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1. Introduction

s hirst ponted out by Hawking [1.2], the gravitational field of a collapsing object will
mduce the quantunt creation of particles so that the object radiates with a thermal spectrum
At temperature inversely proportional to the mass of the object.

Larher, calculanions of this effect exanuned the behaviour of the quantum
fields only near mfimty. Consequently it was not clear precisely where the radiation
i heing created, and what 1s happening near the hornizon of the “black hole". Davies,
lullng and Unruh [3] pointed out for the first ume that a knowledge of the
cncrgy-momentum tensor of the quantum lield in the vicinity of the object would
help in claritying the details of the creation process. Unfortunately, this quantity is
alwavy formatly divergent, and the meaningful physical component must be extracted
Py regularisation procedure. Such procedures always conlain ambiguities which

must be resolved by the application of additional criteria, such as physical
lcasonibleness.

Besides the problems of regularisation, mathematical complexities have prevented
detarled discusston of quantum field theory near the surface of a blackhole. However, it is
Possible 1o circumvent the latier problem by studying a simple two-dimensional model of
the blackhole. This model has the advantage of possessing a conformally flat metric so thar
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the mode functions for the quantum field can be explicitly evaluated everywhere, while
retaining the essential features of the Hawking evaporation process. The highly plausible
character of the "renormalised” energy-momentum tensor for this simple model encourages
the hope that the qualitative features of the full four-dimensional collapse are contained in
this treatment.

2. Stress tensor

The metric for any two-dimensional space-time is conformally flat and may be
written as

ds? = C(u, v)du dv, (1
where u, v are null coordinates. The massless scalar field, ¢, for this metric obeys the
simple equation

Jd o0
—=—¢=0 (2)

The solutions of this equation are
¢ =f(u) + g(v), 3)

where flu) and g(v) are, in general, arbitrary functions, restricted only by the spatal
boundary conditions.

It is intendced to calculate the expectation value of the operator

1
Tpv = ¢.u¢.v - Egpv¢.n¢'a (4

in some quantum state. In expanding the operator ¢ 1n normal modes, we assume that
there exist null coordinates «, v such that the ingoing and outgoing parts of a normal

mode are respectively
e~ [(ax|w])"?, et [(4njw])"? . )

The state which we have exanuned is the one annihilated by the operators with modes

@> (O in the field expansion.

If the geomctry is initially static or has an asymptotically flat region at infinity,
this state is made unique by the requircment that the modes reduce to ordinary plane
waves in that region. This state is then that in which no particles are present initially
(hefore the collapse begins as in the problem of Davies, Fulling and Unruh [3] discussed
in § 3), and is conventionally called the "vacuum" or "in-vacuum" state,

On regularisation (on physical grounds). the expectation value of Ty, in this stal¢

(also designated by T},,) is

R
Tyv = Buv + mguv ©®
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where R is the curvature scalar and 6, as evaluated in the special &, v coordinates
has the components

o
Oz = -(12m)' CI(C 2 )5,
L
9;.‘. = —(]2”)_|C2(C 2),".;., (7)
Oz =65 = 0.

The regularisation scheme adopted for derivation of (6) stimulated some controversy,
because it involves discarding certain ambiguous terms which inevitably arise as an artefact
of the regulanisation process (these terms are ambiguous because they depend on the
direction of point-spliting). Because of this controversy, Davies [4) adopted an alternative
procedure to confirm the result (6). Remarkably, however, it 1s possible to determine <7,,,>
uniquely without rcgulansing infinite quantities at all, provided that we assume that the
stress-tensor possesses @ non-zero trace. Here, 1t is important to mention that in two

dimensions, quite general arguments imply that conservation, zero trace and particle
production are incompatible.

Let us consider the metric in &, v coordinates in the conformally flat form
ds? = C(u, v)du dv. (8)
The only non-vamishing Christoffel symbols are then

ri. =c"'9,C. ', =C-'9:C. 9

it
The stress-tensor 77, is defined to be covariantly conserved,
V‘J T = (), (10)

which in terms of C becomes
a‘.rﬁﬁ+i4ca,7ru,, =0 (1
logether with a similar expression for Ty with & and V" interchanged.

