer mode of A, T, G, C monomers 
tied together through phosphate links was known prior to 
1953. The work of Wilkins on X-ray diffraction and its 
application to ciystals of DNA fibers by Rosalind Franklin in 
1952 established that the DNA has a helical shape [8]. It was 
left to Watson and Crick to show that DNA consists of two

OH x

Figure 4. Structure of a trinucleotide, as it runs from 5' to 3* 
direction. If X is H, the sugar is a deoxyribose one and so the 
structure is DNA. If X  is OH, the sugar is a ribose one and so the 
structure is RNA.

hydrogen bonds runing between the nitrogenous bases [9,10] 
(Figure 5).

The distance between the polymer chains is such that the 
purines (A and G of two rings) of one polymer connects two 
the pyrimidines (T and C of single rings) of other. Indeed A 
connects through two hydrogen bonds to T; G connects 
through three hydrogen bonds to C. While we are not going to 
be discussing the energetics to the macromolecules, clearly the 
triple bonds between G and C imparts greater stability to 
chains that have higher G or C content. The A binding to T, 
and G binding to C of the complementary chain makes the 
helix satisfy' the compositional contraint observed by 
Chargaff.
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Figure 5. The two antiparallel DNA strands are connected together 
by non-covalent hydrogen bonding between paired bases. A and T 
are connected by two hydrogen bonds; while C and C are held 
together by three hydrogen bonds.

2.7. The DNA organisation :
The DNA we know, from experiments of Avery, Hershay- 
Chase, is the genetic material. The initial experiments were 
carried out with low-level organisms, such as bacteria and 
bacterophages. Questions remained whether in the higher 
organisms the DNA played the same exclusive role. The 
proteins present in chromosomes, could they carry 
information on heritage? Some of these questions were laid to 
rest with the advent of Recombinant DNA Technology in the 
seventies. Here pure DNA is introduced into the cells and. its 
effects are observed. The experiment with recombinant DNA 
technology establishd the central and the exclusive role of the 
DNA as the genetic material.

Before we look at the major functions of the DNA, let 
us briefly summarize the organisation of the DNA in the 
cells.

The DNA occurs in the chromosomes or in the 
mitochondria of higher living organisms, called the 
eukaryotes. In the eukaryotes, the chromosomes, the 
mitochondria, the golgi bodies are distinct structures inside the

cells. These structures are surrounded by membranes. The 
eukaryotes could be unicellular, or have many cells.

In contrast the prokaryotes, such as bacteria, are organisms 
that do not have structures such as the nucleus, mitochondria 
etc. well segregated inside the cells.

There could be several chromosomes, and in each 
chromosome can reside several genes (Table 1).
Tabl* 1. The avenge number o f gene* present in each chromosome varies 
among speciei.

Namê of the 
Organism

Total No. of 
Chromosomes

Total No. of Gene* 
(Approx.)

Cenes/Chromoaomes
(Average)

E. tv;/i (Bacteria) 1 2*800 2,800

Baker! Yeast 16 8,730 550

Hurra# 23 90,000 2,200

The DNA molecule, the long bi-stranded polymer, has 
discrete segments called genes. These discrete segments are not 
discontinuous but are connected to one another by intergenic 
DNA sequences (II). The length of the intergenic regions 
vary. In lower organisms, the intergenic regions are usually 
short, or could be absent altogether. In higher organisms, 
most of the genes are well-separated with long intergenic 
DNA regions.

The genes are segments of the DNA located on one of the 
strands of the bipolymer. The strand carrying the gene is called 
the template strand, and the sequence is read from the S' to the 
3' direction. The template strand differs from gene to gene.

The gene itself is not one continuous segment, but is 
interspersed with DNA sequences that do not carry known 
genetic functions. The parts of the segments of genes that 
carry genetic information are called exons; the regions in 
between are called introns [12,13] (Figure 6). A gene may be

gen e) . . geoe2
i  r

exon2 | exon3 exonl exoo2

intron2
intergenic 
region or 
flanking 
region

Figure 6. Any two non-overlapping genes are separated by an intergenic or 
flanking region. Again a gene may be divided into a number of exon (i.e. 
coding) and intron (i.e. non-coding) regions.

interrupted with many introns. Table 2 shows the variation 
in the number of introns for a few human genes. For lower 
organisms, the introns are shorter, or may be absent 
altogether.
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Table 2. Number and proportion of introns differs in different genes of the
same organism, e ft human

Name of the Total Length Total No. of Proportion of Intron A
Human Gene (kilobasc) Introns (% length)

Insulin 1.4 2 67 l  /
Serum albumin 18 13 88 D N A

Phenylalanine
hydroxylase

Cystic fibrosis trans-

90 25 97

membrane regular 250 26 98
R N A

Dystrophin 2.300
> 1(H)

99
' 1

2.8. The DNA functions :

The function of the DNA was summarized in 1958 in Crick's 
Central Dogma. Simply stated, the DNA sequences in the 
genes make the RNA (ribonucleic acid) that make protein
(14], It is these proteins that allow organisms to carry out the 
multitude of functions necessary for living. The RNA is 
almost a copy of the DNA sequence, with one of the 
nitrogenous bases thymine is replaced by uracil, denoted by 
the symbol U (Figure 7). Thus the DNA is responsible for 
synthesis of all the proteins [15] (enzymes that catalyse 
reactions are proteins too).

c h 3

1

c h 3

H—  c ’a*C ' ' ' C  —  O H - ^

n - N ^ N  — H

II
0

Uracil
Thymine

(T)
(u)

or methyl - U

DNA

Replication .
(Duplication of DNA ) ♦

Figure 7. Uracil (U) is present in RNA; whereas Thymine (T), nothing but 
the methylated Uracil, is present in DNA.

The detailed chemical pathways that lead from the DNA 
to the RNA to the proteins is beyond the scope of the present 
review. These chemical pathways are summarized in Figure 8
[16].

We now discuss in brief the proteins, their structures, 
and the genetic code. The genetic code gives us the mapping 
of the monomers of the DNA, namely A, T, G and C, to the 
monomers, i.e. the amino acids of the protein polymer.

i

f f M o ,
W W Q  *****

1 mntcnplion m wisia
( synthem of RNA) 1 m KNA

nucleus

cytoplasm

Protein Translation 
( synthesis 

of protein)

Figure 8. The Central Dogma of molecular biology . The DNA replicates ns 
information through r e p l ic a tio n ; the DNA gives rise to messenger RNA 
(mRN A) dunng tra n scrip tio n ; in eukaryotic cells, the tnRNA is p ro c essed  by 
splicing and migrates from the nucleus to the cytoplasm; the ribosomes 
"read" the information coded in mRNA and use it for protein synthesis by 
translation

2.9. The protein polymer :

The protein is a polymer of monomers called amino acids, 
sometimes also called peptides (the polymer in this language 
is called the polypeptide). The monomers, i.e. the amino acids 
are twenty in number; their structures are given in Table 3. 
They are joined together by chemical bonds, called the peptide 
bonds shown in Figure 9.

r  ! hJ h R> J r
i ii i i« i

-N-C-»C -  Nj- C-iC -N  -  C -C -
I i in ■ I i! I I
H H S t - J  R J___ M| H 0

Figure 9. The peptide bond is formed by the interaction of two amino acids 
with the elimination of water between the NH2 and COOH groups.
2.10. The protein structure :

The protein structure given in Figure 10(a) is usually referred 
to as the primary structure. The polymer that is protein, in its 
"denatured" form assumes its primary structure; usually 
though the structure of the polymer exists in levels of folded
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T able 3* The categories, symbols and structural formulae o f 20 different amino acids.

Name Symbol Structural Formula

Aliphatic nonpolar side chains
Glycine Gly (G)

Alanine Ala (A)

Valine Val (V)

Leucine Leu (L)

Isoleucine He (I)

Aromatic side chains
Phenylalanine Phe (F)

Tyrosine Tyr (Y)

Tryptophan T ip (W)

H 4 - C H —C O O ~
l

N H , _______

H .C -U C H -C O O -
I I
! n h ,*

h 'cn . ,C H -»-C H —C O O

U h .*

n

h ,c

HjC

C H - C H - - C H - C O O "

C H ,
\

N H , +

C H ,

/
C H ,

CH --C H —C O O '
l

N H ,  ♦

y ~ ~ c h , - - c h — c o o ~

N H ,*

H Q  - C H —C O O

N H ,* _______

—C H .4 -C H — C O O *Ch --------G - C H ,

O h N H .

Hydroxyl-containing side chains 
Serine

T hreonine

H O - C H ,
Ser (S)

Thr(T)

Acidic side chains
Aspartate Asp (D)

- O O C - C H , "c h - c o o -

N H /______
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Table J. (Cant’d.)

Name

Glutamate

Amidic amino acid* 
Asparagine

Glutamine

Basic side chains 
Lysine

Arginine

Histidine

Sym bol

G lu(E ) O O C - C W j - C M , -  c h - c o o -

l
NH,*

Am (N) H , N - C - C H ,  - C H - C O O -

N H /

Oln (Q) H ,N —C —C H ,—C M ,- -C H —C O O '
II I
O  N M , *

Ly(K)

Arg(R)

H i»(H )

H

Sulfur-containing side chains
Cysteine C yi(C )

Methionine Met (M)

limno acid Pro (p)
Proline

- C H - C O O -

H ,C —S - C H , —C H , C H - C O O ~
I

N H , +

HiC^
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forms labelled secondary, tertiary and quaternary structures 
(Figure 10).

(b)

(C )

Figure 10. The structure of a protein in four hierarchies, (a) The prim ary 
structure of a protein describes the order of covalently linked amino acid 
residues, (b) The secondary structure, either a-beiix or 0-pleated sheet or a 
combination of both, shows the role of CO-NH hydrogen bonds, either 
intramolecular or intermolecular in nature, (c) The tertiary  structure 
describes the way the chains with secondary structure interact through the 
side chains of the amino acid residues to form a 3-D shape, (d) The 
quaternary structure describes the interaction, through weak bonds, of the 
polypeptide subunits.

It is to be noted that the quaternary (or the tertiary, or the 
secondary) structure, upon heating, or upon chemical 
treatment with urea, denatures to the primary form made up of 
the sequence of amino acids. Upon renaturation, i.e. upon 
cooling for instance, it resumes spontaneously its correct 
tertiary structure. It is assumed, therefore, that the amino acid

sequence, at the primary level (which depends on the sequence 
of the DNA it is made from), determines the tertiary structure 
of the protein. Thus built into the DNA exists the 
information on the amino acid sequence that in turn 
determines the folds of its structure [17].

2.11. The genetic code :

About 1953 when Watson and Crick put together, from the 
known results, the structure of the DNA, the work on the 
genetic, code began in earnest. It continued through the fifties 
and w|us not completed until 1966. A large group of 
scientists— Crick, Yanofsky, Brenner, Ochoa, Nirenberg, 
Matthapi, Khorana, Leder and others— unravelled the genetic 
code. |

Sin̂ e the amino acid monomers are twenty in number it 
was cle|r early on that the nucleotide bases (remember they are 
4 in nuiftber— A, T, G and C), have to work in combination 
to give jrise to these twenty variety. Clearly two of them can 
make upto 4 x 4 =  16 varieties. Three of them can make upto 
4 x 4 X 4 = 64 types. Thus, three is the least number of the 
DNA monomers necessary [18]. However, since three of them 
can make 64 different types, while the amino acids number 
just twenty, the genetic code has a high degeneracy (codon 
degeneracy) [19,20]. The genetic code, as obtained in 1966, is 
summarized in Table 4 [21].
Table A The genetic code.

2nd base in codon
U C A G

Phe Ser Tyr Cys U
U Phe Ser Tyr Cys C

1 fit Leu Ser STOP STOP A 3rd
Leu Ser STOP Trp G
Leu Pro His Arg U

C Leu Pro His Arg c
Base Leu Pro Gin Arg A base

Leu Pro Gin Arg G
He Thr Asn Ser U

A He Thr Asn Ser c
in lie Thr Lys Arg A in

Met Thr Lys Arg G
Val Ala Asp Gly U

G Val Ala Asp Gly c
codon Val Ala Glu Gly A codon

Val Ala Glu Gly G

Legend:
Amino acids specified by each codon sequence on mRNA Key for the
above tabie:

Phe : Phenylalanine Ser •Serine His: Histidine Glu • Glutamic at id

Leu: Leucine Pro: Praline Gin : Glutamine Cys • Cysteine
tie : Isoleucine Thr: Threonine Asn : Asparagine Trp • Tryptophan

Met: Methionine Ala: Alanine Lys: Lysine Arg ' Arginine

Vat: Valine Tyr: Tyrosine Asp : Aspartic acid Gly Glysine

A ■ adenine G » guanine C * cytosine T * thymine



12 S Chattopadhyay, A Som, S Sahoo and J  Chakrabarti

Aside from the codes given in Table 4, there are several 
other features that are important to note.

(i) Stop Codons : Some triplet combinations, namely, 
UAA, UGA and UAG do not code for amino acids. 
Presence of them in the RNA stops the process of 
protein synthesis. These are therefore called stop 
codons (Note that U stands for uracil).

(ii) Start Codon : The triplet AUG that codes for the amino 
acid methionine also acts as the start codon. The 
protein synthesis begins at the position AUG occurs. 
In the final protein methionine may initially occur at 
the first position only to be removed later by further 
processing.

