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Abstract A new approach to the evaluation of the ground state energy of the Helium
1soelectronic senes 1s presented here In this essentially perturbative approach, the screening
parameter 1s fixed through the prescription of the vanishing of the first order correction
This also makes the sero order encrgy vanational The second order correction to the
energy turns out to be constant for the whole series Results upto the second order are very
encouraging
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1. Introduction

The ground state (GS) of the helium atom, the simplest two clectron system, has been well
investigated using mainly the Ritz vaniational method with appropriate variational paramcters
to reflect the effects of the correlation and screening. Thus the onc parameter variational wave
function of Kellner [ 1] takes reasonably good account of the screening while the more extensive
variational wavefunction (Hyllerass type [2]). using a large number of variational parameters,
of Pekeris [3] gives a very accurate estimate of the GS energy. Somewhat carlier Chandrasckhar
and Herzberg [4] with a few variational parameters obtained the GS energy remarkably close to
the most accurate valuc. Subsequently many authors [5-9] with varying degrees of sophustication
have reported rcasonably good estimates of the GS energy (table 1). Similarly there have been
some other calculations [ 10-18] which may bricfly be called improvised variational approach
giving very accurate GS energy. Despite thesc moderate to superior calculations the intercst in
the two clectron systems remains unabated perhaps because of the challenging quest for even
simpler and more transparent methods. It is in this spirit that we present in this communication
a simple intuitive method which is a combination of an effective soluble hamiltonian and
Rayleigh-Schridinger Perturbation Theory (RSPT). The essence of the method, which leads to
a good estimate of the GS encrgy, lies in a suitable partitioning of the exact hamiltonian into a
soluble one (including the nuclear charge as a parameter) with a complete basis set and a
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perturbation. As will be seen presently, the parameter in our effective hamiltonian is casily
determined by a simple prescription which quite unpredictably makes our lowest order calculation
variational ! We shall in the following sections describe in some detail our formulation of the
problem leading finally to results and discussion. It will be secn that the novelty of the method
is such that the whole isoelectronic series is covered by a single formalism and the calculations
nced be made for only one system to generate the results for the whole scries.

2. Formulation

The hamiltonian for the two electron system in atomic units (A =m = e = 1) is given by

H=- (Vfl +Vf})—2(i+i]+——l———

non I’l"zl

W] —

1 2 2 1 1 1 1 1
=— (V. +V )-Z'| —+- |-(Z-Z' — [+ —
2( " rl) L’l ’7J ( ) [’l +": J+ T2 M

where r, r, are the position coordinates of the electrons and Z, Z’ arc respectively the bare
and cffective (‘screened’) nuclear charges. For reasons to be apparent presently we introduce
the following simple scaling

p=Z'r and H=H /2’ )
with the result that
H=H0 +H, N (3)
where
Hoz‘l(vf» +Vv, )’[’L+ l ]=2"o ' 4
2 | t] pl pz - ! C))]
I o2 |
h, ==—V% —«—
(] 2 p’ p' ’ (4])
and
1 1 ‘
H, =~Z7l—(z-2)(—+L]+—'- -
Py Py) P

‘ .In this form, the spectrum of H, independent of Z or Z', is completely known as numbers
in the discrete a.nd the continuum. We shall estimate the ground statc (GS) of H beginning from
the GS of H,, with H, as perturbation. A general state of Hy, v ,(p,. p,) is given by

1
'J—i[(p,(pl )‘P,(Pz)‘*(PI(P, )‘P,(Pz )] i#]j

v, py)=
?.(p)9,(p,) i=j

’ 6

where .the ?’s are single particle.notmaliscd hydrogenic wave functions in the appropriate
states i or j. The states (6) are spin singlets which are all we shall need in the second order
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perturbation of the GS of H,,, since the GS of H, is a spin singlet state and H, is spin indepcndent.
The perturbation H, has untill now an unknown parameter Z* which has to be determined. We
fix this parameter by the prescription that the first order perturbation correction to the GS

<wcx(pl'p2)lHI|ng(pl'p2)>=0 (@)

1/

with VPP =0, (PO, (Py) and ¢ (p) =71 "% exp (=11 p). (7.1

Eq. (7) reduces to

-—7'7{—2(2—2')+S/8}=0 (8)
i.e. (Z—Z2')=5/16, a constant for the entirc iso-clectronic system. This has the important
consequence that H, given by cquation (5) is proportional to 1/Z’, the expression within the
braces being independent of Z or Z'. It follows thercfore that the perturbation serics for the GS
of H is given by

— AR LL RL
E,=E" +E" +E7 +.........