The trace in (11) 1s assumed to be non-zero, even though the stress tensor operator
for massless scalar ficlds is hknown to be traceless. The appearance of a trace in the vacuum
expectation value of a (formally divergent) traceless operator is known as a conformal
anomaly, because it breaks the conformal invariance. Conformal anomalics arc 1o be
expected on general grounds in quantum ficld theory [5]. Here we only need assurae that
T#,1s a non-vanishing local quantity. It is a scalar quantity with the dimensions (Length)2
{inunits & = ¢ = 1) so it must consist of teims which are quadratic in derivatives of C.
As there is no conformal anomaly in flat space-time, T, must vanish for certain choices

of the conformal fagtor C. This requirement suffices to determine the trace to within an
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overall numerical factor. First, it is noted that, if C is a function of & or ¥ alone, space-
time is flat, because a simple rescaling of one null coordinate reduces the right-hand side
of eq. (8) to dudv. Hence T¥, can only contain a linear combination of the factors
J;Cd;C and 9;9;C. Because the theory does not contain a characteristic length, a
simple scaling argument shows that T# , must be a homogeneous functional in C of
dcgree-1. Consequently

T4 = aC23;9;C + bd; a5 C. 12

Next we note that the choice C = e¢**" corresponds to the Milne Universe, which is just
Minkowski space in disguise, so we require the right-hand side of (12) to vanish in this
case. This fixes a = -b, so

|
T““ = -2 aR (13)

where R is the scalar curvature
Equation (11) may now be written in the form
1
3;T,;,; = 5{133 [C'/ZJ‘% C‘Ilzl (|4)
which may be immediately intcgrated to give

T = 2aC'292 C-12 + f(a), (F5)

where [ is an arbitrary function of u . To determine f(«), it is noted first that, as T;; is
local, f can depend on the geometry only through C and its derivatives at the point (17.5) of
interest. Now 1if R # 0, C will be a function of both ¥ and v, so f(u) is generally
independent of C because it is a function of u alone. At most f can be a constant. Davies
|4] has omitted this constant.

To fix up the value of a, Davies has appealed to a special case, the case of a moving
mirror, emitting radiation and obtained the value (withf = 0)

a= -(24nm)" (16)
Hence the complete stress tensor is

Ty =6, +(487)" Rg,, an

where 6, are as given in (7). T follows from T;; by interchange of & and U and the
values of the conformal anomalies.

TV = (24m)'R a9

No regularisation has been uscd 1o obtain these results.
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3. Gravitational collapse of a spherical shell

Now (6) [or (17)] is applied to the collapse of a spherical shell. The two-dimensional metric
is obtained by eliminating the angular coordinates from that of a four-dimensional shell of
matter which collapses ar high velociry. Inside the shell, the space-time is flat, whereas
outside the shell the metric takes the Schwarzschild form

-1
ds? = (I - 3rﬂ)dﬂ - (1 - #) dr?. (19

There exist three useful sets of null co-ordinates for this problem. In the first, given
outside the shell by

u=t-r
v=ter (20)
r'=r+2Min(r/2M - 1)

the external metric takes the simple form

ds? = (n - 27“).1“4» @

where r is an implicit function of u, v by egs. (20).
The second set, U, V, is defined so that the interior metric takes the simple form
ds? =dUdV. (22)

The relation between the u, v and the U, V co-ordinates has been obtained by Unruh [6] by
demanding continuity of the metric across the boundary.

Finally, we have the co-ordinates i, U which are to appear in mode solutions (5)
and in the determination [eq. (7)) of the energy-momentum tensor. Following Unruh (6],
relations are obtained which lead to an expression for the external metric in @, U
co-ordinates and to values for T, For retarded times & before the onset of the collapse,
one obtains

ds? = (1 - 31‘1)4.7{6 @)

that is, the conformal factor, C(#, V), to be used in eq. (7) is

c=1-M 24
r

in the external region of space-time. The values of T, in this region expressed in
4, v coordinates are
2
T, = (24%)" (3-‘"— - ﬂ).

2rf
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a(2M? M
Tw=Tyu-= (24”) : ( ré - r—Jj' (25)
_ (M2 M
Tuu = (247!) (27 - r—:‘)

For retarded times, u, long after the collapse, the external conformal factor in &, 7
co-ordinates takes the form
- - 2M\[ 4aM
Cu,v)=(1- —||—= ,
(@ D) (1 ! )[A_“ +0(1)] 26)
where O(1) are terms of order unity in u and A is a parameter such that & = A is the

equation for the future horizon. Evaluating T, outside the shell, transforming to u, v
co-ordinates, and neglecting terms which die off for large values of u, one obtains

| 3ImM? M 1
T =(4n)" L
w = (247) |:2r“ N 32M2]
2 2
= (7687!M2)_| j_ MY L AM M7 27
r r ri

with T,,, and T, remaining as in (25).