(iii) Non-universality of the Codes : The genetic code, 
given in Table 6, back in 1966 appeared universal. 
Subsequently small deviations have been observed, first 
in mitochondrial DNA sequences, later in some nuclear 
sequences as well. Some of these deviations from 
universality are summarized in Table 5 [22].

Table 5. Examples of some nuclear and mitochondrial non-standard 
codons.

2.72. Experiments with the DNA :

The present knowledge about gene structure is mostly due to 
the enormous applicability of 'recombinant DNA technology1 
The DNA molecule created invitro by ligating together pieces 
of the DNA that are not normally contiguous is termed a 
'recombinant DNA technology'. The r-DNA technology 
comprises of all the techniques involved in the construction, 
study and use of those molecules. At the heart of this 
technology are the nucleic acid enzymes acting as tools that 
allow the DNA and the RNA to be manipulated [23].

2.72.7. Enzymes

Restriction endonucleases are a group of enzymes which 
actually initialized the development of this technology and 
naturally deserve the most importance. A restriction 
endonuclease cuts DNA moleculs only at a limited number of 
specific nucleotide sequences (Figure 1 la).

5*—ocrartrr -O--- o -----3'
I I-o-- o --- 5'

Restriction Endonuclease
Name of the Location of the Codon Codes for Universally
Organism Genes codes for

Protozoa
Candida

Nucleus
Nucleus

UAA. UAG 
CUG

Glutamine
Serine

Termination
Leucine n r  M i i i

0 — 0 —  0 — 0 — 0 — o — n —
cytindracea 
Baker's Yeast Mitochondria UGA Tryptophan Termination

(a)
V

CUN*. Threonine Leucine «• 1 > 1 0 1 o — G— A— A— T— c —  T— G—  template
AUA Methionine Isoleucine , 5'

3 G— A— C—  pnmer
Drosophila Mitochondria UGA Tryptophan Termination

melanogasier AGA Serine Arginine DNA Polymerase
AUA Methionine Isoleucine

Mammals Mitochondria UGA Tryptophan Termination
AGA. AGG Termination Arginine 5'— A— C— C-— G— A— A— T— C— G—  3*
AUA Methionine Isoleucine

y —  t — 0 — 0 — c—  t —  t— a— G— C—  5’
•N stands for any nucleotide. i ____-— ........ j

In as far as is known, the departure from the genetic code 
of Table 4, are rare. The results of 1966 continue to hold for 
most of the coding regions.
Table 6. Variations in the length of the DNA’ segments among different 
organisms.

Name of the 
Organism

Genome lize 
(kitobate)

Total No. of 
Chromosomes

Average Length of 
DNA/Chfomosome 

(kilobase)

£  coli (Bacteria) 4,000 1 4,000
Baker's Yeast 20.000 16 1.230

Drosophila
melanogasier 165,000 4 41.250

Human 3,000,000 23 130,000

Salamander 90,000,000 12 7,500,000

needy ayntheelaod attend
(b)

3*_ q_ 0 — O— — o — o — O— O— C
3’— 0 — O— O—  — 0 — 0 -

I DNA Ligate

5—0

Figure II . Three important classes of enzymes, frequently used m 
recombinant DNA technology, (a) A restriction e n d o n u c le a s e  cleaves 
double-stranded DNA only at specific sites, (b) The basic reaction ol *» 
O N  A polym erase  : a new DNA strand is synthesized in the 5' to 
direction, (c) A ON A ligase joins together two individual fragment * id 
double-stranded DNA.
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DNA polymerases make complementary copies of 

DNA templates and are useful in the production of labeled 
probes, DNA sequencing and also DNA amplifiction 
(Figure lib).

DNA ligases are the enzymes that repair single-strand 
discontinuities in double-stranded DNA molecules in the cell. 
The purified form of this enzyme joins the DNA molecules 
together to form a recombinant DNA (Figure 11c).

2 /22. A n a ly t ic a l  te c h n iq u e s

A number of recombinant DNA-based analytical techniques 
1241 have been found to have tremendous impact in the 
medical sciences. ‘Southern blot analysis’ is one of those 
diagnostic techniques; it transfers bands of DNA from an 
agarose gel to a nitrocellulose or similar membrane and is 
used to detect specific sequences contained on a DNA fragment 
generated by restriction enzyme digestion within a mixture of 
ill the restriction enzyme fragments of genome. It also sets 
the basis of ‘restriction fragment length polymorphism 
RFI.P) linkage analysis* and ‘DNA fingerprinting*.

RFLP is a mutation that gives rise to a detectable change 
in the pattern of fragments obtained when a DNA molecule is 
ut with a restriction endounclease. The restriction fragment 
unrkers that demonstrate close linkage analysis; it has become 
t means of screening individuals for defective genes 
■csponsible for genetic diseases.

DNA fin g e rp rin t analysis is just a variation of 
rtFLP analysis in which the probe hybridizes to the 
lypcrvariablc regions or HVRs. Its uses include forensic 
dentification, indentification of parentage and also the 
valuation of the success of bone marrow transplants.

DNA sequencing is another strong and informative 
JNA analytical technique that determines the order of 
lucleotidcs in the DNA molecule. DNA can be sequenced 
ulhcr chemically, by the Maxam and Gilbert poccdure [25], or 
enzymatically, by the Sanger method [26]; the latter is easier 
tnd qualitatively superior to the chemical method. The 
nvention of the automated DNA sequencer has now provided 
m enormous pace in the field of research in molecular 
Jiology.

Polymerase chain reaction (PCR) is another very 
)owerful technique [27] that enables multiple copies of a 
->NA molecule to be generated by enzymatic amplification of 
arget DNA molecule. For each round of synthesis, the 
mount of DNA is doubled. Thus, 30 rounds yield more that 
1 0 x 109 copies of a region of DNA from one molecule. It 
ises are mainfold. Genes susceptible to mutations that cause a 
liseasc can be quickly amplified and sequenced. PCR helps to 
eadily detect viral or bacterial infections. It has also got a lot 
>1 importance for forensic uses. Thus PCR, DNA sequencing 
wd Southern blot analysis, acting in concert, has put the 
DNA technology at the foremost position in the present 

vorld of molecular biophysics.

2 .1 3. T he D N A  h a b i t a t :

To appreciate the meaning of the mathematical analysis that 
the DNA sequences arc subjected to in the following, we 
discuss briefly where and how the DNA resides. It is known 
that the DNA resides in the nucleus of eukaryotes or in the 
nucleoids of the prokaryotes. The DNA is also found in the 
mitochondria of all eukaryotes and in the chloroplasts ot 
plants; (eukaryotes). The mitochondrial and the chloroplnst 
DNA Synthesize proteins necessary for the f unction of these 
two bodies inside the cells. The genetic code for the 
mitochondrial DNA differs in a few instances from that of the 
nuclear DNA. Interestingly the majority of the proteins 
required for the mitochondrial functions arc synthesized in the 
nuclc\|s and transported to the mitochondria. Why the 
mitocl|pndria has to work as a separate centre lor pi olein 
synthesis remains unknown.

Thfc DNA residing in the nucleus, in chromosomes, is 
being inferred to as the nuclear DNA It is with them that we 
concern ourselves through this review

The DNA molecule is split into a number of segments 
each contained in one chromosome. The total number of 
chromosomes vary from one organism to another. The lengths 
of the DNA segments vary from chromosome to chromosome 
(28]. Table 6 gives some of these variations for a lew 
samples.

The dimension of the chromoseme falls in the 10 6 meter 
range. The DNA segments that fit into them could be scvctal 
centimeters in length. It is known that chromosomes contain 
mixture of the DNA and the proteins. These proteins (called 
histones) help the DNA to wind around and compaclify inside 
the chromosomes In the eukaryotes, and in the prokaryotes, 
enzymes help in the process of compactification. The DNA is 
said to supcrcoil with their aid.

The process of compactification has to follow numerous 
constraints to allow freely the synthesis of proteins to occur. 
As the process of synthesis follows from one end towaids the 
other, the DNA has to untangle at least locally |29|. The 
question of whether DNA compactification can allow lor 
knots remains unanswered.

2 .1 4 . T he D N A  s e q u e n c e  :

The DNA molecule, the bistranded polymer, as wc have 
noticed, is made up of monomers, called nucleotides A, T, G 
and C. The two strands are complementary, that is, the 
specification of nucleotide sequence of one strand completely 
specifies the sequence of the other. A and G in one couple to 
T and C in the other respectively through hydrogen bonds that 
keep the bistrand together. The specification of sequence in 
one, therefore, is sufficient.

The template strand is the one that takes part in the initial 
stage of protein synthesis. The DNA sequence of the template 
strand, by convention, is read from 3’ to 5' direction. The 
template strand synthesizes the complementary RNA
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molecule. The DNA sequences that are presented are of the 
non-template strand in the 5' to 3’ direction. The reason is that 
the RNA strand is a copy of the non-template strand (except 
for thymine, T replaced by Uracil, U), and amino acid is 
formed from this RNA sequence. The convention, therefore, is 
to describe the non-template strand.

The DNA bipolymer is made up of genes and intergenic 
regions. The intergenic sequences usually are much larger than 
the genic sequences. The genes, in turn, are made up of the 
coding, i.e. the exons, and the non-coding, i.e. the intron 
regions. The intron regions for higher eukaryotic beings far 
exceed the exons.

The coding regions, the exons, carry the triplet codons. 
The codons are degenerate in the sense that many triplets give 
rise to the same amino acid. The second position of the codon, 
except for the case of serine, is nondegencrate; the first 
position is degenerate; and the third position has more 
flexibility. The exon region begins with the start codon and 
ends in the stop codon.

The exon region is preceded, in the immediate vicinity by 
promoter regions that alert biomolcculer agents responsible 
for the protein synthesis about the upstream coding sequence. 
The exons are interspersed with non-coding intron regions. 
The part that the introns play remains unknown. The 
composition of the sequence of human genome, about 6 
billion base pairs long, gives a view of the relative 
proportions of coding (exon), non-coding (intron) and 
integenic regions [30|. This is given in Table 7.

Table 7. Broad subdivisions of the human genome, approximately 6,000,000 
kb in length, with about 50,000-100,000 genes, split into 23 chromosomes, 
each containing a single, linear, double-stranded DNA molecule

Human Genome 
(approx 6 x 109 bp)

Genes and generelated Intergenic or
sequences extragenic DNA

<10% I >90%
r ~ ------------------— r

Coding Non-coding
DNA DNA

The coding sequences for the same protein, histone say, is 
not the same as we go from one species to another. Even 
within a species there are small variations in the coding 
sequences for the same protein. For the non-coding regions the 
fluctuations are more.

For the eukaryotic sequences it is known that 
subsequences of varying lengths repeat many times. This is 
true for intergenic regions as well as for the introns (31]. 
Table 8 gives an idea of these repeats for the human 
sequences.

Table 8. A few examples of repetitive human DNA.

Family Location Average size of 
Repeat Unit (bp)

Number of copies 
of Repeat Units

Telomeric Telomeres 6 2-3 x 1<)4

Hypervariable All chromosomes, 
often near telomeres

9-64 3x l<)4

(CA)n/(TG)n All chromosomes 2 7 x I06

Alu Euchromatin 250 7 x  106

Kpn (LI) Euchromatin 1,300 6 x I04

2.15. Order and fluctuations in the DNA sequences :
The DNA sequences, by convention, refer to the series ol 
nucleotides, A, C, G, T, read on the non-template strand from 
5' to 3' direction. The reason for the non-template strand has 
been discussed earlier.

The question that arises naturally is : What are the 
characteristics ol these DNA sequences? For one, we know 
that as far as the coding sequences arc concerned the genetic 
code is important. The triplet codons sit side by $ide. Jn 
cDNA (coding DNA) there does exist an order, albeit of short 
range. The cDNA, however, is but a small part of the DNA 
sequence. What happens for the introns and the intergenic 
regions? Does order, or correlations, exist in them ? If they do. 
what do they physically imply?

It has been argued that the sequence carries all the 
physiobiological information. So far only a small part ol 
it, namely the genetic code, has been deciphered The 
information stored in the other regions remains to be 
understood.

In these other domains, the introns and the intcrgenics, arc 
the sequences of the nucleotides (A, T, G and C) random? II 
they arc random, perhaps they do not carry any useful 
information. If they are not random, how far arc they from the 
random sequences? What are the nature of correlations ? As we 
have noticed the sequences for the same species have small 
fluctuations. As we go from one species to another the 
fluctuations increase. The further apart the species are in the 
scale ol evolution the larger are the fluctuations. An 
understanding of the fluctuations, as opposed to order, is 
important for evolutions. What gives rise to these 
fluctuations ? Are they purely random, or is there a method to 
this madness? Clearly, any arbitrary fluctuation does not lead 
to a viable new organism, but some do.

3. Spectral decomposition, algorithmic complexity, 
entropy and order

“At the end of his life, John von Neumann 
challenged mathematicians to find an abstract 
mathematical theory for the origin and evolution 
of life. This fundamental problem, like m ost 
fundamental problems, is magnificently difficult.
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Perhaps algorithmic Information theory can help 
to suggest a way to proceed".

-Gregory J  Chaitin

Given the nontemplate sequence in the 5* to 3’ direction how 
does its Fourier transform (FT), or more precisely Discrete 
Fourier Transform (DFT), look like? What do we get from 
the Fourier spectra? Before we get to answer some of these 
questions let us lay out how we arrive at the Fourier spectra of 
symbolic sequences composed of symbols A. T, G and C.

