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Abstract An effective pair potential 1s expressed in a modtficd Lennard Jones (12-6)
form by simply replacing the duameter of a molecule o by o~ (T*, A*) and the well-depth €
by € (T™*. A*), where T* 1s the reduced temperature and A* the quantum parameter This
theory 1s employed to calculate the quantum corrections to thermodynamic and transport
properties of sumple systems In all these cases the agreement with experimental results 1s
fairly good
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1. Introduction

The purpose of the present work is to describe a theory for calculating the quantum corrections
to the thermodynamic and transport properties of semiclassical fluids, whose moleculcs intcract
via a Lennard-Jones (LJ) (12-6) potential. In a theoretical approach, the quantum features
(excluding those due to the exchange cffects) may be included by replacing the bare pair
potential with an effective pair (EP) potential [ 1], which may be a function of temperature and
thermal wavelength. The EP potential is not unique, different properties lead to different EP
potential [ 1. 2]. However, using the bare LJ (12-6) potential, it can be expressed in the ‘modified’
LJ (12-6) potential form [3,4]. The cffective I 1(12-6) potential derived by Young [3] is not based
on the well-defined mathematical procedure, whereas Singh and Sinha [4] has used the Wigner-
Kirkwood expansion approach [1] to derive the effective potential. The cffective LI (12-6)
potential derived by Singh and Sinha [4] was employed to calculate the thermodynamic and
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transport propertics [4, 5]. However, this theory provides good results when the quantum
effects are small.

In the present work. we improve the effective LJ (12-6) potential and then apply it to
estimate the quantum corrections to the thermodynamic and transport properties of simple

fluids in the semiclassical limit.

In Scction 2, we describe the basic theory and obtain an effective pair potential. Our
theory is applied to calculate the second virial cocfficient, critical point location and surface
tension in Scctions 3. 4 and S respectively. Section 6 is devoted to estimate the quantum effects
on the thermodynamic behaviour of the liquid-gas coexistence curve. Scction 7 is concerned
with the cvaluation of the quantum effects on the melting curve. In Section 8, we apply our
theory to estimate the quantum correction to the transport propertics of the simple system.
Concluding remarks are given in Scction 9.

2. Basic theory
We consider a fluid, whose molecules interact via the LI (12-6) potential
ury=4el(o/n?-w/n"). (h

where e represcnts the well-depth and o the diameter of a molecule. In presence of quantum
cffects, the effective pair potential u™(r) for such a model can be expressed in the LI (12-6) form

by simply replacing 6 by 6(T*, A*) and € — € (T*, A*) incq. (1), where T*=kT/ € is the
reduced temperature and A*=h/o (m €)' is a quantum parameter, which is introduced to
measure the deviation from the classical behaviour.

In order to determine 6 and € , we start with the cffective pair potential expressed as
(1.4]

u'(r)=u(r)+(h2ﬁ/l2m)V2u(r)+O(h“). (2)

Here B=(GT)" mis the mass of the moleculcand h = h/ 2r.

Eq. (2) is correct to the first order quantum correction. It is valid at a temperature, where the
contribution of sccond and higher order correction terms are negligible.

Substituting ¢q. (1) in eq. (2) and using V> =r"2(3/9r) (r* (@19 r))for three
dimensional space, we get

i(r)=4e([(a/n'"* —(c/n®|1+h>B12ma?)[22(c/ 1" =5(a/r)*])
which can be written as

i(r=4e(l(a/n”-(@/n*1+a220/n™ -5(0/r*]) &)
where

a=h’BI2mo? = A*? gn?T ™, @)

Eq. (3) can be used to determine G and €. & is the value of r at which é(ryiszeroi.e. j(g)=0.
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Then the position of the minimum of 7#(r) shifts from 2'® 610 2'6 G, where the effective pair

potential is —€ . Thus the expressions for & and € arc given by

&56/0:]’”6, (S)
é=E/e=RF-1-1222F)""* )/ F?, (©)
F=0+22a)/(1+5a). ™)

They may be called Karki-Sinha’s expressions for & and € and arc derived in Appendix.
When ais small F =1+ X, where X = 17 and egs. (5) and (6) reduce to

o=[1+x)"°, ®)

E=[1+2X-0560X 1+ X)"" 101+ X) 72, ©)
as given by Singh and Sinha [4]. This is discussed in Appendix.

