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Abstract: A Bethe Ansatz study of Fateev-Zamolodchikov
Model is undertaken. A coupled system of Bethe Equation
emerges which decouples in the special case of spin N = 4.
Closed explicit expression for the ground state energy can be
found even for finite lattice. The dispersion relation for the
excitation spectrum is also found.
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I. Introduction

A two dimensional self dual Zy lattice spin model with nearest neigh-
bor interaction (FZM) was obtained by V.A. Fateev and A.B. Zamolod-
chikov [1] which will be referred to as the Fateev-Zamolodchikov Model.
This was obtained as the self dual [2] solution of the star-triangle relations
[3]. We obtained [4, 5] coupled transcendental equations involving the ze-

_roes of the automorphically connected transfer matrices of the model. In
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the same paper the free energy for Ferromagnetic and Anti-Ferromagpe; )
cases were obtained in the thermodynamic limit M — oo for bot} odd
and even spins. In this paper we present a case in which a comple,
decoupling of Bethe Equations occur in the ground state [6]. The groung
state energy can be written in a closed form even for a finite sized lat{c,

The FZM is defined in terms of Boltzmann weights (BW) as
W(n|u) {5 sin(rj/N —7/2N —u)

W(Olu) - ,Izl, sin(rj/N — 7/2N + u) ()
W n oG 7|-]/N - 1r/N + u) _
1;11 sin(mj /N — u) (2)

The normalization is set as W (0|u) = W(0lu) = 1.
Fateev-Zamolodchikov Model can be obtained as a kimit of self dual Ch;-
ral Potts (CP) model whose BWs are given by

i

Wpe(n) 5 by —wa, \

W, (0) Hb —wla, | )
W () a,,—w’aq

W)~ 13 G, iy W

where w = exp(27ri/N) and the paired complex variables (a,b) € C
satisfy the constraint .
a¥ +bY =« (5

k € [0,1], and z = p or q. In the non-chiral limit & — 0, we parametriz
(a2,b.) in Eq.(5) as

Pt

a,=e€ b, = w!/2e¥*, (6

Defining u = ¢—p Eq.(3) and Eq.(4) reduce to Eq.(1) and Eq.(2). We wi
retain suffixes (p, q) in the boltzmann weights Wpe(n|u) and Wp,(nlu)!
signify that these BWs are obtained from the Chiral Potts BWs define
in terms of p and ¢ variables. -
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In order to get a connection formula among the the zeros of the eigen-
values of the transfer matrix T;, we will use functional equations connect-
ing Ty with its automorphically conjugate partners. Fc_)r any (a,b) € C?
satisfying the CP constraint relation there exist other complex pairs con-
pected to them which satisfy the same relation. Two such automorphic
relations of importance are,

R(a,b) = (b,wa) (7
U(a,b) = (wa,b) (8)

It is rather straightforward to check;

aﬁ, + bﬁ_, =K
apy, + by, = &
from the relation
a',v + biv =K

If one attempts to go from CP BWs to FZM BWs through the limiting
process k — 0, one gets slightly different expressions for automorphic
partners Wong, Worg, Wpu, , and Woy,.

Worq(n|u) l'-'I sin(rk/N — /[N — u)

WorOlw) ~ L 7 sin(xk/N +u) (9)
i e
i e e
Wi - * LG o

In the non chiral limit, T, —» T,(u) and Tp, — T,(u + 7/2N).
There is no similar relation connecting T, and Ty,.

We use the set of functional equations for the eigenvalues of transfer
matrices of Chiral Potts derived by Baxter, Bazhanov and Perk (7, 8].
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This functional relation appears in reference [7] as Eq.(4.40) and has the
following form,

N-1
Ty =3 cmaTumgTeTymun X" (13
m=0
where T = TS, § = (ag,b;) = UR™(a,, b,), and

Cm,g =

'ﬁl by, — wtla, ' Ai:_[l w(a, — w'a,) [ N(bg — bp)(by — a,) "

j=0 @p — wia, j=m+1 by — witla, aphy, — w™agb,

where the shift operator S and the global spin raising operator X are
defined as ' l[

S|ny,na,ns,...nn > = InM,nl,ng,...nM_\>
Xilny...ng...npyg > = |n1...nk+l...nM\> modN

In some previous work [4, 5] it was shown in detail how to obtain the
functional equations for the zeroes of the transfer matrices T, i.c. (v
and Ty,, i.e. (¥;) using eq.(13). For N-even we obtained

Lyq

II sin(v; — ;) _ (_1)M+l M ™ (14)
1=1 sin(v; — 9; — N sin(2v,)
ﬁ sin(9; — v,) = (-1)MH (15)

- 8in(v; — v + &)

II. Simplification of BAE in the case of
even spin

One makes the following change of variables to rewrite the BAE's for
even case in a simpler (and standard) form,

=1);j +m‘

™
UJ h\ - m (16)
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A detailed numerical study of the resulting equations for even spin case
shows that the new variables );s are related to one another. In fact

V A 3 Aj+in/2 mod(x) (17)

Thus we can group JA; such that A; € [-x/4, x/4]. Using transformation
rules for the hyperbolic functions one can rewrite the equations in terms
of multiples of Ajs and A;s. Define :

x_,'=2-A,' and ij=2-i_,' (18)

Finally the transcendental equations involving the zeros of the transfer

matrix are cast in a form similar to the standard or usual Bethe ansatz
equations (BAE).