3,1. From symbols to numbers :

The symbolic DNA sequences made of the nucleotide bases 
first need to be converted to numbers. Consider a sequence of 
four symbols, such as :

S (A, C, G, T) = S = GTGCACTCCCA The sequence has 
the length 11. i.c., it has 11 symbols in all. It is made up of 
four subsequences : (i) the G sequence : G 0 G 0 0 0 0 0 0 0 0
(ii) the T sequence : 0 T 0 0 0 0 T 0 0 0 0  (iii) the C sequence 
: 0 0 0 C 0 C 0 C C C 0  (iv) the A sequence : 0 0 0 0 A 0 0 
000 A

The G sequence, denoted SG is thus
Sg =10100000000;  

the T sequence, ST, is

number of workers over the last 30 years, became generally 
known from the work of Tukey and Cooley in 1965 [36] 
FFT reduces the number of computations from something on 
the order of M 2 to M  log M , M being the length of the 
sequence given.

3.3. Fourier transform o f  S :

The Fourier transform of S, given in (2), made of four 
symbols, is taken to mean the transform of the four 
subsequences Sc , ST, Sc, and SA. From these four separate 
transforms the power spectrum of S is constructed.

It is to be noticed that the assignment of numbers to 
sequence, such as S, is not unique. It depends on convenience. 
For instance one could assign +1 for purines and -1 for 

: pyrimidines in S and construct the Fourier transform. The 
assignment of number depends on the feature of the sequence 
being studied. In our assignment we have assumed all the 
bases A, T, G and C to be independent, without a priori 
correlations.

Define the quantity Sw#a, where the subscript m refers to 
the position along the sequence S, and a  takes the values 
G, T, C, A

Sma -  1. if the a symbol occupies position m 
= 0, otherwise. (11

Sr = 0 1 0 0 0 0 1 0 0 0 0 ;  similarly 
Sc = 0 0 0 1 0 1 0 1 1 1 0  
SA = 0 0 0 0 1 0 0 0 0 0  1.

The symbols, now, have been changed to numbers.

3.2. Fourier transform :

The Fourier transform (FT) method, in many cases, is 
basically an efficient computational tool for performing some 
common manipulations of data. For some other problems, FT 
or the related *power spectrum’ is itself of intrinsic 
importance. With the help of FT, a periodic function f lx )  of 
period 2* can be expanded (probably in an infinite series) in 
terms of sin kx and cos kx% where k  = 0, 1, 2, .... In essence, 
the FT separates a function into sinusoids of different 
frequency which sum to the original function. It distinguishes 
the different frequency sinusoids and their respective 
amplitudes [32-34].

The discrete Fourier transform (DFT) [35] is a 
modification of FT. DFT of any sequence is practically not a 
continuous function, but a sequence itself that coresponds to 
equispaced samples in frequency of FT of the signal. A digital 
computer works only with discrete data; so numerical 
computation of the FT requires sample values, and DFT 
significantly helps in implementing effective algorithms for 
the edmputation.

The fast Fourier transform (FFT) is a modified DFT 
algorithm that, though implemented independently by a

The DFT of the subsequences are defined as : 

1 M
sa (<?») = X CXP

m=l
( 2 )

where S a (qn) is called the DFT of Sm a, M  is the total length 
of the sequence 5 measured in number of bases, qn are related 
to the frequencies as discussed below. The qn take the values 
determined from periodic boundary conditions.

3.4. Periodic boundary conditions :

Periodic boundary condition (PBC) means that the original 
series S, of (2), is extended with the condition :

Sm+M,a~Sm,a- O)
Imposing this extension on (2) determines the possible values 
of qn as follows :

1 M
$„(*„) = (4)

This implies :
e-*». »  s  l . (5)

Thiis, qn « -jjr n , (6)

where n takes integer values 0 to M - 1 in steps of 1.
It is to be remembered then that DFT of Sm a, defined in

(2), with the choice of qH, (6), implies the periodic boundary 
condition (3).



16 S Chat topadhyay, A Som, S Sahoo and J Chakraharti

3.5. The inverse transform :
The eq. (2) gives

1 M
Sa Ui„ ) = X  Sm a  CXP ■ m )  ‘

m-1
M -1 j A *  A # - !

Now, X  ‘S'«(9« 1 cxp = ~ ^ X X  5"' “
«-() m=l «=0

x exp (i(q„>-q„)m)

= X s*-“ 77 X  exp “ q" )m) • (7)
/// - 1 /? -  0

It is known that

3.S. Excluded volume effect:
For the sequence Sm (xt (2), each position has an occupant, 
A or C or G or T. No point of SmM is empty. Thus :

X5»>.«= 1 . f ° r&ny m - (i5)
a

In terms of the DFT Sa(q„), this translates into

X 5«^«^ = 0 : / o r" 06)

3.9. Frequencies and periodicities :

The periodic boundary condition gives (6), i.e.

M

j j  X exp ('('/«' -  qn )m) = if rn = 0;
m- 1

= 0, if m *  0.
M

Likewise exp (i(qn' ~<y„)w) = 1, ifu = w';
Wl-I

= 0, if n .

Then, considering /? = //', (7) becomes

2 n

(g) where n takes values from 0 to (A/ -  1). The frequencies, /, 
defined from qn = 2itf, gives

(9)
/  = AT

(17)

The periodicity is the inverse ol frequency and is given by y .

M i
X  •*«(</..) CXP ('</«'") = JM Sm.a- (10)

m - \

So S,„ „ = - j* -  X  5„(r/„)cxp (iqnm).
n-0

01 )

This gives us the inverse or reciprocal transformation of (2).

3.6. The reality of Sma :

The sequence Sma> (II), consists of elements that are real. 
Thus,

Sm.a = ^ 5 7 X  SttiC,n = 5'"'«

= ^ M ' L S^ )e
ri/nm ( 12)

This is ensured if

3.10. Correlations :

The correlations are usually defined with periodic boundary 
conditions (PBC), sometimes they are, therefore, called the 
circular correlations.

For the sequence Sw a , eq. (2;, the correlations K(/p 
sometimes also called auto-correlations, arc defined as :

M
^afi 5m aS) (18)

where, as usual, the Snha satisfy (3), the PBC. The PBC 
implies :

Kafl«) = KafiW + l) (19)

3.JJ. The structure factor:
The structure factors, Fâ  of the sequence SmM% eq. (2), are 
defined as [37]:

S (tfn ) ~~ (2 tt — qn). (13)

The DFT spectrum has this symmetric form following from 
the reality of Sma.

3.7. Sm a (0):
When n is set at zero qn = 0, the scries (2) gives :

5o(0 )= 7 aT  (14)
Thus, Sa(0) is just a measure of the number, Na, of symbols 
of type a  in the sequence of M bases.

Fatten)* Sa(qn)S'p{qH) (20)

These quantities, because of the symmetry of S(£qn) about the 
point qn * /r (following from the reality condition of Sm a. 
(13)) are also symmetric about the point qn ~ n.

Sum-rules
The structure factors, defined in (20), satisfy a set of sum- 
rules. These sum-rules, derivable from the definitions, are 

M-1 A4
(*) ^  (qn) 38 SmaSm  ̂ =  SapNa (21)

/i=0 m=l
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where Na is the number of bases of types a.

_  i M~x
00  Fap = JWTY) ^  Fap ^

/i=i

1
( M - 1)

NaNp
M (22)

where it is to be noticed, the sum on the left-hand-side does 
not include the zeroth harmonics.

Again from (20)

Fap^n)^S{x(qn)Sl(qn). 01)
So, using (28) and (29), (31) becomes :

Fap (2n-q„) = Sa{2n-q„)S*p{2n- qfl) (32)

and, on the other hand, using (27) and (30), (31) becomes :

Fpa(2n -</„) = Sp(2/r ~ qn )S*t (2n ~ qn). (33) 

Using (32) and (33), the equation (20) becomes

3./2. The Wiener-Khinchin relation :
The structure factors, F ap ( q n ) ,  arc related to the correlations 
KiXp through the Wiener-Khinchin relation

M- 1
f(ap0) = J J ^ Fnp(qn)e-'t'"'. (23)

n - 0

Fapa n - q n) = S^qn)Sn{cin). (34)

(Now, comparing (20) (34),

| f*aft (*/m ) fia (27t-qn ). (35)
i And for the diagonal structure factor, />., power spectrum

Fm* (</,.) =  Faa (2 7 t - q n ) .  (36)
We conclude, therefore, that given the Fourier coefficients of 
Sm a wc can calculate via the structure factors, all the 
autocorrelations that exist in the sequence.

3.13. The power spectrum : 
As Sm(X are all real,

e  ss e* (24)

Now from (11),

Sw.a = X 5« (<?n )CXP ^ " W) '
n-0  
M-1

(25)So, S'm-a = 7 ^ X 5" (//" )exp(~,V/'’w)

Since qtl = 2nn/M, [where Irt/M is the fundamental of period 
and n varies from 0 to (Af -  1). Let qn = 2 n -q n>.
So, (25) becomes

M - \

S* (2 n - qn•)exp(/<7„- w)exp(27T//i/)
ii=0

M-l
= X 5«(2 ;r_ ^ ' )cxp( ic/n'm}

n=0 [since, exp(2mm) =11.
Thus, il can be written as

So, from (25) and (26)

So (<?n) ~ Sa{2ic — qn), 

S;t (qn) = Sa(2n-q„). 

Similarly. Sp(q„) = S}(2 x-q n), 

sp(q») = Sp(2Jt-qn).

(26)

(27)

(28)

(29)

(30)

This is a symmetric function of qn with the centre ol 
symmetry at qn = n. Therefore, if qn is plotted as a function of 
qn% only half of the S(qti) values arc independent and the rest is 
just the mirror image of it.

As a stands for any of the four nucleotides (A, C, T, G) 
in DNA, the power spectrum, also known as spectral density, 
of a DNA sequency can be calculated by summing over the 
four possible values for A, C, T and G as follows :

] ? F«a(</n (37)
tt = A.(\7\0*

The power spectrum F{qn) is sometimes denoted by S(f). 
where / i s  the frequency.

3.14. Ramdomness, algorithmic complexity, information 
entropy and order:
The concept of randomness and order in sequences are 
inversely related. The random sequence docs not have any 
order. In the ordered case the knowledge of some ol the entries 
can determine acurately what the others arc. This is not 
possible for the random case. Most sequences that one finds 
are somewhere in between. They may have a certain degree of 
randomness, or order. The question we address now is : how to 
characterise this amount of randomness [38]?

To begin let us think of a symbolic sequence of two 
monomers A and B. How do we test for the randomness? The 
first step would be to carry out the frequency test. If the 
sequence is random, the proportion of A and B must be equal. 
Thus if Na(Nb) is the number of A{B) in the sequence of N 
entries

E l  = Hb.
N N ' (38)

for the sequence to be random.
Even though this condition must be satisfied, i.e., it is 

necessary, it does not assure the randomness of the sequence. 
The scries : ABABABABAB...does satisfy (30), but is not 
random.
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The step next is to cany oat the frequency test of words of 
length two ie., in this case: AA, AB, BA and BB. These four 
must appear in equal proportion. That is

t P  «
t be satisfied. It is, once again, necessary that the random 

sequence must have (39), but (39) does not assure of

The step next is to form words of length : three. In this 
cash then are 2* * 8 possibilities, they must all appear in 

I proportion : the word of length four, 2* = 16 in number, 
be in equal proportion. The words of length n, 2* in 

number, must all be in equal proportions.
Curiously, even if all these frequency tests are earned out, 

and all are satisfied, the series could still not be random. The 
well known counter example in the Champ's series (named 
after David Champemowne who first found it out), which 
consist of ten monomers 0,1,2,3,4,5,6,7,8,9 in the sequence 1 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... In view, therefore, 
randomness is difficult to define and test.

An alternate approch towards defining randomness and 
(complexity) of sequence came from the theory of information 
and algorithms, sometimes called the algorithmic information 
theory. The definition of the randomness came in the sixties 
by Kolmogorov [39], and Chaitin [40]. To generate the 
random sequence, according to the hypothesis, requires 
algorithm (ie ., program) that is as large as the sequence itself. 
Stated differently, random sequences are incompressible in the 
algorithmic sense.

While the definition of the random sequence from 
the theory of algorithms is not particularly useful for our 
purpose here, we show now that the theory of information, 
the concepts of information entropy developed by Shannon, 
does provide some measure of order and disorder in

Before we get there, let us discuss the measure of 
randomness and complexity of sequences following 
algorithmic information theory. The degree of randomness, 
or complexity, of the sequence may be measured in terms 
of the length of the minimal algorithm needed to generate 
the sequence. For the completely random sequence, the 
length of the minimal program equals the length of the 
sequence. On the other extreme are ordered 'or less 
complex sequences that may be generated by few bits of 
algorithm.

Given general sequences of N  bases, they may be 
categorised in terms of their complexity. Thus one of these 
may be complexity N -2, another of N -100, and so on. The 
exact value of the complexity below which the series is no 
longer random remains arbitrary. This uncertainty in 
quantiling randomness (or complexity) implies that the 
complexity of a sequence is roughly equal to the size of the 
minimal algorithm. Consider all the series of size N. We

can plot number of sequences of complexity m  aganist 
n [n taking the maximum value of W). It is clear that the 
number of ordered sequences are few, the majority of them are 
fairly random.