=<V . (PPy) Holwg,,<P.~pz>>+<wﬂ,m,.pg) H,|w££<p,,p2)>

N NI AN I

U _ kK
Ey -E
_ 1 1
..u0+—_2-;al+z’l a‘,+ ........ - )
whereay a.ay.a;. .. .. are independent of Z or Z' and therefore need be calculated only once

for the entire iso-electronic system. g, is trivially known and a, cquals zero identically by our
prescription which determines Z' as a function of Z. In the present communication we shall
caiculate the next order correction a,, the details of which are analysed in the next section.

3. Results

a, is essentially the second order perturbation correction to the GS of H, and is given by

( 5 ) 1 ] 1

] —— _..._+___ +,_____.
16/\p, P2) Pi
a,=-%’

I Jd
EL-EY

(10

where as usual the prime in the summation of (10) indicates that the intermediate state
ViP1iP) =V (P, p,y) is excluded. ¥, (p;.P,), the GS of H,, is given explicitly by
cq.(7.1).

The intermediate state ¥, (P,.P,) of (10) are of three kinds, namely when (i) the
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hydrogenic (ij) are both in the discrete spectrum, (if) one of them in the discrete and other in the
continuum (iii) both of them arc in the continuum. Accordingly we classify the terms in the
summation (10) as follows

1. Intermediate states discrete : a;“ +a;'*'l +a;lJg = A;‘l

dd [ij=dd.d#g;d=(nlm),g=(,0,0)]

5 ( 11 1
—_ ] —+ + —
16{p, P2} Py

<¢.(p)o, (Pz)l I‘P,/(pl)(pd(p’)>l (1
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2. Intermediate states in discrete-continuum pairs : a5/ +a%* = A%

a;'l [ij=cd,d # g;c denotes continuum]

1 1 S5(1 1
=__z_____ 00, (P, —| —+— [+—Io, (o) 0, (p,)
2 S ETE <0, P9, P} | St ll«p PO, (P,
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3. Intermediate states both in continuum :
a;"' = A, a;" [ ¢’ denotes continuum |
1 1 511 1 ]
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1
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In the derivation above from (11) to (17), the propertics of orthogonality and symmetry
have been used when appropriate. The basis set ¢, and ¢ , employed for the discrete and
continuum states of the hydrogenic system are given by

Cum PV =-N,0' L2 2y, 0 Y, (D), (18)
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where
2 (2\[-1-1t "
an = 2 - i
a2 \n) L {(n+1} ]
Y, =1/n.
L¥*! (27, p) is the Laguere polynomial [19]and ¥, (P) is the spherical harmonic
and
0,(p)=N, cxpip-p) Fii/p.L.ipp=ip-p). (19)
where
Np = (27:)"/2 exp (m/2p) I'(1—if/ p)

and F(i/p,1.ipp — ip.p) is the confluent hypergeometric function [20].

The wavefunctions satisfy the orthonormality relations

,[‘p:l'l'm'(p)‘pnlm(p)dp = 5””.6”.5""", (20)

and [0; 010, (prdp = 8p=p". on

In our calculation, we have found it convenient to usc the following contour
integral representations of the Laguerre polynomial [21] and the confluent hypergeometric
function [22]

-2y, (1/1q1-
e {27, 171(-0))p)

sz 4t 22

L21+|(2y"p)= —
t (1-0

n+l

_(n+1)!i

2m
The contour c¢ includes just the origin but excludes the other singularity at 1.

F(i/ p).ipp—ip. p)

1 “ ip ~ip 1pp-
=(—|¢¢ (t=1)7P M PPTRPY gy
( > ) $: ) @3)
where I'is the closed contour encircling the two points 0 and 1 once counterclockwise. There
is abranch cut from O to | and the phases of t and (1-1) are fixed by taking both of them as zero
at the point where the contour crosses the real axis to the right of 1. The phase of each variable

is mecasured from the positive real axis and it is positive when counterclockwise and ncgative
when clockwise and can not excced the value 7.

The use of these contour integral representations have considerably faciliated the
evaluation of various matrix elements by residuc calculation.