Thus, the effective pair potential is expressed as the ‘modified’ LJ (12-6) form, where the
quantum cffects are incorporated in G(T*, A*) and € (T*, A*). The salient feature of this
approach 1s that once the effective pair potential is expressed in the LJ(12-6) potential form, the
system can be treated classically. The Singh-Sinha (SS) expressions for 0 and € are suitable
when the quantum effects arc small. The Karki-Sinha (KS) expressions for o and € are the
improvement over the SS cxpressions and can be safely employed cven when the quantum
cffects are moderately high. These expressions for & and € may be used to calculate the
thermodynamic and transport propertics of the system. However, for the correlation functions,
one has different expressions for 6 and €., which is not considered in the present paper. The

quantum parameter A*, used in the present calculation. is reported in Ref. 1.

In the following sections, we employ this theory to estimate the thermodynamic and
transport properties of the semiclassical fluids. The quantum cffects are incorporated in these
properties through the expressions of & and €.

3. Thermodynamic properties

We apply our theory to calculate the thermodynamic properties of a semiclassical fluid. In our

approach, the classical values of the thermodynamic properties at the reduced density p* = pG .

and reduced temperature T* = kT/ € will be the thermodynamic properties of the semiclassical
fluid at the reduced density p* = po ¥ and reduced tcmperature T* = kT/ €. Thus the pressure
of the semi classical fluid can be given by

P(p*.T*, A*)= P(p*, T*), (10)

where 13(5"‘, T*) is the pressure of the classical fluid at p*and T*.
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In the low density limit, the pressure of the fluid can be expanded in the virial form
BPIp=1+Y B,(T* ANV, (1)

where B, is the nth virial coefficient, which is given by
B (T*. A%)=(27NG ' 13)"" B> (T* A%).
=(2aNG' 13)"" B* (T*). (11b)

where B * (T*) is the reduced nth virial cocfficient of the classical fluid at the reduced

temperature T*.

For cxample, the values of the reduced second virial coefficient B *, for Ne and “He are
reported in Figure I as a function of T*. We find a good agreement with the experimental
results [6). The values of B, (T*) for noble gases are identical with those of the classical

LJ(12-6) gas. This predicts that E: (T*) is auniversal function of 7* and placed on a universal

curve. However, B, *(T*, A*) is not a universal function of T*.
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Figure 1 The reduced second vinal coefficient Etz(f‘) as function of the reduced tem-
perature T+,

4. (Critical pointlocation

In this section, we employ the theory to estimate the quantum effects on the critical temperature
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T, critical volume V_and critical pressurc P . For a classical system interacting via the LJ(12-6)

potential, they are given by

T *=kT /e=126,

V.*=V /INo' =31,

P*=Po'/e=0117.

(12a)

(12b)

(12¢)

In order to take the quantum cffects into account, we replace € — € (T*, A*) and

0 — 0 (T*, A*) ineq. (12). Thus

T *=126€

V *=31¢6"

P *=0117€/03

(13a)

(13b)

(13¢)

Eq. (13a) may be solved by the interactive process or graphically [3]. Once 7 * is known, we

may obtain V *and P *.

The results obtained by Karki-Sinha (KS), Singh-Sinha (SS) and Young (Y) theories are
reported in Figure 2 as a function of quantum parameter A* and compared with the experimental
data [3]. The KS theory provides better results in comparison to the y-theory for lower value of
A* (A*<2.0). However for A* > 2.0, the y-theory gives rclatively better agreement. The SS
theory is an approximation of the KS theory for A* < 1.223. So the SS theory is not cmployed

further in the paper.
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Figure 3.

Figure 2. The reduced critical temperature 7 *, cntical volume V* and cntical pressure P *
as a function of the quantum parameter A*. The points (87 *, AP * and OV *) represent the

experimental values.

Figure 3. The reduced surface tension y* as function of 7*. The points © represent the
experimental values, the thickline KS theory, dashed line Y-theory and dotted line classical

value.
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S. Surface tension

We consider the quantum correction (QC) to the surface tension (ST) along the liquid-gas

phase boundary. The ST of the classical LJ (12-6) fluid is given by
y*=y0/e=2666(1-T*IT """ (14)

For classical fluid T * = 1.26. Replacing € — € and 6 — &. the ST of the semiclassical fluid is
expressed as
Fx=F02 e=2666(216%)(1-T*/126)"" (15)
where T* = kT/ &= T*/ &. Eq. (15) 1s apphicable to both classical and quantum fluid over a
wide temperaturc range. In this approach, the amplitude 1s modified but the exponent remains
a constant with a value of 1.27. Thus. the quantum mechanical vanation of the exponent [ 7] is
ignored here.
The surface tension ¥* for classical flud. Ne, H, and *Hc is shown 1in Figure 3 as a
function of T* along with the experimertal data The agreement s fairly good. The results
obtained by the KS theory 1s better than those of the y-theory. For “He, the KS theory over-

estimates the surface tension while the Y theory underestimates it. This shows the usefulness
of egs. (5) and (6).