3.15. Information en tropy:

If we toss a coin, there are two possible outcomes. When we 
throw a die, the number of possible outcomes is six. This 
number of possibilities, i.e., the available number of states, is 
related to the Shannon information [41].

If /?, denotes the number of outcomes, the Shannon 
information entropy (SIE), denoted by /, is defined to satisfy -

/ be additive for independent events. Thus, if we have two 
independent events with R t and /?2 possible states, the total 
number of outcomes R = R\Ri- The constraint of additivity ot 
/requires

/( /f I/?2) = /(/? ,)+  /(/?2). (40)

Thus, /(/?) = K In (/?). Where K  is the normalisation factoi 
that wc can fix conveniently.

Consider a binary sequence of 0 and 1 of N  symbols. Let 
us say N0 of them are 0; N } and 1. In this case, the number of 
possible outcomes R , of a series of N 0 zeroes and N t ones 
clearly is

R denotes the number of independent messages that can be 
sent using No zeroes and N t ones. The SIE, denoted / is just 
the log of the available states. Thus,

/ = Kln/f=K[lnA! -  In A/0 ! -In/V,!]. (42)

If we assume that N. N0, and Nt are large numbers, the 
Stirling's approximation to the log of factorials of large 
numbers may be used, i.e.

l n N \ = N ( l n N - \ ) .  (43)

Thus, The SIE, in this approximation is

/ = K|/V(ln /V — 1) — A/0(ln No -  !)-= Ni(ln /V, - 1)], (44)

with N0 + Ni = N.
It is covenient to define the average SIE as UN, which, 

in this Stirling approximation, becomes :

(45>
Nf\ NThe quantities and are the frequencies, [see (38)], or

proportions of zero and one. If we denote these proportions by 
Po and p h we get

i ^ - K ^ p j l n p j ,  (46)

where j  takes values between 0 and 1.
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3.16. D e te rm in a tio n  o f  K  :

For the general binary series of N  bits, the possible outcomes 
r  is : R  = 2 N. If the SIE for the case is normalised to N ,

we get
K \ n 2 N =  N .  (47)

Thus, K  = log2 R  and /  = log2 R  (48)

3.17. S han non  in fo rm a tio n  e n tro p y  te n d s  to w a r d s  ex trem u m  :

The SIE, we have seen, depends on the frequencies (46). 
Changes in p f lead to changes in SIE. SIE is related to the 
number of available possibilities (or States). It has been 
proposed that this number tends to be a maximum. Thus :

~ S ^ ln p i (49)

is an extremum, subject to the constraint

ii (50)

3. IS. S hannon  in fo rm a tio n  e n tro p y  a n d  o r d e r :

The SIE is a function of the frequencies or the properties of 
the various bases. For a purely random sequence all the 
frequencies are equal, and the SIE becomes one. While for an 
ordered sequence the SIE tends to zero. The SIE of sequences 
range between these two extremes of zero and one, and provide 
a measure of the randomness, complexity and order in the 
sequence.

3.19 . S p e c tr a l  a n a ly s is  o f  c o m p le x ity , s h o r t  a n d  lo n g  ra n g e
order:
We have seen that the Shannon Information Entropy, 
SIE, denoted by the symbol /, gives a measure of the degree 
of complexity of the sequence. It turns out that a refined 
version of this measure, sometimes called the metric 
entropy, is given by

/ = lim,, ,̂arge{-^ ]£ p y (/0 logp;(n)}, (51)

where p ^ n )  refers to words of length n and the subscript j  goes 
over the number o f such words. For the binary sequence 
clearly j  takes 2 n values.

While this measure of complexity of the sequence has 
some mathematical sense, in practice the n large limit 
makes this definition difficult to implement. It requires 
measuring frequencies of large word lengths. This is usually 
possible for sequences where the algorithm for its generation 
is known, such as the Thue-Morse sequence. If on the other 
hand, n is kept small, we arrive only at short range 
correlations of the monomers. The long range order has to be 
separately analysed.

3 .20. S p e c tra l m e a su re  o f  c o m p le x ity  a n d  o r d e r :

The parallel approach to complexity or order comes from 
spectral analysis. This measure, sometimes called the 
structural entropy of the sequence, is given by

Af-l

I a “  1° F<ta (9n )»
nasi

(52)

where F a a , (20), are the diagonal elements of the structure 
factors of the sequence. The structure factors do satisfy some 
constraints, namely the sum-rules (21) and (22).

The structural entropy, under condition (21,22), is 
extremum. This extremisation leads to the solution 

a a ( 4 n ) Fa a  ** I Note < h aa  >= t  {*#], foi all c/n. Foi the
.random sequence we expect no peak and troughs in the spectra, 

i.e . , all the Fourier harmonics are of equal strength. Thus, the 
presence of the sharp peaks or troughs in the spectra denotes

1 deviation from randomness and they are, therefore, orderedt| sequences.

{ The logarithmic dependence of l a  on Fao^qn) makes it slow 
and insensitive. A more practical measure is

M-\

'."X < Fnn >
.In Fgg(<ln) (53)

For the complete sequence the structural entropy is

/  = £ / „ .  (54)

While the short range order generally leads to sharp peaks of 
F aa  and, therefore, can be read off from the power spectrum 
(37), or the structural entropy /  (53), the long range order 
requires careful analysis.

3 .21 . The sm o o th e d  F o u rie r  s p e c tra  a n d  th e lo n g -ra n g e  o r d e r  :

The short range order leads to peaks in the power spectrum, or 
the structural entropy, and are easy to identify; for the long- 
ranged order special methods are needed. One such technique, 
called the method of normalised sweep, often referred to as 
Hurst’s method, is now discussed [42].

At site m  o f sequence the smoothed out S a  [see (2)] is 
defined as follows :

S"~  mo X  3« m' (55)

where m0 clearly is the window over which the average is 
being defined. The deviation from this average S  is

m
5  (m,m)s= ^ ( 5 awi. - 5 W), (56)

where m lies between m  and m  + m0 + 1. The difference 
between the maximum of 5 (5 max) and the minimum of 8  
(4nin) determine the sweep W :

W a ( m , m  +  m Q - 1 )  = 5„ t (m, w ) - 5 min(m,rn), (57) 

the standard deviation

«cs*>» i  £ < $ « .* -s« > 2 <58>
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If we define the normalized quantity Wa(nonn)as

Wa (59)

we can determine an average <W«(norm> by varying the 
cboeen site m  over the whole aequence. This same quantity for 
the random sequence (of identical base composition) is denoted
by

(W a (random, norm)).

The difference between the logarithmic derivative, with respect 
to the w indow  size of <Wa (norm) > and <W„ (random, 
norm) > determines the long-range order in the following way. 
Let

din < iy„(norm)> din < Wg(random, norm) > 
din mo * * dnto

= seq. m o ) - H a ( random, mo)
= 4Wa(mo). (60)

If //a(seq.mo)> ffa(random,mo), (61)
the correlations are called persistent. They are antipersistent if 
the reverse, namely

Wa(seq. m0 )< Ha (random, mo) (62)
is true.

The AHa (mQ), [60] tends to zero above some m0, 
called meo,,. if the correlations in the sequence are of the short 
range. If AHa {m^) is not zero as mo is increased, we have 
long-range order.

4 . Random walks, Fickian and fractional Brownian 
diffusion
"The phenomenon of Brownian motion has been 
known since the time that van Leeuwenhoek first 
peered through a microscope. Although it must 
have been regarded as a nuisance by early 
mlcroscopists, Brownian motion has played a 
significant role in the development of our 
understanding of the physical world".

-George H Weiss

Deviations from randomness bring order. Randomness leads to 
the characteristic distribution of the monomers (for the DNA 
sequences the monomers are called the bases; for the protein 
sequences the amino acid monomers are referred to as the 
residues) over the polymer chain. The measurement of the 
distribution of the bases characterise order and fluctuations in 
the sequences. Hie random walk approach to sequences is to 
study and model the distribution of the bases [43,44],

Diffusion of the particles in a medium was reported by the 
Dutch physician van Leeuwenhoek, and was subsequently 
rediscovered by Robert Brown. This diffusion process of 
particles is known as Brownian motion. It turns out that the 
normal diffusion process follow die distribution functions of

the random walker, i.e„ Gaussian. Hence, all the moments of 
the distribution are finite. In contrast, there are other diffusive 
processes, many encountered in Biophysical systems, where 
the moments are not finite, these processes are, therefore, 
anomalous.

The random walk, underneath its randomness, hides some 
subtle regularities. The reason for the regularities may he 
ascribed to its fractal nature. For instance, the mean square 
displacement follow a fairly regular pattern. Random walk is a 
statistical fractal i.e., it is generated by an algorithm that has 
a stochastic element in it. The regularities may he ascribed to 
the fractal structure. The Gaussian distribution, so 
characteristic of random walk, is scale invariant. This lack ol 
the scale point to its fractal natuic The regularities, such as 
the mean square displacement as a function of the number ol 
steps, are ascribed to fractal correlations. The deviations, foi 
sequences, from these regular relations arc important 
characteristics.

4.1. Random walks :
The mathematical theory of the random walk is based on the 
following simple steps. Wc illustrate these steps for the one 
dimensional walker that can move right or left with known 
probabilities. The steps are

(a) Find the probabilities the single step to right, and the 
single step to left.

(b) Fourier transform the probabilities to determine the 
characteristic functions of the random walker.

(c) For an arbitrary number n of steps, obtain Un­
characteristic function by raising the single step 
characteristic function to the power n.

(d) All the mathemaUcal properties, namely, moments, the 
distributions etc . are derivable from the /i-.step 
characteristic function.
Before we illustrate these mathematical steps in detail 
let us, for motivaUon, work on the one dimcnsion.il 
random walker.

For generality consider the random walker on the one 
dimensional lattice; p  the probability of the step to the right, 
q the probability of the step to the left (Figure 12). Clearly

p + q = 1. (63)
If we consider the function [45]

pei k + qc ~ ,k, (64)
clearly, it corresponds to the Fourier transform of the single 
step probability, namely,

f ( x ) * p 8 ( x  -1) + q 5 (x  +1). (65)

Thus, [64] is the single step characteristic function. It is easy 
to verify that the probability, after 2 steps, is given by

{pe'k + qe~'k )2 = p2e2'* + +2 pq (66)
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i.e., the coefficient of e*** is the probability the walker is
at site ±2; the 2pq gives the probability the walker back to the

-1 0 +1

(a)

pq+PQ P
•*— -*■
>2 +1

(b)
Figure 12. Demonstration of a one-dimensional random walk, (a) If 
s random walker starts at 0 site, alter one step he will be either at +1 or 
at -1. (b) After one step, the probability that he ends at site +1 is p and 
that at site -1 is q. After 2 steps, he might end at any of the sites +2, 0. 
-2; therefore, the probability that he ends at +2 is p2. that at 0 is 2pq. 
and that at ~2 is q2.

starting point, zero, after two steps. Generalizing to n steps, 
the characteristic function becomes

(p e * + q e -* )* . (67)

Thus, the probability the walker is at site + m ( n i m Z O )  
is just the cofficient of eM  in the above characteristic 
function. Since we have the. completeness of the e* 
functions, namely,

(68)

we can obtain the probability />„(«), the random walker is at 
site m after n steps as

PH(m)  = J (pe* + qe~*)"eM d k . (69)

Evaluating the integral, using (68), for the case p ■ w. 
we get

„(m) = f j )  . Wj---------- f a -----------1 W

Note that when n is even (odd) m  takes even (odd) values. 

Urge n :
When the number of steps n  is large, n » l ,  we use 
Stirling formula

»!* V3swi'w"Jexp (-«), (71)
in order to simplify (70).
If we take fog, Stirling formula takes the form

ln(n)! = 'jln(2#»jr) + n.ln(n)-/i. (72)

Prom (70), we get

In P, (m) = -n. ln(2)+ ln(n)!

,73,

bi J’.(m ).  -n.ln(2) + i  ln(2nn) + n. In(n)

(n + w ). (n + w) (rt + m)
2 n 5 + ~ 2

x (74)

Simplifying (74), we get

And from (75), wc get

Pn(m) = (2/.jr)-2exp

Hence, as n ))  1. one obtains the gaussian form for Pn(m) as

- m 2

(75)

(76)

Pn(m) = (2nx)~? exp (77)

4.2. Continuum limit :

I f the lattice spacing is a and r denotes time interval between
the steps, then

x  — ma (78)
is the net displacement in time

r-nr.  (79)
The probability of displacement between x and x + dx in time 
t denoted P (x, t) and satisfies

P(x, t )dx * Pn(m)dm,  (KO)
as n —► «», T —» and a «►.

Thus, P(x t t)dx =

Theiefort, P(x, exp j.

with J r '

The probability distribution function, P (x, 0, for the case 

p * * q m j  in the continuum limit, is a Gaussian.
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The generalisation to the case of the ^-dimensional lattice 
with 2d possible step directions, to the nearest neighbour, is 
straightforward. The single step characteristic function is

P\ (k) = (p,eik< + q,e~'k‘), (83)
i=l

where X , (P< +<7i) = 1

The n-step probability, as earlier, is

Hi = (-!) '
d'P(k)

9kl k-* 0
(92)

For the Gaussian distribution, all moments are finite.
Clearly then the characteristic function of the single step 

defines all the important parameters of walk. Raised to power 
w, it yields the n-step characteristic function. The Fourier 
transform of the n-step characteristic function determines the 
spatial distributions. Derivatives of the n-step-characteristic 
function determine all the moments of the distributions.