The matrix elements that are required for the evaluation of (10) are classified ineq. (11)
to (17) in simple sequential forms for easy computer adaptation. The typical matrix clements are
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those of 1/p and 1/p,, the latter being somewhat difficult to handle analytically. We bricfly
present here the calculation of the relevant matrix elements (required for computer adaptation)
with explanation of the symbols used. ‘

a. I, =<‘Pmo(p)l @ im (P)>

1
p

Substituting the integral representation (22) for the Laguerre Polynomial we carry out the
space integration to obtain

dt
My, ) - —y o’

1
I =5I.06m.0NnINIO(n+[)!5;§

Now after the calculation of the residue at r = 0, we finally have the result

a-ym"!

1, =4n" "8 )
: a+1/m™!

LOY m,0

b. I, =<0, (PP, (P,)

(pl“llml (pl )(pnzlzmz (p2 )>

12

Substituting ¢, ,, (p) from (18) and using

nim

]
1 4r P s - N
T =L z;)ﬁT Ylm(pl )Ylm (pl )”

we carry out integration to obtain
I, =8SQI+2)'{J, +J,+J,},

4

m.m " m,,—m 20 +1 nd, "l *

where S= 51, 16,96

1)’ (=1’ (1=1,) d1,dr,
gy =("“) §§ N M T2 2043
2m 1ty (b —c 1)) (A-Xt —X,1, +B1,)

(I-1,)'(A-1)) drdr,

=(=) 8 o ey
2 (Zm‘ ﬁ:l"’:z" (by —Cy1,) (A= X1, = X,t, + B 1,) "

; "(L)2§§ (1-1,)(=1))* dr,dr,
= N 2143 °
Y\ 2m 1Mo (b, —c 1, )b, —c 1)) (A= X1, = X,t, + Br,1,) "'
b, =1+1/n,,

¢, =1=1/n,
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b, =1+l/n,,
c, =1-1/n,.
A=b +b,,
B=c, +c¢;,
X, =b, +c,,
X, =b, +c,.

To cvaluate J,, J,. J,, the contour integration with respect to ¢, is done by finding out
the residue at 7, = 0 and we have

(20431,
J| =["MN =3 yn-n ¥ 3 yov-n I mn- 3’]'_(_M_-'-l—)—'_

20431, .,
_[J(M~I)N =3 mnen-n +3J ponev-2) ~Jim -n(/v—z»] M=-2)!

o , [20+3],
3y =[ T =3 v+ hawr Tiom-s) i

J’ ’ ’ ’ Izl+3ll\'—2
[ v-m ~ 3 (vanm- o3 v 5 I in-nm "’]_(N—Z)'
and
-l
Iy = b, [{KMN = 2K yyen-iy + Kpv-2) = 2K gy = 2K g ine
+ K poyv-0) UK oy = 2K vy  Kim 2)(N—2)}]‘
where
( I N (X, = Bt))" "t
N = | A~ ) .
Ty =\ 2 N (b =) (A= X,1,)2 M
J ( 1 )§ (X, =Bt,)" 'dt
. L 2
M~ 2 , cztz)z(A—thz )21+N+2
M (2u+3) (¢ )\
and Kun = “'—,—p‘ (—2}
p=0 p: bz
(_LM (X, -Bt)"dr,
. N .
2m ) 1) (b —c,t)) (A= X1,)2 "
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These are evaluated by calculating the residue at 7, = 0. Thus

(M-1) or (N-1),
whichever 1s small

-Z M,l —~(M - l)] ( )p Ni A-2I+MeD)

p=0
[2e+M+2], (X, b N-1=r=
——q.—( )(N P-q [b.] ,

(M-1) or (N-1),
whichever is small [ (N -1 )]

P M-1-p
T —Q2U+N+2
T =Y X —-——-—( ] ZA M

p=0 p
[20+N+2], (X, b M-
X ——
q' ( ) M=r-9 bz
and
- M-1-p
=M (2043, [.‘i] XP AP
MN ) b 2 |
p=0 p- 2
p or (N-1),
whlc:irls small[-p]’ B ]l Nzlr [21+[’+3] (X ]q ((" JN~l—r-KI
r=0 r! X2 q=0 q ' A bl
_ 1
C. l;“<‘p|m(p) ’; ¢,(P)>
Making use of integral representation of the confluent hypergeometric function (23) we
get
1I=N,N, [ H——ew P M (1) dp dr
3 10" p 2mi p p dt.
where

pu=1-ipt and x=p (1-1).
Carrying out the space integration we get

I, =N, N — Moy g
10 ”2m§(x2+u2) (=1
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with
k2 +pu’ = pl-t)+(1-ipn)’
==2p(p+i)(t—t,)
and
_ (p*+1D)
O 2p(p+i)