6. Liquid gas coexistence curve

In this section we apply the theory to estimate the quantum cffects on the behaviour of the
liquid-gas coexistence curve. The behaviour of a classical fluid may be described by the
rclations [3, 8]

VXV %= 14 (3/4) 1 =T*T %) + (1/4) A=T¥/T %)%, (16)
VIV % = 14(3/4) (1-T*/T *) = (1/4) (1-T*/T,*)'", (17

where V,*, V * and V * are the reduced liquid, gas and critical molar volume Here T * = 1.26
and V * = 3.1. These equations represent the behaviour of V */V* for T/T * <1.
«
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Figulte 4. Valucs' of V.*/V* as a function of T*/T * along the liquid gas cocxistence curve. The
experimental points are for Ne (Q), H,(®) and ‘He(A). Other keys are same as in Figure. 3.
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For the semiclassical fluid, where € is replaced by € and ¢ by &, we find
V. *IV* S (V. *IN*) (616 ).
T*IT, * - T */1.26,
where & is the value of 6 at 7* =T *. Then egs. (16) and (17) can be expressed as
V *IV*=(6,16) 1+(3/4)(1-T*/126)+(1/4) (1-T */1.26)""*]. (18)

V. * IV, *=(6,16) [1+(314)(1-T*/126)-(7/8) 1 -T*/126)"* ). (19)

The values of V /V* for classical fluid, Ne., H, and *He are demonstrated in Figure 4
along with the cxpcnmcntal data [8. 9]. From the ﬁg,urc it1s clear that the KS theory predicts
better results than those of the Y theory.

7. Melting curve

In this section, we apply our theory to estimate the quantum effects on the melting curves of
simple systems. The melting equations for the classical LI (12-6) system are expressed in a very
simple form [10]

7,*1,(.8‘) = I\7'l'“"/€= 4[(/?*“5’ /(112“‘8’)4 _(p*u.\) /“c‘uS)):]' 20)
LS 1S 3 WARIIN LS\ 3
pxth 2 pliig /e=4[7t,3"‘s' (p*N —m S (pr! ] 21
where
p,,,l.(.ﬁ) =p1,(5|0,.l: ’r"ug) - P" /(a"“s,)hn/}

The melting constants of the inverse power potentials are reported elsewhere [10]. 7% and
P''® are the temperature and pressure, respectively, along the liquidus (1.) and solidus (S).

Replacing 6 — & and € = € 1n ¢egs. (20) and (21), the quantum corrected melting
equations for the LJ (12-6) system can be given by

T *HS =4é[(p,,l.m6_z /“I:Im) (p*l(\) (16"“")3], 22)

P —ae /&‘)[nn“" (p*"5 6 h) - S (prHD &“)3]. 23)
For a given melting temperature, the melting pressure P(7) is given by

P(T)y=[P"(T)+ P* (D12 (24)

Then the triple point is obtained from the equation /T, ) =0.

triple

For cxample, we calculate the melting temperature and melting pressure for *He using
cgs. (22) and (23). They are given in Figure S, where they arc compared with the experimental
results as well as those obtained by Rosenfeld-Thicberger (RT) theory [9]. The present KS
theory provides results better than those duc to the RT theory. This provides additional
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evidence that & and € are of real physical significance and cgs. (5) and (6) can be employed

to estimate the properties of the semiclassical fluids.
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Figure 5. Figure 6.

Figure 5. Melting pressure against melting temperature for ‘He

Figure 6. The shear viscosity p of Ar as a function of p at T = 348K

8. Transport properties

Lastly, we apply our theory to estimate the quantum correction to the transport propertics
(TP’s) such as shear viscosity g and thermal conductivity 4 of simple fluids. We assume that
the structure of a dense classical fluid is similar to that of a hard sphere (HS) fluid of properly
chosen hard sphere diameter d. The TP's of the classical LJ (12-6) fluid may be evaluated
through the evatuation of the TP’s of the HS fluid. We employ the revised Enskog theory (RET)
of Beijener and Ernst | 11] to estimate ¢t and A of the HS fluid. In terms of the packing fraction 1,
(dcfined as n = 7ipd’/6 ; where p is the number density) they are given by

M =25 ()] (14(475) (40,5 () +0.7615 (4ng () 111, . (25)

A=[g,5 ()7 [14(675) (4ng 5 () +0.7575 (4ng,, (d) 1A, (26)
where

Mo =(5/16 md*) (mmkT)'"2, 27

Ay =(75k 164 nd*) (kT /m)""? . (28)

Here, g,,5(d) is the equilibrium RDF of the HS fluid at the contact, m is the mass of a molecule,
k the Boltzman constant and T the absolute tempcerature. We assume that the molecules of the

system interact via the LJ (12-6) potential with force parameters o and €.