P»(k) = [P, (*)]"• (84)

The probability distribution function Pn(x) in real space after 
n steps, may be obtained from the Fourier transform of Pn{k).

In the continuum limit, for the case when pl and qt all arc 
equal, we get the d-dimensional Gaussian function.

4.3. The chain rule :
It is to be noted that the probability distribution functions in 
real space satisfy the chain rule

f>n+i(w) = ^ / >(m-ffj0)f,«(«'o) (85)
Wlo

and the law of conservation of probability V  Pn(m) = \.

In the Fourier transformed space, the characteristic functions 
satisfy the chain rule. Written out the chain rule takes the 
form

P(*,r) = P ( M  ) /> (* .* -6 ) .  (86)

4.4. The moments of the distributions :
The moments denoted, /i/, of the probability distributions are 
averages of powers of displacements from the starting point.

/*/«<*'>. (87)

where the brackets arounds xl mean the average value o f . 
The average of a function g(x) for the probability distribution 
P(x) is given by

(£(*)) = Jg M R M rfr . (88)

Thus, Hi = (xl ) = j x ‘P(x)dx. (89)

Since the characteristic function

P(k) = J  />(*) = j i ^ / > ( *). dx

(90)

thus, Hi ~ l\H  [coefficient of k1 in P(£)]. (91)

Expressed differently,

4.5. Generating function of random walk :
The probability function Pn(jc), i.e., the distribution after // 
steps, is related by the chain rule to the probability 
distribution function of a single step P\(x) as follows :

P„(x) = j p i(x-x ').P n. l(x')dx'. (93)

In terms of the characteristic function, we know that

/>„(*) = [/>, <*)]". (94)

Thus, Pn{x) = ~ ^ \P ^ k )X e - '1' xdk. (95)

The random-walk generating function G(x, z) determine many 
important properties of the process, and is defined as

no

G(x,z) = ' £ z nPn( x). (96)
n=0

Using (94), we have

G ( * ’ Z) =  2 k  J l-zP i(k)dk ' (97)

Similar generating functions may be defined for walks on 
periodic lattice points are at

l = l,a,. (98)

Periodicity of the lattice implies

.........) = (/, +N,l2..........)

= ( / |,/2 + A(.........) = •••, (99)
where N is the period in each direction. The chain rule on the 
lattice means

/>"+l(/) = Z Pi ( / - / ' )/,»( r ) ’ 000)r
where Pn is the probability distribution function after n step 
on the lattice. On the lattice the characteristic function are 
defined with the periodic boundary conditions, i.e., the k are 
restricted to k = 2n m/N. Thus, in analogy with (95), wc 
have

P n (/)= w W X  t o w r “ p h *.o . (io i)

The lattice walk generating function is
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I y *_
N W & l-zP d iy ( 102)

4.6. The Central Limit theorem :
No matter what the moments of the distributions arc, provided 
the first and the second moments are finite, these 
distributions, to the first approximation, are Gaussian 
asymptotically. This is the statement of the Central Limit 
theorem.
Proof : We know, from the definition of the characteristic 
function

/>,(*) = JV* ' .P}(x).dx

= J(1 +ikx -1 / 2./:2.r2+...)/>|(;c).t£c

= 1 +ik < x> - l  / 2.k2 <x2 > + ..., (103) 

where the brackets <> denote the averages values.

Note that P\(0) = 1 and P\(k) < 1. For other values of k, 
the Central Limit theorem approximates P\(k) keeping only 
the first two moments, which are assumed to be finite. The 
integral (103) is thus assumed to be dominated by the region 
of small k. In this approximation if <x2> is replaced by a 2, 
the variance, defined as

<72 = <  .r2 > -  <  v > 2 , (104)

then, „  j  (Pn\k) ~ exp< n\ ik < x > ------ ^— (105)

Faking the Fourier transform of (105), wc get

1 -(„r -  n < x >)2
Pn(*)'

ctV2 mi exp 2a2 n ^  006)

This is the lowest order approximation as per the Central 
Limit theorem.

4.7. General solution of the chain rule :
The Central Limit theorem assumes the existence of the first 
and the second moments of the probability distribution 
(unctions. Provided these moments are finite, the distributions 
in the asymptotic region become Gaussian.

Are there distribution functions that do not approach the 
Central Limit? The answer to this question came from the 
work of Paul Levy. Consider the characteristic function of the 
form

/,(*) = exp{-*, I *l«}, (107)
where 0 < a  £ 2.

When a  becomes 2, f t{k) is the characteristic function of the 
I Gaussian distribution. For a  < 2, some of the moments, in 
particular the second moment, is divergent. If we look at the 

; probability distribution function in real space, i.e.s the Fourier

transform of f  (k), only for a few values of a the analytic 
form of the pdf exist. In general, the asymptotic structure, 
/>., the distribution at large x has the power law form

J (x )~ \x \->  ^ “ * +1- r ( a ) s i n m / 2 .  (108)

These distributions, with divergent second moments, do not 
clearly approch the Central Limit. The Fourier Translorni 
exists in closed form only for a few special cases :

(1) For a= 1, wc have the Cauchy distribution

/ W - T F i F T F )  ll,w)

(2) a = 2 corresponds to the Gauss distribution and

(3) a  = pleads to Zolotarev distribution, which has the 

form :

, 1 1  u/ , 4 b 2f>\ , 2 h 2
',W = V 2 ^ I Wi4 l2 7 “ } C’"’' - 2 7 7

where W\ j (x) is a Whittaker function.
5*6

The distributions like (107) were first obtained by Cauchy. 
That for a > 2, they are not positive definite was not 
recognised by him. The constraint that the probability 
distribution be positive for all x keeps a <2.

4.8. Continuous time random walk (CTRW) :
If the time between sucessive steps are not fixed but vary 
with a certain probability density wc have continuous 
time random walk. Mathematically, if T, is the time of the 
/-th step, then [461

= 7;+l -  T,
is identically distributed independent random variable.

If the probability density for the time interval between 
sucessive steps is called then ln(t) is the probability 
density for the time at which the /z-lh step is taken. Clearly, 
the chain rule yields :

/ „ ( * ) =  \ ' l i ( T ) . I n- i ( t - T ) d T .  ( I l l )

Since the above is weitten in terms of integral over time, 
the Laplace transformation are appropriate over the usual 
Fourier decomposition. The Laplace transforms of /„(/) is 
denoted In(s) and it satisfies

In(s) = [li(s)]n. (112)

We want to calculate the probability density P(x,t) that 
the walker is at jc in time t. Let us denote by J(t) the 
probability that the time between successive steps exceed or 
equal f, then
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P(x,t) = ] £  pn (T)J(t -  T)dT. (113)
n~ 0

The Laplace transform of J (/) is :

J(s) -  \~c '< d tf J(T).dT=l ~ Il(s) (114) 
Jo J/

Thus, if P(x,.\) is the Laplace transform of P(x,t), then

P(x.s) = !—^ ' £ p n(x).l?(s). (115)
«. 0

Comparing with (96), we find that the form is like that of the 
generating function. The z which did not appear to have any 
physical meaning in now related to the waiting lime 
distribution. Thus,

P(x,s) 1 -  /,(.v) f e~A '
2ns J 1 -  p(k)!{(s)' ( l i f t )

just as in (97).
We can use the expression above that docs not depend on the 
structure of P(x) but only on course properties such as the 
moments.

4.9. Diffusion-Fickian and fractional Brownian :
The Chain rule (85) is fundamental to the problem ol random 
walk. Under certain assumpations, this rule

P„t 1 (X) = |  P„ (A -  y )• p(y). dy (117)

may be written as a differential equation of the probability 
functions.

Suppose that the steps are taken at regular, small time 
intervals AT. The walker has taken a large number n of step 
so that

n A T ^ t  (118)

is finite. If we expand P„+\(x), we have

P„>\M»P(x) + At. dp(X,t)
dt ' (119)

If the jumps are in small steps, then

P.{X -  y) -  P U .O - (120)

Assume that the moments of p(x) are of the following type

-gfjxp(x).dx = v, f x 1p(x).dx = D; (121)

the other higher moments are negligibly small.

For the case where the probability of walk to the left and 
right are identical, the first moment, proportional to v, is also 
zero. Thus the Chain rule leads to the simple differential form 
for p(xyt)

If we compare with the usual Brownian diffusion, we recovei 
an identical equation for the density distribution. The usual 
diffusion, (sometimes referred to as the normal diffussion, oi 
Fickian diffusion) is governed by the Fick's law on the density 
distribution.

^  = (122,

11 1 < (123)

supplemented by the equation of continuity

&  + V.J = 0 dt (124)

where, the current density J is given by

J = p.v(/, (125)

vd being the drift velocity.

Putting the above two eqns. together, we get

-  O— P- (l26t
dt 1 dx2 ' U

Thus, the density distribution function for normal diffusion
has the same form as the probability distribution when the
first moment vanish, the second moment is finite, the liighei
moments negligible. The solution ot (126) gives usual
Gaussian Function

P(x,t) 1 I x '
“ cxpl ~ W t

(4nf)t)?
(127)

Comparing with (82), wc have the usual random walk 
distribution excecuted by Brownian motion. In this case tlu 
second moments, as a function of the number, tu of steps, 
goes as

< x2 > -  n. (128i

The normal Brownian motion is characterised by the above 
scaling behaviour of the 2nd moment. If wc write

U2g)

H, the Hurst index, is 1/2 for normal diffusion.
What happens if the second moment is not finite. The 

second moment is related to the correlation (unction K, as

< a2(/) > p / fJo Jc
dl"K(r (130)

Thus, the finiteness, or the divergence of the second moment 

is related to how the correlations behave as a function ol 
distance. If the correlations do not fall rapidly, and the integral 
on the r.h.s. of (130) is not convergent, the second moment 
diverges. This brings us to the Levy type probability 
distribution. These are allowed solutions of the Chain rule. In 

this case, the <ct2> goes as

< jc2 > -  «2"  (131)
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where H  differs from -j. The case where the Hurst index

differs from ^ is called the Fractional Brownian Motion 
(FBM).
5. Measurements on the DNA : order, fluctuations 
and modelling
"The wonderful features which are constantly 
revealed In physiological Investigations and differ 
so strikingly from what is known of inorganic 
matter, have led many biologists to doubt that a 
real understanding of the nature of life is possible 
on a purely physical basis... I think that we all 
agree with Newton that the real basis of science 
is the conviction that Nature under the same 
conditions will always exhibit the same 
regularities. Therefore, if we were able to push 
the analysis of the mechanisms of the living 
organisms as far as that of atomic phenomena, we 
should scarcely expect to find any features 
differing from the properties of inorganic matter".

-Niels Bohr

We have seen in Chapter 1 tha the DNA, the long chain 
of biopolymer, carries information from one generation to 
the text. These biopolymers synthesize proteins necessary for 
living. They are made of monomers denoted by A, T, G and 
C. If the sequence of the monomers in one of the strands of
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Figure 13(c). Frequency ( 0  of nucleotides is plotted a g a in s t  Power 
Spectrum, S(D The peak at f a 1/3 appears to be the maximum one for the 
exons of different genes; while for the respective introns, no such peak at f  
* 1/3 is noted. Tikis figure shows the exons of alpha-globin gene from 
Rhesus Monkey (GenBank J04495).

the polymers is known, the sequence in the other strand is 
obtained by replacing A by T, and G by C, or vice versa. The 
Older of the sequence of these four monomers determine all the 
information there is in the DNA. The sequences, by



26 5  Chattopadhyay, A Som, 5 Sahoo and J Chakrabarti

convention, are given for the non-template strand from the 5' 
to the 3' direction.

0.008 n

0  0 0 6  -

0  0 0  0  2 0  0  4 0  0  6 0  0  8 0  1 0 0

f requ^ncyO)

Figure 13(d). Frequency (0 of nucleotides is plotted against Power 
Spectrum, S(f). The peak at f  » 1/3 appears to he the maximum one for the 
exons of different genes; while for the respective nitrons. no such peak at f 
* 1/3 is noted. This figure shows the introns of alpha-globin gene from 
Xenopus (GenBank X 14260).

into the exons and the introns. The exons are the ones coding 
for proteins, the introns come in between the exo ' regions 
For prokaryotic organisms (roughly the lower organisms) the 
DNA sequences, almost in its entirety, code for proteins. The 
eukaryotic genes, on the other hand, consist mostly of the 
intergenic regions and the introns. The protein coding parts, 
the exons, are few and far between.

'.VO
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frequency(f )

Figure 13(e). Frequency (0 of nucleotides is plotted against Power 
Spectrum, S(f). The peak at f * 1/3 appears to be the maximum one for the 
exons of different genes; while for the respective introns. no such peak at f 
a 1/3 is noted. This figure shows the introns of alpha-globin gene from 
Chicken (GenBank V00140).

The sequences may be roughly divided into three distinct 
parts. First there are the genes that code for proteins, and there 
is the intergenic DNA. Inside the genes the sequences divide

Figure 13(f), Frequency (f) of nucleotides is plotted against Powci 
Spectrum, S(f) The peak at f = 1/3 appears to be the maximum one for the 
exons of different genes; while for the respective introns, no such peak at < 
= 1/3 is noted This figure shows the introns of alpha-globin gene from 
Orangutan (GenBank M 12157).