Fsinh( —xe—it/t) (st +2/9 ™
,:‘[;Il sinh(x; — xx +i7/4) (=1) sinh(x; — i1r/8)) (19)

. §
2

sinh(x, — xx — i7/4)
ey sinh(x; — xx + i7 /4)

—

= (-p"* (20)

The first equation has the departure from usual BAE in that the signs in
front of the phase in the numerator are different on left hand side (LHS)
and right hand side (RHS). The second equation is more unique in the
sense that it has no spectral variable dependence on the RHS.

III. Ground State for spin 4 FZM

In the case of spin N = 4, the BAE’s completely decouples for Fer-
romagnetic case. Moreover the equation simplifies and it is possible to
solve it even for a finite sized lattice. This is quite unique.

For N = 4, the FM ground state corresponds to a filled band of (2s)
strings [9] for T, and that of (1-) for T,,,. Exploiting these special string
structures:

T R
X;j = x;:l:T where X;ER

Xi

X5 —im where X;€ER
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and using simple hypergeometric identities, Eq.(20) reduces to an identity
and eq.(19) simplifies to
. i\ 72M
[sinh (2x] — T)] _u
|sinh (2x; + %)

the sign on the RHS depends on whether M is even or odd. Taking
logarithm of the equation we get

(21)

2M - [2 arctan( oot(—%) tanh(2 x") )] =2 (22)

where v is an integer or half integer depending on M being odd or
even. We can express x in terms of this integer by simple inversion of the
formula. The suffix of x is omitted, however they are now parametrized
by the integer (half-integer) v. f

1 vr
X = g tanb™ (120 (557)) =)

This formula is in excellent agreement with finite size niymerical compu-
tation.

Table I: Comparison of x as found from formula (23) and from numerical
simulation on finite lattices.

M v % { ormula X:um.nm.
I 215 216
2|1 -215| —.216
-1 -329 |  —.326
310 0 0
1 .329 .326
-3 4004 -4001
41 0085 | 1001
4| § | 10085 | —.10081
2| —.4004 [ —.1001
—2| —.460| —.458
-1 -.169 —.169
510 0 0
1 -169 169
2 460 458
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Once the expression of the string centers are found for a finite system,
the calculation of energy and central charge is straightforward. Using
the expression for energy derived for even spin system we get [5, 6]

N

2 k

=2 Zcot ( + zx(.,)) —2M ) cot (L) (24)
1=1 =1 N

The energy values are also verified as having very good agreement
with numerical values obtained from numerical simulation.

Let us concentrate on the first term in energy, since the other one is a
simple additive linear term.

£

. T
t T+—+ —
2 co (2zx1+2+N)

1 + tan(2:y;)
1 — tan(2:tx;)

e

E
M

4
M

T

4 NM
M Z 62: arctan(tanh(2x,))

1=1

- % zv:em nrctm(tan(,i’ﬁ))

Using the standard summation formula for a geometric series we get

E 2

ﬁ =TT 7 -\ ﬂ y (25)
M sin (W)

In the limit, limp_oo this gives a value 4. One can recall the expansion

of the inverse of trigonometric sine function.

1 z 722
csc(z) = ;+6+ 360

+... (26)

Thus we get an expansion of & in powers of M.

E 4 1

™
L 97
M--tm st (27)
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IV. Excitation on Ferromagnetic ground
state

In this section we study the excitation spectrum over the Ferromag.

netic (FM) ground state. The FM ground state is given by a filled banq
of (2s) strings.
Let us recall the equation for counting integers.
1 e I g (k)
2
A(J) A
37000 — 5 2 3 efi )=
In the continuum limit this equation takes the form

| M(k)

Z2s)(x) = 2—19&) Z Z (2. k)(X Xﬁ) (28)

k B=1

The density of (2s) vacancies is given by \
(22 (X) = —Z(2,)(x) (29)

The vacancy density and the density of (2s) particles is related.