Comparing (27) with (25) one finds that the effect of collapse 1s to add a constant
term to 7,,,. which appears at large r as a flux of energy defined by Unruh [6] of magnitude
[768M?}-'* This is just the energy flux one would expect on the basis of Hawking's
arguments | 1,2] as applied to this model. ’

From (27) and (25), one finds that the flux of energy is given by two components.
Near the infinity it is dominated by an outward null flux of energy (given by T,,)* . Near the
horizon, however, it is a flux of negative energy going into the horizon of the blackhole
(represented by T,, for r near 2M)*

4. Hiscock’s model of evaporating blackholes : calculation of stress tensor
components

Hiscock [7] modelled the Hawking process of evaporation of a spherically symmetric
blackhole with a Vaidya metric [8] which represents imploding null fluid. The metric of the
model space-time is

ds? = -(I - ZMr(v))dv2 + 2dvdr + r2d@? + r?sin? 6d¢? (28)
where M(v)=0, v<0,
M(v)#0, vy>v>0, 29

M(v)=0, v> v,.

On the other hand. near r = 2M, Ty, = (7687MT"!
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The model EBH (evaporating blackhole) space-time is initially flat, empty Minkowsi space

for all ¥ < 0. Then,at v=0, a collapsing ball of mass M(v) = m is formed. Negative-
energy-density null fluid then falls into the hole at a greater or lesser rate, depending on the
choice of M(v), such that the mass of the blackhole is reduced to zero at v = . The final
state is again flat, empty Minkowski space for all v > vy.

Hiscock took two examples for (29) in one of which

0, v <0, Phase I
M(v) = m(l - Dl) vy > >0, Phasell 30)
0
0, v > vy, Phase 11

so that with a 6 = constant, ¢ = constant slice through the model FBH space-time to get a
two-dimensional metric, we are left with

ds? = —[l - 2-"'(”" —v)}dvz +2dvdr.. (31
r Uo

With the following substitutions

2= 2222 C= ~In(vo-)
-
n={_+2z", " = j(z1-2#z3+2z) dz, (32
H=m/vq
(31) reduces'to the form
ds? = -e'u(I —2ur+ %)dcdn. 33)

This is the metric for phase IT (vy> v > 0). The metric for phase I is

ds? = —dudv, (V< 0) 34)
and, in phase 111, the final Minkowski space-time is

ds? = -dUdv, (v > w). (35)

The two-dimensional stress tensor for a quantised massless scalar may now be computed by
relating these three sets of null co-ordinates egs. (33-35) to the canonical set (#,) in
which the vacuum state is defined. The results are, for phase I (v < 0)

T,,=0, .
for phase Il (v, > v> 0) :

6my, 4mvl _ 12m2 v}

u? FE ut @n

Ty = (127)" %u’z‘- %uz3+

T2A(6)-22
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Ty = (127)” (%u’z‘ - %uz’). 38)
Tep = -% (l -2uz + %) (39)
and phase Ill (V> W) :
Too = mv, (342 - 2vi - -6mvo) @
6mi 4 (U-vp)*
Ty =Ty = 0. @n

The stress tensor in phase II is observed to be finite everywhere except z = + o
and/or & =0 at the curvature singularity. The (7, {) co-ordinate system behaves poorly
as z = z,, ) = oo (the event horizon), but examination of the stress tensor components in
a Kruskal-type co-ordinate system regular on the event horizon shows that they are
finite there.

The stress-energy in phase III consists solely of a stream of outgoing radiation
whose energy density diverges as U — uw, i.e., as one approaches the Cauchy horizon.
[“The Cauchy horizon, simply, is the place where the Cauchy problem breaks down;
usually it occurs accompanied by a nzked singularity (a pathological causal structure)”—
Kaminaga [9]]. Note also that the integrated energy density diverges as U — v, The energy
density is always positive for U < w. Since the stress tensor for phase Il is finite all along
the event horizon, it is natural to associate this diverging energy flux with the naked
singularity.

Hiscock’s model has been extended to an evaporating charged blackhole by
Kaminaga [9].