5. /. Short range order— the peak a tf  = 1/3 :
Analysis of periodicities, or short-range correlations, are made 
via Fourier spectrum analysis (2). In the protein coding 
regions the triplet codons are arranged one after another leading 
to the important three periodicity [47]. In the power spectrum 
(37) of the sequence, we expect therefore to see peaks at 1/3 
frequency. On the other hand for the introns and the intergenic 
regions no such peaks are expected. Figure 13 gives us the 
power spectrum of exons and introns. The /  = 1/3 peak 
distinguishes the exon regions from the rest of the sequence. 
Identification of protein coding regions for long sequences is 
an important exercise for the DNA sequences. Clearly the 
Fourier spectrum, or more precisely the peak at /  = 1/3, can 
distinguish between the coding and the non-coding regions 
[48], Such a program has some difficulty in identifying the 
beginning or the end of the exon region. The beginning of the 
exon and the end of the exon may, however, be identified from 
the start and the stop codons. It is to be remembered that there 
are pseudogenes that h a v e /=  1/3 peak, but do not code for 
proteins.

For the exon regions interspersed between introns the 
problem of identifying the beginning and the end remains. For



Order and fluctuations in DNA sequences 27

these segments there are no start codons, nor the stop codons. 
Thc/= 1/3 peak analysis for these regions merely provide the 
rough location of the exon segment. These exon regions may 
he identified by chemical identification of the corresponding 
m-RNA (see Chapter 1).

5.2. Other periodicities:
A side from the usual 3 period corresponding to the codons, 
there are other important periodicities reported for genomes of 
organ ism s. Some of these observations are summarized in 
Table 9 149]. 5

T a b l e  9 . T h e  p o w e r  s p e c t r u m , u p o n  in c r e a s e d  a v e r a g i n g , g iv e s  ris e  to  
d is tin g u is h in g  p e a k s  at d i f f e r e n t  p e r io d s  in  d i f f e r e n t  c a te g o r ie s  o f  l i v i n g
ol ganistns

Category Peaks at Period (r=  1 tf)

3 6 9

Primate present present
Rodent present -
Mammal present -
Vertebrate present present
Invet lehrate present present present
Plant present -
Bacteria present -
Virus present -
Oiganellc present -
Bacteriophage present -

5 J. Repetitive segments :
For higher eukaryotes the exons arc a small part of the 
sequence. This coding region may be about 5% of the length. 
When wc take account of the inlrons and other segments (such 
as the promoters, leaders, trailers and other regulatory sites) 
we arc still left with about 80% of the sequence that remains 
unused. For lower eukaryotes the complete sequence, or most 
of it, are used.

It is now known that a good part of the DNA are made up 
of repetitive segments, i.e. segments, almost identical to one 
another, repeated many times over the sequence. These 
repetitive segments fall into two types :

(i) Highly repetitive DNA : These may be repeated several 
hundred to several million times in the sequence.

(ii) Moderately repetitive DNA : These are repeated upto 
several hundred times.

Indeed, the repetition frequency is almost continuous. 
Some of these repeated sequences do have functions. For the 
others no functions have been discovered so far. The Fourier 
spectrum can potentially identify the repetition periods and the 
frequencies.

To summarize, the DNA of higher eukaryotes contains 
subsequences that repeat as many as a million times in 
identical or very similar copies.

5.4. The mosaic model:

The mosaic model of genetic structure says that the sequences 
consist of more of less independent units stretching roughly 
over thousand bases. The protein coding sequences have 
lengths of that order. The model simply says that the 
composition of the mosaic units can vary from one to anothci 
giving rise to a deviation from random correlations amongst 
the mosaic units [50).

5.5. The scale dependence of the f  = 1/3 peak :
It may be interesting to recall the scale dependence ol the thiec 

l periodicity for some well known sequence such as the Time 
j Morse (TM). The TM sequence is generated by the 
t substitutions [51] :

A - > A B y

B -  > BA.

It is well studied that three periodicity does play a dominant 
role in the structure of the TM sequence.

The structure factor FAA in TM sequence at the point 
q = 2zr/3 may be studied as follows. Take a window of size I 
and measure FAA (q = 2it/3). Increase the window size and find 
how Faa scales with the window size 1. The results, derived 
theoretically, yield:

where a  = 2 ~ ; therefore, 1 -  a  ~ 0.585.

In practice, it is convenient to study the normalized 
structure factors (20) defined as

= (133)
Faa

where Faa* the average value, is defined in (22) 152].

Similar analyses for the DNA sequences for the foui 
bases A, T. G and C arc shown in Figure 14. The monoionit 
forms of the curves point towards a long-range organisation in 
these sequences.

5.6. Wee frequency enhancement:
The analysis of the diagonal structure factors, F ( M ( q n ) ol 
the spectra, reveal interesting structures. Some of these 
diagonal elements, in the wee region, i .e. the low frequency 
region, appear to be well above, almost 10 times, the mean 
level. This is generally not true for all the diagonal 
elements, but only for some of them. This result clearly 
hints towards an overall long-range organisation in the 
sequences [53).
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Figure 14. The uormeliaed (tractate factor* (22, 133) for A, C. C and T, 
calculated from the fenome of bacteriophage PHIXI74. are plotted against 
window site L.

The structural entropies of the sequences have been studied 
as well. They indicate a clear deviation from the purely 
random order. The distribution of the structural harmonics 
may be compared with the expected distribution, for the same 
nucleotide composition, of a random sequence. For the random 
sequence the distributions are of the Rayleigh type. They are 
supposed to fall off exponentially. In the real sequences, 
however, the exponential fall-off is not observed.

5.7. The Hurst analysis :

The Hurst Analysis, presented in (55-62), has been over the 
DNA sequences. The results are presented in Figure 15. The 
deviations of the measurements from random realizations of 
identical composition point towards a long-range order in the 
DNA sequences [53).

F l|n n  15. The Hunt's curves (55-62) for A. C, C and T in the genome of 
bacteriophage PHIX174.

5.8. The Iff behaviour o f the power spectrum:
The long-rung behaviour of correlations, K, are directly related 
to the low-frequency dependence of the power-spectrum 
(sometimes also referred to as the spectral density), ri™»ntrd 
here by S(f). If the power-spectrum is given as (37):

j .  (134)

with fi > 0, then the corresponding correlations arc given as
[49,54],

* (* ) -— . (135)

The p  and v are related as (23)
v = \ ~ p .  (136)

The case of P » 0 gives a random sequence. Since v ranges
between 0 and 1, it is not possible to define a range for the 
correlation function. It is non-zero for all x.

It is important in the analysis of l / f  spectra to take out 
the white-noise. This may be done by comparing the sequence 
with the decimal figures of a  of of same length [49], The 
subtraction of the white-noise remains somewhat ambiguous 
[55], and we shall discuss this point subsequently. The results 
of the analysis is summarized in Table 12.

5.9. The DNA w alk:

The DNA walk is an alternate approach towards understanding 
the organisation of the bases in the DNA sequences. While the 
short-range periodicities are most clearly appreciated in the 
Fourier spectra, the longer range correlations amongst the 
bases and their distributions become transparent in the walk 
models (See Chapter 3).

The basic idea is to associate the sequence with walk. The 
ways to do it are many and the choice depends on what 
features of the sequence one is interested in studying. For the 
DNA sequences consisting of 4 bases, we illustrate below 
some possible choices.

(i) One-dimensional Walk : There are many possibilities 
here. Any two of the bases could be taken to signal the 
walk step of one step, +1, to the right; the other two, 
the walk step -1 to the left.

The most popular of these choices is the purine- 
pyrimidine (PuPy) [56] walk where one moves in opposite 
directions depending on purine (A,G) or pyrimidine (C,7). We 
shall discuss the PuPy walk in some detail in the ensuing 
pages.

(ii) Two-dimensional Walk : Once again there are many 
choices here. Any two of the four bases may move 
us in +1 step along the x-axis; the other two 
could be chosen to move us 4-1 step along the 
y-axis. Since the two-dimensional walk is but a 
minor variant of the walk in 1-d we do not consider it 
here.

(iii) Four-dimensional Walk : The walk in 4-d  is unique 
and directed. Here the A , C ,G  and T  are all 
independent axes along which the sequence makes the 
walk. A moves +1 in the A direction, C  moves +1 
in the C direction, G moves +1 in the G  direction 
and T  moves +1 in the T  direction. The sequence



Order and fluctuations in DNA sequences 29

is uniquely mapped to the walk, unlike in the 
lower dimensions where the mapping is not unique 
[49.551.

Wc shall discuss this 4-d walk as it is of interest to us. 
Since it treats all the bases independently, it does not 
introduce spurious correlations unlike in the lower 
dimensional walks.

5JO. Perspective on the DNA walk :
The basic strategy of the walk models may be summarized as 
follows:

(i) Plot the walk and measure the averages of quantities 
such as moments, displacements etc. and find out how 
they scale with the number of steps.

(ii) Compare the scaling behaviour to that of random walk 
(131).

(iii) If there arc significant deviations in scaling there exists 
correlations in the sequences.

(iv) It is necessary to find out if the scaling properties 
change with the number of steps. Such changes would 
imply existence of hidden scales in the sequences. They 
imply deviations from purely fractal behaviour.

(v) Characterise the correlations and the deviations from 
randomness and lractality. Find out how these relate to 
the physiological characteristics of the organisms.

In practice there are several pitfalls that one has to look 
out for. These arc

(a) The proportions of A, C, G and T in most sequences 
are different. Thus, while comparing with the “random" 
sequence, the randomness needs to be clearly defined. 
The differences in the proportions of the bases are 
referred to as the strand bias.

(b) All the sequences we are dealing with have finite 
lengths. The exon sequences are typically of length of 
the order of few hundred to a thousand. The effect of 
the finite size needs to be carefully analysed.

(c) The repetitions, the mosaic structure, sometimes also 
called the "patchiness", of the sequences need to be  
carefully kept in mind in investigating the nature of 
the correlations.

The walk is particularly suited for investigation of long- 
range correlations that may not appear as peaks in spectral 
analysis. These long-ranged organisation may not be due to 
the repetitions in the DNA sequences. The plots of walks, the 
analysis of the moments, cumulants, and their scaling 
properties reveal the existence of hidden scales of the
sequences.

£ / / .  The one-dimensional PuPy walk:
The purine-pyrimidine (PuPy) walk has been the subject of 
major investigation over the last few years. The reasons for

this focus on the PuPy walk is mainly because of its simple 
mathematical framework. If the DNA sequences have to be 
modelled on 1 -d walk there arc many possible choices, the 
PuPy walk is really as good as any (55).

The basic steps of the PuPy walk arc as follows — The 
walker steps right, u(i) = +1, if pyrimidine (C or T) occurs at 
the i-th position along the DNA chain; the step is to the left. 
u(i) = -1, iI purine (A or G). The positive steps correspond to 
concentration of pyrimidines; the negative steps to purines.

The statistical quantity of interest for this is the root mean 
square fluctuation from the average displacement. The quantity 
F(l) is thus

F2(/)=<4v(/)2 > - < A*(/)>2. (137)

i
where Ax(l) = x(l{) + 1 ) - x(/0) and .*(/) = ^Tw(/).

i-0
The averaging <> indicates that /0 has to be varied through 

the sequence.
The mean square fluctuations F(l) may be related to the 

correlation functions defined in (18). The correlations above 
mean are defined as

The relation is
i /

FHD = 11 K(j-l).  (139)
*-l 7-1

The measurements of F{1) can distinguish between the 
following possibilities :

(i) If the bases are randomly arranged, K(l), the
correlations, arc zero except for tf(O), which is equal to
1. Thus

F2(/) -  /, (140)
as expected of the random sequence.

(ii) If there are short-ranged correlations extending upto a 
length of £, then

K(l)~ c x p | - j | .  (141)

However, asymptotically i.e. as l the correlations are 
random; thus

F2{1) ~ / , (142)

for large /»  £.
(iii) When there are no characteristic length in (he walk, the 

correlations K(l) are likely to be power laws, and the 
F1{0 also follows the power law behaviour (131)

F ( / ) - / “ , (143)
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where (t is dcviaied from 1/2. Note the value o! a  = 1/2 
characten/es Brownian motion, i.e. random walk.

The results of the analysis of the scaling of F(l) vary for 
the exons and the introns. For the exon regions, a  is found to 
be near to i/2. For the introns there is a significant difference, 
Of differs from 1/2.

The data for the introns and intergenic regions show that Of 
is substantially more than 1/2, indicating the long-range 
correlations in these regions. For exon regions the log-log 
plot is not linear; the slope changes from 0.5 for small 1 to 1 
for large 1. The exons are interrupted by long intron regions. 
If the fluctuation analysis is confined to a single patch of the 
exon region (as opposed to splicing the patches together to 
form the complete gene or coding region), the value for a is 
near to 0.5. The value varies from one protein coding region 
to another. This indicates that the exon patches, despite the 
short-ranged periodicities, have somewhat lower longer range 
correlations, compared to the introns, upto the size of the 
patch.

The results of the PuPy walk has to be interpreted with 
caution. The reasons arc :

(i) The long-range correlation studies from the power 
spectrum give somewhat different results. They show

-jjf behaviour for the power spectrum [49].