In view of the fact that the integral over the circle of infinite radius | 7 | = o vanishes,
we can casily evaluate this integral by calculation of the residue at ¢ =, and we have

2n -1+ -t
’-‘=_—p(,,+i)N'°N"‘° (ty=D7".

d. Iy = <0,0(P) 010 (P,) um (PP, (Py) >

Now using the result

1 1 J-_exp{iq.(p, "pz)}dq

p]z - 27[2
we have
_ __l— _(Dl(Q)(Dz('q)
where 0, (@)= J¢]w(p, )(p:,,m(p2 )exp (ig. p,) dp,

N, N
N0V ol Ly v
2‘/;" (n+D)arn(-i)'2'1'g Ylm(q)(...___'_)J‘

(2

_)§ i
2 'n—l(]_’)‘lln (q2 +;~2 )l+| '

2y .t
A:(‘yl +}’n)+ ]};n
___R—UI
1-¢t '
R=7I +7n '

U=7|"‘Yn ’
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and ?,(-q)= j ?10(P )tp;,(p2 ) exp (—ig.p, ) dp,
AR S iz ee
where
Y=Y, —ipt,
p'=pl-1-gq.

Now writing p’? +‘y;2 =a'-b't,
where
a’=p’+q’+y]-2¢.p,
b’ =2p* +2iy,p-24.p.

the contour integration can be performed and we get

a =1+t ’ , Clx
¢:(—4)=2JEN|ONI,(5—)[(1' I+ (a -b ) ]
I

On using the result [23],

J- cxp(—itr)r'“l Y,”'(F)cxp(ik.r)dr

ar2i 11k'y, (k)

k2 + A5
and writing
R-Ut
+21 =4 +’—
q 4q -1
E-2wr—st
(1-n?

where

w=g2+(yi-vhH,

s=q’+(r,-7,)%.
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Thus

where
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. 0 1 1 dt
=Cq'Y,@D| -5 - (——)—~—
‘Pl(q) q1,, (q)( . ] 2 él-ﬂ §f"—’(l—2xB| _ﬂ12)1+|

=c'q‘Y,;(é)(—¥a——J[é,+, ci (w/ JE) (Js/5)" " ]

ay,

N. N
C' =21 (nil)tam (D) 2'11,
Jr

(1
=w/és,
B, =Ws/éxn.
1, = o —2J_N,0N )I q Ylm(q)(ayl][(ia_l)a”a—z

(a;__b;)—la zy‘ __‘a (a'_b:)-1a—l aua—l 2(}'| ‘_lp)] dq

l 4 al . ’ !
=-2-;2—c (—2JEN,ON,,)_" dgq' (Ey—][(za—l)(a -b)"%2y,1,(q)
1

~ia ('~ )7 2y, ~ip) 1,(9)].

L= [a" 2y, (pae,
- 2 2 2 -2
= [’ +a> +7] —29.p/" ¥, (902,

lm (p)
pq(ta+3)

}:a-—l

[tp+a)? + 73

x 2F{—-1,I+l,ia;
4pq

2 2 2
P+ +y +2
q9 1 QF] ( l)l+|

x{(p-* +y2Y*" (ll+l 2ap=(p" +q +7'))

4pq
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and

12((])=I ua—ly (q)dQ

is obtained from /,(g) [25] just by replacingiaby (ia+ 1).

e. Is=<0,0 (P) @100 (P,)

1
p2 1 2

Making use of the contour integral representation of the continuum wave functions ¢, - ¢,
[eq. (23)] we can write

~(HyPy+HaPy)

I, -C”( ) H§§ exp (ix,.p,) exp (ix,.p,)

-l ( "“1 I+la,
|

Xt -1)

as
: H(t,=1) “drdt,dpdp,.

where

1 1 , .
C"= Texp(n/2p ) I (1-i/p,)exp(x/2p,) [ (1-i[p,).