For the semiclassical fluid, where the quantum effects are incorporated by replacing
0 -0 (T*, A*) and € > € (T*, A*), the shear viscosity 4 and thermal conductivity A can be
cxpresscd as

H=[g ()] 1+(475) (4718 45 (d)) +0.7615 (47ig 4 () Ti, 29)

A =[gus(@))™" [1+(6/5) (4ig s (d))+0.7575 (47ig @212, 30)
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where [, and 10 are the values of 4, and A, respectively, where d is replaced by d . Here

gHs(J) is the equilibrium RDF of the HS fluid at the contact and i = npr? ‘6.

The hard sphere diameter d and the RDF £,5(d) may be determined from the experimental
data of the second virial coefficient B(T) and Equation of state PV/NKT, respectively [12].
However, in the present casc the diameter d is determined from the Verlet-Weis method [ 13]

with the effective L] (12-6) potential and the equilibrium RDF g,,s(g) is given by

gus(d)=(-7/2)1-m". 31)

In order to test the theory for TP's, we first employ our theory to calculate the shear
viscosity p of Ar (treating classically) at T = 348°K, at which the experimental results arc
available [ 12]. The values of ¢ as a function of p are compared with the RET and experimental
results in Figure 6. We find good agreement at low density. At high density the present theory
overestimates while the RET underestimates it.

This theory can be applied to estimate the quantum cffects on the TP’s of the semiclassical
fluids. However, the simulation or experimental results are not available for these systems. So
no definite conclusion can be drawn. Figures 7 and 8 demonstrate, respectively, g and A for Ne
as a function of p at T = 120°K. We find that the quantum effects enhance the values of g and
A and increase with increase of density.

oy Y T Y
. 160 r : v § 6.0 } SEMICLASSICAL 4
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o ) 3
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3 <
1 2.0 1 0 1 1 '
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Figure 7. Figurc 8.

Figure 7. The shear viscosty g of Ne as a function of p at T = 120°K
Figure 8. The thermal conductivity A of Ne as a function of p at T = 120K

9. Concluding remarks

The cffective pair potential is expressed in the ‘modified’ LI (12-6) form by simply replacing
0 — & (T*, A*) and € = € (T*, A*). The cxpressions are given for the functions & and €
which are functions of 7* and A*. Then the systems can be treated classically. The modified L)
(12-6) potential is employed to estimate the quantum correction to the thermodynamic and

transport properties of some simple systems over a wide range of density and temperature. In
all these cascs, the agrcement with experimental data (where available) is good.

We have used the first order quantum correction to the pair potential to obtain the
expressions for ¢ and €. By taking into consideration the higher order correction terms, one
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can improve the expressions for & and € for better results. However, itis not attempted in the

present work.
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Appendix
(i) Derivation of &
When & (r) = 0 eq. (3) can be written as
de([(0/n? =@In®1+a[22(6/n" =5 /r*])=0
or
(r10)® =[1+22a(c /1)’ |/[1+5a (6 /r)?). (A1)

As the quantum effects are largely determined from the hard-core [ 14], we approximate r / 0 = |
and write eq. (A1) as

6/o=F"S, (A2)
where

F=(1+22a)/(1+5a). (A3)
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(i) Derivation of €

16 ~

To determine e, we put r =2 " 6 ineq. (3). Thus

At r=2"¢

(Ad)as

€.

72"%&) =4 e([(114F>)=(112F)|+ al(22/4F%)> =(5/2F)1 2F)""*)
=—e[2F-1+a(0F-22/2F)"* |1 F?, (Ad)

the cffective pair potential is — € . Thus the expression for € is obtained from

-~

E=€e2F-1+a(l0F-22)2F) " K2
=e[2F=1-12a(1-(5/6)(F=1)) 2F) """ |F?

=~e|2F-1-Ra 2F) " F 2, (AS)

(i)  Approximation

When the quantum effects are smalli.e. either A* is small or/and T 15 high, a1s smatl.
we can approximate F as

F=01+22a)(1-5a)

=1+ X, (A6)

wherc X=17a.

Using eq. (A6) in eqs. (A2) and (AS). we get Singh-Sinha (SS) [4] expressions for & and €

Glo=1+X)"°, (A7)

Ele=[1+2X-(6)" NHa+x " a+ X7 (A8)