(ii) The components of the correlation matrix Kap obtained 
in the PuPy and the power spectrum are different.

What is the meaning of the long-range order? Docs it have 
some physical implications in terms of observable 
biophysical effects?

An independent check on the order in the coding regions 
came from the GRAIL neural network approach. The GRAIL 
neural algorithm is trained to identify the protein coding 
regions in the DNA sequences. The GRAIL was fed random 
uncorrclatcd sequences generated artificially. It was also fed 
artificially produced long-ranged ordered sequences of sizes of 
about 105 bases. Amongst the random sequences several were 
identified by GRAIL as exon sequences. A less number, 
amongst the ordered ones, were picked up by GRAIL as 
candidate exons [58].

The value of the exponent a may be calculated for small 
windows of nucleotide bases. This is done in an approach 
called DFA (detrended fluctuation analysis). The minimum 
value of a usually falls on the coding regions; the maxima on 
the introns. Based on these results software has been developed 
that identifies the approximate region of the exons as opposed 
to the introns. This software has had reasonable success.

The intron regions contain tandem repeats such as 
AAAAAA. Such repeats do not occur in the coding regions. 
This may be one of the reasons for the organisational 
difference between them. Yet, as we move away by about 
1000 bases, which is typical size of the protein coding regions

of a gene, the F(l) typically undergo crossovers, indicatino 
changes in the proportions of the four nucleotides in tlu 
sequences. Beyond these approximate 1000 bases, the 
existence of the long-range order in exons seems to he 
indicated in some mesearements. Thus upto about 1000 bases, 
that is within one protein coding region, the arrangement is 
almost random.

5.12. Detrended fluctuations :
In the analysis of long-range order, it is important to 
eliminate the effects of hidden underlying bias in the 
sequences. For the PuPy the major bias is that purine and 
pyrimidine do not occur in equal proportions in the sequences 
This hidden bias of compositional complexity needs to he 
eliminated to establish the existence of the real long-range 
order [59].

The effect of different G + C content, i.e. purine density 
at different parts of the sequence may be eliminated by 
detrending.

For this purpose the DNA, sequence is divided into 
smaller segments. The total number of symbols divided 

Mnow into — subsequences each of length /. The subsequence 

are lebcled by the index s. The bias in the box s is

1 w
#/(.V) = y  -V(/7). [144)

l)/4l

The detrended variable X[(n,s)  is defined as

Xf(n,s) = x(n)-nBi(s) for (,v-l)/+ I <n<sl. (145) 

The variance over the segment is 

1 sta2(s,l) = j  J  -C|(h..t). (146)

The fluctuation Fj(/) is the average of over segments and

depends on the segment size /. Once again, from the hchavioui 
of Fj (/), namely

F j ( / ) - / 2// (147)

allows the evalution of H. If H is close to 0.5 we have 
random walk. For H > 0.5 we have long-range correlated 
sequences.

For introns H has been shown to exceed 0.5. Foi 
intronless sequences H is near 0.5 below a certain 
characteristic length, and exceeds 0.5 for larger lengths [60 ].

5J3. Four-dimensional walk:
The walk in 4-d treats all the bases A, T, G and C 
independently and, therefore, does not introduce spurious 
correlations in the system. Since the bases A, T, G and C 
signal +1 step move in the A, T, G and C directions, this is a 
directed walk that never turns back [55].
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Tte characteristic faction of a tingle step it (83):
+ (148)

where p< is the probability of a step in the i-th direction. 
Using the law of convolution (84), the characteristic function 
for n steps is

Figure 16. Window size (1) is plotted against corresponding average 
second moment (/i2 ) for the beta-globin gene from Xenopus (GenBank 
Y00501). We have two curves, one for the experimental values while the 
other for the theoretical values drawn from the analytical calculations for a 
sequence with same base composition. The (al) shows the plots of line 
connecting points for the exons; here solid circle (•) symbol represents the 
theoretical values and hollow triangle (A) symbol represents the 
experimental values.

Figure 16. Window size (1) is plotted against corresponding average 
second moment (/12 ) for the beta-globin gene from Xenopus (GenBank 
Y00501). We have two curves, one for the experimental values while the 
other for the theoretical values drawn from the analytical calculations for a 
sequence with same base composition. The (a2) shows the power law fitted 
plots for pasts of the exons; hem the solid lines represent the theoretical 
curve* and the dashed lines represent the experimental curves. In each 
case, the theoretical curve shows the moments for the random sequence 
with base composition (i.e. the proportion of A, C, G, T) same as the DNA 
sequence. The deviation of the experimental curve from the theoretical one 
tafowes correlation.

Figure 16. Window size (1) is plotted against corresponding average 
second moment (P2 ) for the beta-globin gene from Xenopus (GenBank 
Y00501). We have two curves, one for the experimental values while the 
other for the theoretical values drawn from the analytical calculations for a 
sequence with same base composition. The (bl) shows the plots of line 
connecting points for the introns; here solid circle (•) symbol represents the 
theoretical values and hollow triangle (A) symbol represents the 
experimental values.
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Figure 16. Window size (1) is plotted against corresponding average 
second moment 0*2) for the beta-globin gene from Xenopus (GenBank 
Y00501). We have two curves, one for the experimental values while the 
other for the theoretical values drawn from the analytical calculations for a 
sequence with same base composition. The (b2) shows the power law fitted 
plots for parts of the introns; here the solid lines represent the theoretical 
curves and the dashed lines represent the experimental curves. In each 
case, the theoretical curve shows the moments for the random sequence 
with base composition (i.e. the proportion of A, C, G, T) same as the DNA 
sequence. The deviation of the experimental curve from the theoretical one 
indicates correlation.
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Pn(k)~( pAe,k' + p-ft** + pc**' + Pc** 1 * **4 )* • (149)
The probabilities pA, Pr* Pa* Pc arc obtainable for the 
sequence. They are the proportions of A, T, G and C 
respectively. Thus;

_ No. of times the symbol i appears in the sequence 
P* Total no. of bases '

The moments of the distributions are calculable from the 
characteristic function of n-steps, (91-92). The first and 
second moments are given by

P\ = /( /- l) ./? f  +/./>h 050)

fj2 =I[U-\KPa + Pt  + Pc  + Pc ) +)] '  ( i51)
where / stands for the window size.

Figure 16 shows the typical plot of p2 as a function of the 
window size /. The deviation from the theoretical expression 
(150-151) points to the internal organisation in the DNA 
sequences.

The Figure 16 shows that for small values of the scale the 
sequences may be steeper than the theoretical prediction. The 
second moment

H i  = / | ( / - l ) ( / ' 3 +  Pt  + Pg + P c ) + \\< ( ,5 2 )

for a window of size / is just the square of the vector distance 
between the end points. This is averaged over the whole 
sequence. Thus a steeper slope indicates an increase in 
persistence. These persistence may continue through the 
sequence, or may crossover into antipersistence at a higher 
scale. Figure 17 illustrates the meaning of persistent/ 
antipersistent behaviour.

We look at the local values of the second moment as we 
move along the sequence, the typical behaviour is illustrated 
in Figure 18. The tandem repeats lead to sudden hugh rise in 
the local moments. Otherwise, they arc distributed as shown 
in Figure 18.

5 .!4. Base organisation in DNA :
To summarise the results of the measurements on the DNA 
sequences, we have:

(i) Introns and Intergcnc Regions : No universal short- 
range periodicity. Existence of the long-range order is 
noted. The autocorrelations for these segments show an 
inverse power law decay. The typical form of this decay 
has the structure

(153)

(ii) Exons : For these segments there is the short-ranged 
periodicity typified by the sharp peak of the power 
spectrum at /  = 1/3. This is presumably due to the 
triplet codons sitting along the exon segments.

As we go to distances larger than 3 bases, the exon bases 
enter random fluctuations with no significant correlations. 
Further out, that is, as we move from one gene onto the next,

there begins, once again, an inverse power law structure of th e  

autocorrelations.

The above characterisation of the various segments of the 
DNA points towards the complexity of the sequences. As the 
sequences are subdivided into segments these segments do not 
show randomness. The sequences behave somewhat differently 
at different scales [see Chapter 2].

There are some indications that the long-range 
behaviour, in particular the exponent p in (134), may be 
characteristic of phyla to which the DNA belongs [49] 
(See Table 10).

Table 1(1. The variation among different categories of living organisms in 
the value of p, averaged over a number of sequences from each categor>

Category Avg p Value

P n m a t c  0 . 7 7

R o d e n ! 0 .8 1

M a m m a l  0  8 4

V e r t e b r a t e  0 .8 7

I n v e r t e b r a te  1

P lant 0 .8 6

V i r u s  0  8 2

O r g a n e l l e  0 .7 1

B a c t e r ia  1 1 6

B a c t e r io p h a g e  1 0 2

The long-range order, i.e. non-zero values ol P in (134), 
is sensitive to the method of analysis. Clearly log S(/) 
vs log /in  (134) when plotted ought to give rise to a straighl 
line with slope of -/?. In practice the above plot is rarely 
linear. The subtraction of white noise may take the plot a bil 
more linear. A linear fit in the low frequency region can then 
give us the value of/?. However, there is no consensus on the 
frequency region where the fit is to be carried out. Further, 
the data for p , presented in the literature |49,56], averages 
over phyla. The variations in P from the averages appear as 
meaningful as the averages themselves. More important is to 
find an unambiguous method for determining p. We note here 
that the averaged p values obtained for the sequences from 
Genbank are [56] :

(i) for exons : P = ().(X) ± 0.04,

(ii) for non-coding regions : p = 0.16 ± 0.05.

5.15. DNA modelling :
The results above place constraints on modelling of the DNA 
sequences. The evolution of the sequences as we go from the 
prokaryotes to the eukaryotes requires careful understanding. 
The modelling has to account for this evolutionary pattern and 
identify the underlying physical laws.
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Broadly there have been three different approches to 
the DNA modellings* All of these models carry out sequence

DNA sequences. The inverse power law of correlations are 
difficult to generate.

figure 17. The second moment, U2 for the persistent nature of
A or C (/.«. one A or C is followed by another A or C respectively), 
ii greater than that for thi antipersistent nature of A or C {i.e. an A is 
followed by a C, or a C is followed by an A). The /I2 for a 4-step persistent 
walk has a value of 16, while the /12  for a 4-step antipersistent walk has a 
value of 8.
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n«nrt II . The secood moment i» plotted (gainst the number of window, for 
•  fixed window fine 4. The sequence (elected to the total intron region of 
the o-globin gene from Xtnopus (GenBank X14260).

mainpulations, i.e., update a sequence by means of some 
rules.
(I) Markov chain models
Here the assumption is that the last base “emits" the one that 
follows in the chain. In mote sophisticated versions of these 
models the last n bases "emit" the base that follows, the so 
called n-step Markov process.

The difficulty  in the Markov Chain models is that they 
rarely have long-range order that is so characteristic of the

(11) Cellular automata approach
Here local law of updating is proposed that is supposed to 
mimic the rules of the DNA mutations. Once again, starting 
from the local updating rules the long-range correlation 
structure shows, usually the exponential fall off, as opposed 
to the inverse power-law behaviour (611.

There are some candidate cellular automata models that do 
ihave possibilities of inverse power law correlations [62]. 
These propagate local effects with a low randomness level. 
These "edge-of-chaos" models have been studied widely. There 
jnlso exist models of cellular automatas with solitonic 
ĉonfigurations and sometimes leads to l / f  type spectrum. 

These topics take us beyond the scope of the present review,

{III) Inflationary models
These are models that generate the sequence starting from a 
single or a few bases. We have touched upon the well known 
Thue-Morse sequence in our discussions of the/= 1/3 peak. 
There are methods of sequence generation that provide the 
correlation structure shown in the DNA sequences. Here we 
discuss some of these inflationary models.

(i) Expansion-modification system {63]

The expansion modification is an algorithm to generate a 
sequence that has long-range inverse pow er law  correlation o f 

symbols. In its simplest form the algorithm is :

Step i 1
Step i + 1 11 0
Probability 1-p p

Clearly the algorithm generates a binary sequence of 0 and 1. 
The algorithm, stated in words, changes 1 to 11 with 
probability 1-p, or to 0 with probability p. Similarly 0 
is changed to 00 with probability 1-p, or to 1 with 
probability p. ^

When p is small, the sequence generated show a -j j  
power spectrum with fi close to 1. By changing the value of p 
we can get other values of fi. Thus by choosing appropriately, 
it is possible to maintain the value of fi of the starting 
sequence.

It is known that fi depends on the category of the organism 
as shown from the analysis of the Genebank data. The control 
parameter p, sometimes called the mutation rate, in that sense, 
signifies the differences in the evolution of gene categories.

(ii) Insertion models (64)

The “model" of evolution by "mutation" of bases as proposed 
in the expansion modification system fails to address the issue 
of repetitions observed in the DNA sequences. These 
repetitions suggest that the dominant mechanism of evolution

0
00 1

1-P P
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could be the process of duplication of segments, followed by 
the insertions of these duplicates at various sites along the 
sequence. The general observation is that the duplicates may 
undergo some mutations, while the original segment (from 
which the duplicates are made) remain unmutated and in tact. 
In other words, the working original is left untouched, while 
the duplicated copies are subject to evolutionary process. In 
the Insertion models the idea is to begin with segments that 
are repeated many times in the DNA sequences, lake for 
instance the LINE I segment which has a length of 6139 
bases. This segment codes for protein. In the human genome 
the LINE1 or its variations appear about 107000 times. II we 
look at the genome of Chimpanzee, which is quite close to 
the humans in the evolutionary scale, the L1NE1 or its 
fragments appear 51000 times. Thus the difference in the 
LINE1 content between human and Chimpanzee is large. This 
difference has come about in a short lime in the scale of 
evolution.