T 2n)
|
o, =—,
P,
Ky =Yo—ipty

Hy=Yo=ipyty s
xl =pi(l—t:)‘

Using the results

and

UL =py)

1 1
pn - 2”2 J q‘ dqw ’

the space integration can be carried out with the help of the two resulting delta functions the
integrations with respect to ¢, and g, also can be done.
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a, =AY + A + Ay =-00518.

The value is sufficiently accurate up to the quoted figure.

The discrete summation for the discrete states and the integration for the continuum
states appearing in the second order perturbation are performed numerically by computer. For
the numerical integration convergence has been tested so that the result should be accurate up
to the sixth significant figure and the discrete summation is also cut off ensuring that there is
no further contribution in the sixth significant figure.

Therefore the GS energy of the Helium isoelectronic series upto second order RSPT is
given by

E=E,Z2'* =a,2"" +a,Z' +a,,
=-2'2+0-0.0518,

=—(Z-5/16)* =0.0518.

In Table 1, we present our result together with some selective set of result as often
quoted in the literature.

Table 1.
One param- Two para- Three para- Two para-
Z= Freund eter van- meter meter meter result  Presernt
et al [17] ational result of result of of tripatha Work
result abbot and Wu (8] et al [9]
Maslen [7}
1. 0.5275 0.47266 0.508 0.5213 0.50552 0.52447
2 290372 2.84766 2.890 2.8994 2.88403 2 89947
3 7 27991 7.22266 7.267 72757 7 25990 727447
4 13.65556 13.59766 13.65 13.6513 13 63527 13 64947
S. 22.03097 2197266 22 02 22.01048 22.02447
6. 32 40624 32.34766 3239 32.38562 32.39947
7. 44.78144  44.72266 44.76 44.76071 44.77447
8 §9.15659 59.09766 59.13578 59.14947
9. 75.53171  75.47266 75.51083 75.52447
10 93.90680 93.84766 93 88587 93.89947

4. Discussion

jI‘he re§ults obtained for the helium isoclectronic series by the present method are quite
interesting. The method essentially is a perturbative one with the effective zero order hamiltonian
chosen in such a way that screening is included in the zeroth order hamiltonian through an
effective charge Z'. By a simple scaling, the exact hamiltonian is recast in such a way that the
zero order effective hamiltonian gives a known spectrum of numbers (in the discrete as well as
in the continuum) and the perturbation becomes proportional to f1 Py Py Py Z-Z)IZ", where



The ground state energy of the Helium isoelectronic series 41

f is essentially a function of p,, p, and p,, since the contribution Z ~ Z’ turns out 1o bc a
constant (= 5/16) for the whole iso-clectronic system. Thus the scaled energy is just a scries
inl/Z",

EIZ? =e=ay+a /2 +a, 12"  +~a, — 12" ............... ,

where a, arc constants for the whole isoclectronic series. a identically equals zero by choice
and therefore the lowest order perturbative correction is given by a, which is all we have
reported in this communication. The results for the whole series 1s very encouraging (Table 1),
For all the clements of the isoclectronic scries, the zero order cnergy obtained through our
prescription, is variational ! For He the sccond order energy almost coincides with the three
parameter variational result of Wu [8] ! The case of H™is even more striking. H~ has been well
investigatcd by many authors using the variational method of which the earlier simplc one
parameter Kellner type [1] trial wave function leads to an energy value —0.473 which 1s not
conclusive enough to a stable bound state. However, the better variational ansats of the two
parameter Chandrasckhar wave function | 18] Icads to binding at the energy value - 514. The
three parameter variational result of Wu [8] Ieads to an energy value -4.521. Our method yields
a better value at -0.524. Our success with /1 for which 1/Z"1s greater than unity 18 a very
interesting feature of our method. This 1s presumably due to the dominant constant contribution
a, to the energy In Table 1, we compare our result with the exact value reported by Freund er
al [17] employing a 230 term tnal wave function. They reported variational cnergy accurate to
within one part in 107" which has far exceeded the limits of accuracy n any experimental
measurement. We conclude in passing that our calculation 1s simple, and yet yields the result
comparable with those of the multparameter cumbersome calculation reported by scveral
workers.

Unlike 1n the variational ansatz, where correlation is explicitly built in the wial
wavefunction, here the correlation effects come through the various orders of perturbation
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