2s
M3

1 - 2s)h
o@)(X) = P (X) + 37 > 6( - xg™) (30)

A=1

where nga)h are the position of the holes. g

Thus

M)
1 l)' 2y k
_0(2')(X) = 2_”,9:25) k#z(; ) ﬂz_: e(2s,k)(x - Xﬂ) -

Mﬂ')

! 2 (25)h
2 | o & -xEM @)

The vacancy density has contribution from (2s)- ground state, (2s)-
l}oles and excited particles o(y,) = "8:) + a{:.)) +3, ‘781) where a((;’:) 1s
the same as p(z,) above.
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The expressions for energy (E) and momentum (P) for Spin 4 FZM
are given by

L
d . T 2 rk
E = Zcot sz+—)—2M2cot — (32)
k=1 8 k=1 4
L .
2 sinh(xx+ %
ef = 1= ( - ) (33)
k=1 sinh (x,, - 3-)
Thus the energy of a state designated by a given sel of strings
Mk .
E= % e
k p=1
strings
M}‘h) M)
s)h k)\/ .
= / dxog e — L can () + 2 2 < (i )39)
p=1 p#k f=1
The bare encrgies for n-string with parity v is easily obtained
i N n,v m
(uop(Xa) = Dot (D(L!.) + g)
k=1
= Fcot (i —2n 1 - 20) = 31 =) ¢ 5
k=1 4 8
(35)

" One can separate the real and imaginary parts of this expression. The
requirement of reality of energy determines the additional constraints ov
rapidities x;.

The real part of the energy is equal to the derivative of the (-)g”( z)
function already encountered upto a multiplicative constant.

Re [6(n,u)(X£."'"))]

T1A(3)-3

IR ]y A SN G R o
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n sin2 ( +2y(n +1 - 2k) + 9= — )
B kz;?cos2(§+27(n+l—2k)+1“—4”)1_§)+cosh2m
. —sin (4y(n +1 - 2k) 4 (02— 2)
=i cosh 2 (—xE™) — cos (17(n + 1 - 2k) + O52% _ 1)

®

-

The (-)S” (x)-function for j = (n,v) is as follows

n

3
Oh(X) = 2260x6,2v(n + 5 —2),v)

=1

= 4 iarctan (cot (27(n + g -2+ u —4”)”) tanh(x))

=1

differentiating

N sin2 (29 (n+3-20) + 0&21)
O(H'“)(X) - ; —cos?2 (27 (n + % - 21) + h:)l) + cosh(2x\'~) (36)

whence |
Re [f(n.u)(x)] = —1923.’,.,,(x) (37)

lmaginary part of the energy €(,)(x)

n —sin2 (xf,"’") + Q—Tu)i)

fm [e(ﬂ'v)(X)] B g —cos 2 (27 (n +3- 2!) + Q-T")l) + cosh(2x)

(38)

Detailed numerical study shows ([4, 5] and to be presented elsewhere)
that there exist several spurious solutions and only a subset of them, cor
responding to a specific«choice of counting numbers I\, is admissiblc.
Non-string solutions exist, however they are not as numerous. From the
numerical study we find that the elementary excitations over the FM
ground state (a sea of (24)-strings ) are (a) a pair of (1+) strings , and
(b) (14) and (1-) strings. -
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The FM ground state is a filled band of (2s) strings. The density of
ground state energy is

k
€ = llm — /dxp(g,) (X)€za)(A) — 22c0t (7; ) (39)

The observed correlation between the integers suggest that the ra-
pidities corresponding to (2s) and (a) ought to be connected allowing
cancelation of the imaginary part of the total energy.

Im [((2,)] =Im [q,,)] (40)

It is shown in the appendix that Im [6(2,)] =Im [e(,,)] and Re [f(m] =

- Re [((a)].
4

cosh(4x)
Similar argument holds for (b)-type excitations, where I'm [((2,)] =1Im [c(b)
mnd Re [((Zs)] = —R(' [t(b)].

Re [ea)(x)] = (41)

‘t

Re [‘(b)( )] cosh(4x)

(42)

One should note that the dressed energy and bare energy are equa.l sm( e
the function coupling the ground state density to excited states ()( &) 18
zero for 3 = (2s). Thus we arrive at

M(a) M(®) A
E=E+ ) 2 (Xg‘)) + Y 2 (X‘%)) (43)
A=1 p=1

where Ey is the ground state energy.

We now turn to the calculation of momentum. The momentum asso-
ciated with a string of length j and parity v is found to be

Pan(x) = —50u4(x)
() = —300() o j#(14) (44)
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whence

Pa)(x) = p(,,)(x) = 2arctan (ta.nh (22(—)) +r (45)

we finally derive the dispersion relation,

€a)(p) = 4si1-1 (12—))
é)(p) = 4sin (g) (46)

V. Conclusion

The simplification of Bethe Equation in the special case of N = 4 wy,
first identified in an carlier paper [6]. The coupled set of Bethe Ansat;
Equations completely decouple for the ground state case. The complete
classification of states is another very interesting simpliﬁca&ion. The
simple form of excitation spectrum is also derived.
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