Since the LINE1 is a protein coding segment the 
insertions of LINE1 so many times in the sequence imply the 
followings :

1. The corresponding protein is required in large quantities 
for the biological systems such as humans and 
Chimpanzee. Chearly humans require more of this 
protein.

2. Since these are coding regions, the bases aic arranged in 
morc-or-less random order. The fluctuations F(l) scale as

/ ^ ( / W 172. (154)
There arc similar other segments which repeat over the 
sequences. ALU for instance is a protein coding stretch of 290 
bases that is found several times in the sequences.

The idea of insertion model is to develop a complex 
sequence by insertions of simple random segments. The 
algorithm is summarized in the following two assumptions :

(a) The probability of finding a repeated segment of length 
/ in the sequence goes as

(155)

where p is an adjustable parameter that is related to the 
exponent of the inverse power law of the long-range order.

(b) The segments do not have any long-range order in 
them. These parts may have short range order or 
periodicities and may be modelled by n-step-Markov 
processes, with small values of n.

This insertion model of evolution leads to the Levy walk 
that has inverse power law correlations in the long-range. The 
correlation exponent a  is related to the control parameter n as 
follows :

a  = 1 fo r f i  £2  
= 2 -ju/2 2 <fi  <3
= 1/2 * i£3 . (156)

Thus the case of /J between 2 and 3 is of interest. In this 
case the distribution P(l) has a diverging second moment 
The first moment, however, is finite. Note that the 
distribution />(/), given in (155) does not have any special 
length scale.

As / increases, the fluctuations F(/). in the log-log plot ot 
F(l) vs /, increases and asymptotically, for very large values oi 
/, reaches the value of (X = 0.9.

A generalized version of this model allows for deletions 
and also insertion of intron elements according to the 
distribution law (155). Starting with a statistically 
uneorrclatcd stretch of myosin heavy chain (MHC) 
coding sequence, the delation-insertion model has tried to 
chalk out the evolutionary pattern of the MHC gene. 
The value of a increases as we go up in the evolutionary 
chain.

(iii) Copying mistake map (CMM) [65 J
The expansion modification system creates a sequence with 
long-range inverse power law correlation of arbitral> 
exponent On the other hand the insertion models and its 
generalisations create long range order by insertions anil 
random delations of random segments distributed as an inverse 
power law of the length of the segments. Both these methods 
of sequence generation model aspects of the DNA sequences 
They arc, however incomplete and do not have an unified 
approach to the different parts, /> ,, the coding and the 
noncoding regions of sequences.

The Copying Mistake Map (CMM) by contrast takes an 
unified view of the DNA sequences. The CMM is based on 
the following observations :

(a) The fluctuations F(l), defined in (137), scale differently 
than the usual random walk. The usual random walk 
leads to the Gaussian probability distribution. Since 
the correlations have inverse power law behaviour, the 
corresponding probability distribution, must have long 
tails typical of the Levy. The "diffusion" is thus of the 
anomalous variety.

(b) This anomalous diffusion and long range order is 
generated in CMM by modeling the DNA sequences a 
la' continuous "time" random walk. The waiting "time’ 
distribution is chosen to generate the long-range 
correlations.

(c) Simultaneously, a point mutation, of the white noise 
variety, works to randomise the sequences.

(d) The strengths of these two opposing ingredients, the 
one that brings order; the other that randomises, are 
adjusted to fit the DNA sequences.

The precise physical understanding of the waiting “time” 
in the DNA continuous "time" walk remains unclear. These 
waiting times are chosen to have the inverse power law form 
with finite first moment.
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In the general diffusive process, the diffusive variable x 
is related to the stochastic variable, such as velocity v>. that 
causes diffusion as:

(*2<r>)«  (*2<0)) + 2( v 2 ) J V J V *  (O . 

where Kit) arc the correlation of the stochastic variable

(« ’ )
For the processes that are stationary, the correlations depend 
only on the time difference

t - 0  = t.

If the correlations are of the normal type, there exists a time 
scale T such that

The correlations usually decay quickly so that r is finite. The 
eq (157) in this case simply result

( x H t ) )  = ( x H 0 ) )  + 2D t ,  (160)

where the diffusion coefficient

D = ( v 2 ) x. (161)
The Central Limit theorem for this case works and one has 
asymptotic Gaussian form.

If on the other hand r is not finite, we have the anomalous 
case. A simple way to realize this is when the correlations 
have inverse-power law behaviour

K ( t ) ~ j p  with0<y?<l. (162)

The correlation time t diverges; the Central Limit is no longer 
realizable.

It turns out that the correlation function is related to the 
waiting time distribution w(r) for changes in the stochastic 
variable v(r). The correlation K  is related to was follows ;

r<7-f)aK7>#r
K(t)  = ± — --------------• (163)

j T ( 0 ( T ) . d T

Thus if 064)

with 2 < n  < 3, f l in (162) ranges between 0 to 1, since

P = 2.
Thus the waiting time distribution of the form (164) leads to 
an inverse-power correlation* resulting in anomalous 
diffusion. The connection with anomalous diffusion becomes 
transparent with

057)

(158)

<jr 2> = /2tf (165)

where H -  2 - H / 2 .

Thus H ranges form 1/2 to 1, indicating deviation form the 
normal diffusion exponent.

It is known that above behaviour arise from characteristic 
function of the Levy form :

P(k, f) = cxp 1-61*1“ .r j, (166)

with a  -  n  -  1. It is known how to generate this type of 
waiting time distribution by using deterministic maps. We 
shall not concern here with this exact form of the update 
algorithm required to generate the inverse power distribution 
(164).

For the DNA sequences the bases are the stochastic 
variable and may be chosen to assume ±1 values depending on 
purine or pyrimidine (say). The analogy with diffusion 
means that in this case there are the possible choices ol 
velocities, vt. However the long-range correlation of bases 
ensured by the waiting time is not sufficient to generate the 
DNA sequences. A further noise that randomises is introduced 
as follows :

v, is updated a la deterministic map that produces (164) 
with probability £
v, is updated to ±v, with probability 1 -  £.

The second moment < jc2> under the action of the 
deterministic plus the random updates takes the form :

{x2(l)) = A P "  + Bl, (167)

where the factor H  now is solely determined by the 
deterministic map that has the power law waiting distribution 
The difference between the intron containing and intronlcss 
sequences are obtained by varying 1 -  £, the copying mistake 
probability. The ratio

A e 
H l -  £' (I6X)

when B is larger than A, suppresses the long-range effects.

5.16. Facts and Physics o f  evolution :

It is important to remind ourselves of the simple facts about 
the DNA evolution.

(i) In the prokaryotic genomes, in the majority of cases, 
the bases are all used for protein coding The un ions 
and the intergenic regions arc, by and laigc, absent 
This ‘economy’ of base arrangement help these 
biological entities to reproduce on very short time 
scales (The reproduction entails the duplication of the 
genomes). It is also known that the prokaryotic genes 
contain less of repetitions. These coding sequences are 
characterised by long-range inverse power law 
correlations.
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(in As wc move “up” in the scale of biological evolution 
mto higher and higher eukaryotes we have

(a) The appearance of the introns and the intcrgenic regions 
marked by long-range power law correlations.

(h) The relatively short coding regions have almost random 
arrangement of base pairs. However when the introns 
arc spliced out, and all the exons are put together, the 
data ic veals the appearance of the ubiquitous long-range 
correlations.

(c) The appearance of the introns and intcrgenic stretches 
do slow down the process of genome duplication and 
consequently the time it takes to reproduce.

(d) The large amount of base repeats in these organisms 
usually point towards the increased necessity of certain 
proteins and enzymes. Since these proteins are required 
in larger amounts, they have to be produced more 
relative to the others. Hence the repeats.

(c) The structural complexity of the sequences is indicated 
when it is subdivided into smaller segments. The 
segments do not have similar statistical character. 
While the introns have order, the small exon elements 
appear disordered, but with a peak at f  -  1/3 in the 
power spectrum.

5.17. The DNA tertiary* structure :
The DNA, or more precisely the nucicar DNA, occurs in 
chromosomes in conjunction with proteins. The DNA, 
stretched out, could be as long as a meter in length', such as in 
the humans. Inside the chromosome, however, they remain 
coiled into a region of 10 6 meters.

There has been an effort towards understanding the long- 
range correlations in terms of the constraints on the DNA 
coiling, />., the tertiary structure of the chain. The intial few 
steps of size reduction is brought about by the proteins (called 
histones) around which the DNA complex binds into spiral.

In a recent work properties of polymers wc studied under 
the following conditions [66J :

(i) that the polymer be confined to the minimal volume,

(ii) that they remain knot-free. This follows from the 
requirements of the duplication and the transcriptions of 
the genes. This kind of packaging of polymers, called 
the crumpled globule structure, seems to require a long- 
range correlation of the bases with the Hurst index of 
2/3. Interestingly, the Hurst index of the intron and 
the intcrgenic regions of the DNA sequences are near 
this value.

6, An assessment

“In Nature’s infinite book of secrecy 
A little can I read”.

-  William Shakespeare

There has been an upsurge of interest amongst physicists in 
the DNA in recent years. The discovery of the structure of the 
DNA and the subsequent deciphering of the genetic code mark 
two high points of research of this century. Ycl, there arc 
parts and features of the DNA that remain beyond our grasp. 
These parts, amusingly enough, constitute the bulk of the 
DNA. They have been called the “junk" DNA, and swept 
under the rug. The recent interest of physicists stems from the 
belief that the “junk” DNA is ready now for another attempt at 
deciphering.

It began in the early part of the nineties when the analysis 
of the power spectrum of the DNA showed that it goes like 

w here/is the frequency. Simultaneously, the scaling 
behaviour of the second moment of the DNA distribution 
showed that the Hurst index deviates from 0.5. In this analysis 
the DNA sequence was considered to be a sequence of purines 
and pyrimidines. The sequence was thought of as a walk on 
these purines and pyrimidines. Normally, if purines and 
pyrimidines are distributed randomly over the sequence, the 
mean square displacement from the origin (the starting point) 
should go as the number of steps raised to the power twice ot 
the Hurst index of 0.5. If we detect a deviation from 0.5 tor 
the Hurst index, the sequence has long-range correlations.

The detection of deviation from the value of 0.5 of the 
Hurst index came first for the “junk" parts of the DNA. These 
“junk” parts, made of the introns and the intcrgenic regions, 
therefore, have inverse-power-law correlations over the long- 
range.

For the exons, /.c\, the coding regions, there arc short- 
ranged periodicity, of period 3, arising from the triplet codons. 
Over intermediate ranges, the exon sequences, curiously 
enough, show random arrangement of purine-pyrimidine 
bases. As wc go further away, putting the exon segments 
together by splicing out the introns, the long-range order docs 
seem to return. The order, however, is weaker.

Usually, that is in good majority of circumstances studied 
in the physical world, we are familiar with correlations that 
die off exponentially. Wc know, however, that near the second 
order phase transition, correlations exist over all length scales. 
Near this sort of transition, the systems have no preferred 
scale, and therefore, are scale invariant. Interestingly, in one 
dimensional systems this type of behaviour is not common, 
even unexpected.

The inverse-power-law correlations, seen in the DNA, arc 
observed in many other natural phenomena. The 1 racial 
property is generally held to be responsible. For fractals imply 
the absence of any intrinsic scale. Inverse-power-law correlated 
systems do lack the decay lengths so characteristic of 
exponential correlations. The DNA, in that sense, shows 
fractal nature.

The regularities shown in random walk are well studied. 
All the moments of the underlying distributions are precisely 
predictable. The random walk is a fractal, albeit a statistical
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(racial. The Hurst index for the second moment is The 
deviation from this value for the Hurst index for the DNA 
implies :

(i) that the DNA base distribution is a statistical fractal;

(li) that the base distribution has long-range tails.

This kind of distribution does not follow the Central 
Limit. Instead, the general solution of the chain-rule of 
probability distribution functions given by Levy is, 
appropriate. The walk executed in purine-pyrimidine bases; 
appear more like anomalous diffusion or Fractional Brownian^ 
Motion.

If the DNA are indeed statistical fractals, and have
regular features, it must be possible to generate sequ~,__^
with features of the DNA. Most of the DNA modelling are? 
efforts in this direction. The symbols are manipulated and- 
sequences generated to have features statistically similar to the1 
DNA sequences.

The progress in understanding the regularities in the DNA 
have been rapid in recent years. There is a lot, however, that 
remains to be understood.

The notion that the DNA is fractal-like, once again, is just 
a part of the story. In practice the DNA sequences have many 
scales.

There have been efforts at relating the tertiary structure ot 
the DNA to the long-range order. The Hurst index of order is 
close to the number calculated for knot-free coiling of DNA 
into crumpled globules. The physical meaning and the 
purpose of the order require further attention.

The story that began almost a century-and-a-half ago in the 
laboratory of Meischer and the pea farm of Mendel has come a 
long way. There is but a good bit that remains untold.
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