5. Balbinot’s formula for Ty

Balbinot [10-13] extended the work of Davies ef al and Hiscock to a physically general
line-element describing a spherically symmetric evaporating blackhole of the form

ds? = -ezV(l - 27’”)4”2 +2e¥dudr+r2(d6? +sin? 6dg?),  (42)

where y and m are functions of v and r. In four dimensions m is the total gravitational mass
of the system as viewed from infinity. Taking a 6= const., ¢ = const. slice, (42) reduces to

ds? = -e2V(l - 27"')402 + 2e ¥ dudr “3)

If y=0and m =M = const., (43) describes a two-dimensional Schwarzschild space-time in
advanced time, Eddington-Finkelstein coordinates.



Blackhole evaporation—stress tensor approach 629

A new set of null coordinates (U, V) defined by

-l
dU = g[dv- 2¢'V(l - 2—:"—) dr]. (44)

V=v

are introduced, where g is an integrating factor which satisfies

ldg _ d _ 2m\™'
73 " %[8‘ (1-2) } @9
In terms of U, V, (43) becomes

’

2y
ds? = - ¢ 1- 2'"-)dUdV. (46)
4 r

which is manifestly conformally flat.
Now, in a two-dimensional space-time having a line-element
ds? = - C(u, V)dudv 47)

the expectation value T, of a massless scalar field in the vacuum state |0) defined by the
normal modes, exp (-iwi) and exp (~iwv) is given by (6) and (7).

In general, the |0) does not represent the correct vacuum state for an
evaporating blackhole so that one cannot simply use (6) as it stands. A prescription for
how to define the correct vacuum state, call it |§) for an evaporating blackhole in a
non-slation;ry space-time having a line-element (46) is not yet known but, for his
purpose, Balbinot considered it sufficient to use some general properties of (Tul,); for
the spacetime (46).

In fact, requiring that y and m are well-behaved at past null infinity (i.e., the space-
time under consideration is past asymptatically flat) the scalar field modes for the |&)
vacuum will have the form exp (-iwV) on /~. This gives the relation

v=V (48)

which is valid everywhere in the space-time. By (48), the ingoing normal modes for
0) and |£) vacua coincide, so (Tvy)o = (Tw )¢ (in two dimensions there is no
scattering of massless particles by the geometry). The outgoing modes do not contribute
to Tyy and, by construction, both vacua reduce to the usual Minkowski vacuum on 1-.
For the state |£) one must further requirc that the invariants (e.8.. (TH*)(T,,)) of
(T,,.,)g be well-behaved on the event horizon of the blackhole. This condition
requires (Tyy )g and (Tyy)e to vanish there; away from the horizon their form will
depend on the exact definition of the fields outgoing normal modes for the state |§) and,
of course, on g. Balbinot was only interested in finding the flux of negative energy
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going down the hole. Thus, it is sufficient to look for the VV component of (Tuv) ¢ and
this does not depend either on the choice of the outgoing modes of the field or on g; i
is fixed by the metric (43) and by the boundary condition (48).

From (46),
1 _ 2m\! a 2
CZ-[g(l-T) e’V | . (49)
1 1 .1 1 .- 30
Then (C 2 ),w = IC 2Q2 - EC 2 W (50)
_dy 2m Iy m 1dm
where Q= W+(l—~r—)eV? +e"(r—2—7—r) (61))
remembering that
o _ 9, 1,(_2m2
Er T 2"(' r)ar' (52)
Hence, the expression for (Tyy)¢ given by (6) and (7) is
- Aall,_ 190

and does not depend on g.

Following Bardeen [14], Balbinot chose y to be roughly constant and m(V, r) = m(v)
near r = 2m so that, from (53), he got

_(oam| o m 3m? (54)

(Tw)g = (2471') [r—z- - r—,‘ + 5 r‘ ]
This reduces to the third equation of (25) obtained by Davies et al [3] for a collapsing
shell if m = %’3 = 0. Furthermore, as previously stated one expects (Tyy); to vanish on

the event horizon and to give a non-vanishing, positive, outgoing flux across time-like
surface r = 2m (the apparent horizon of the dynamical model, the event horizon being

located somewhere inside it [15]).

One can associate with the flux (54) a blackbody temperature T which should be
considered as the effective temperature of the hole, since by the energy conservation (which
T, satisfies) one expects this temperature to reflect the radiation content emitted at infinity.
From (54) we have

T=(12|Tw |5-)2. (55)
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If, however, we have a metric in an arbitrary form

ds? = - A(v, r)dv? + 2B(v, r)dv dr (56)

then we have T, in the form

Pl l d 1Ad
- —_———|—y =2 5
(12x)- [ ry 3 3 + 3 Bar)P]+F(V) (57
= 1|98  10A
where P= B[av 23] (58)

and F(v) is a function of v to be determined by a boundary condition 7, on past null
infinity.

6. Some applications of Balbinot's formula
(a) Evaporating blackholes in the presence of inflation :

Mallet [16] has taken the following metric for a model for the dynamical evolution
an evaporating blackhole in an inflationary universe :

ds? = —(l - Eir(v—) -;gzrz)dvz

+2dvdr +r2(d8? + sin? 6d¢?), (59

where M(v) is some decreasing mass function and y the effective cosmological constant
associated with the de Sitter inflationary phase of the universe.

The two-dimensional space-time associated with eq. (59) is abtained by taking
6= const. and ¢ = const. with the result

ds? = —[I - -2-@ _xz,z]dvz + 2dvdr. (60)

Applying (56) — (58) to (60) leads at once to (with A{v) = 0)

. MZ
T = (241)"" [M,(zw -T2+ 3 m]

rd ’2 r

,,xz[ﬂ’r(_"l - %]} 61

From (61), the following picture emerges. Near the event horizon of the blackhole. there is
a negative-energy flux into the hole due 1o the first term in (61) and this is interpreted by an
observer outside the event horizon as an evaporation of the hole. On the other hand. since
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X > 0, the second term indicates that the net effect of inflationary environment is the
introduction of a positive energy-flux of radiation into the hole causing a slight decrease in
the evaporation process.

(b) Evaporating blackholes with acceleration :

Recently. Krori er al [17] have studiec the effect of acceleration on an evaporating
blackhole by the stress tensor approach. The two-dimensional metric obtained by taking
6= const. and ¢ =const. is [18)]

ds® = - Hdv? + 2dvdr, (62)

where H=1- m + 6Am(v)p + ArG,p - A2r*G(p). (63)

A = aceeleraton parameter.
Gp)y=1=-p=2Am(V)p* = sin* 6, (64)
G.p= -2p-6Am(v)p*. (65)

Table 1. An estimate of 7, .

(a) Contnbution of (b) Contribution of Sum ol (a)
the hirstienn (. ) the second term | ) and (b)
8 r=14 of (66) of (66) ’
0 8353 08353 m
I — T
m-* m-
-1
0 3d6m +0Lx.|'0_
me-
: -3 -1
+684x|0 4‘6‘)5)("]
b 9
n-= m=
0 20661 m 0 20661 m
— ——
me m-
-3
/2 22m _1.999x107"
m 2
" 14.9x10-? 6 901x10-}
—_— + —
2 2
m m
0.33412 m 033412 m
m? m?
-3
T 1 TIm _5.66x1077
m? \
-3 -
L80! JLidxio?

)
m 2 me*
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Now, applying (56)<58) to (62) leads at once to (with F(v) =0)

- - r;t m Im?
Tw = -(125) '{[‘27 Mer 2‘77]]

Am 2GR m
+{4r2 Gpta ( 16~ 2r O

A At 1G2(p)+ AL ( 2m
7 OnG.p+ = riGi(p)+ r G(p)|1 - T

+ i‘:-((’)mp +1G, p - ArtG(p)) x (i—’; + AZG(p))}] (66)

Near the Schwarzschild surface, i.e., r = r,g, the first term within circular
brackets in (66) represents a negative energy flux into the hole. On the other hand,
the second term within curly brackets is the contribution due to acceleration parameter
A and varies with 6. As Table 1 will show, the net energy flux, T,,, is negative. Hence,

a net positive out-flow (i.e., radiation) will occur in accordance with energy
conservation.

For numerical estimates, we shall take Am = 7;_7 and use some relevant data

from Farhoosh and Zimmerman [18]. We shall consider three specific directions,
6=0, n/2'and 1.

The table (Table 1) shows that for practical purposes, Tyy (0), T\ (7/2) and T\, (%)
(for @ = 0, /2 and & respectively) are equal for small m (Davies et al [3]). However,
strictly speaking, | T,, (7 | appears to be maximum. The table also reveals an interesting
teature. The contribution from the second term of (66) so tampers that from the first term
that T, has practically the same value for 8= 0, /2 and 7 (for small m.
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