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Abstract : The crucial question of instablity of classical motion in Hamiltonian systems
essentially rests on the curvature (or second denvative) of the potential While the local
linear stabihty analysis around the fixed points 1s based on assumpuion of constant curvature,
we take full account of the time-dependence of this quantity 1n the chaotic regime by
considering 1t 10 be a stochastic process, stochasticity being duc to deterministic chaotic
motion. Based on the theory of muluplicative noise we show that the correlation between
the fluctuation of the curvature of the potential leads to chaoue diffusion A rati.aalisation
of the onigin of the exponenual divergence of nitially nearby trajectones auu also of the
exponential divergence of quantum fluctuations of dynamical vanables for classically chaotic
trajectories 1n the early part of quantum evolution from a statistical mechanical point of
view can thus be traced back n the correlation of the classical fluctuation Our formulation
15 valid for N-degree-of-freedom systems and has been verified numerically on model
Hamltonian systems
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1. Introduction

The mathematical development in the theory of nonlincar dynamics over the last few decades
has provided great physical insight into our understanding of the nature of classical motion.
The motion associated with the trajectories that remain confined to well-defined regions of
phase space and show few changes in character when small changes in the initial conditions
are made is termed regular. On the other hand, there are regimes in phase space where the
trajectories are extremely sensitive to small changes in initial conditions and wander erratically
over large regions ol cnergetically accessible phasc space. The motion of latter kind is unstable,
irregular or chaotic. Over the last few decades the subject has seen phenomenal growth with

considerable success in almost all areas of physics, chemistry and biology wherc nonlinearity
prevails.

The extreme sensitivity to initial condition for nonlinear dynamical equations is
quantitatively reflected in the positivity of the largest Lyapunov exponent which signifies an
exponential separation of initially nearby trajectories. This. in turn, is associated with an
enormous loss of initial correlations in the not-so-distant future such that the motion eventually
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becomes as random as coin toss. For a certain class of systems known as C-systems this is a
rigourous result. Although most Hamiltonian systems have not been proved to be C-systems,
chaotic trajcctories are found to display an exponential-like separation.

Thus although deterministic in principle, the chaotic motion is stochastic in nature. As
a result one may easily comprehend a close conncction between chaos and statistical
mechanics. It is worthwhile to distinguish the two distinct situations in this context. The first
onc concerns whether chaotic motion can serve as a basis for statistical mechanics since the
ultimate justification of the postulates of the statistical mechanics rests on the dynamics of
cach particle. With this end in view attempts have been made to justify Boltzmann’s hypothesis
of molccular chaos, ergodicity and the postulate of equal a priori probability from standpoint of
loss of correlation of initially nearby trajectories of the particle comprising the macroscopic
system. The second onc on the other hand concerns the following : Given that a chaotic
motion is truly stochastic, how and to what extent one can implement the statistical mechanical
formalism for an useful description of classical chaos keeping in mind that one essentially
dcals here with a few-degree-of-freedom system. In this paper we address specifically the
second issue.

To put the prescnt issuc in a proper prospective we first give a brief overview of some
of the related recent developments. The statistical mechanical methods have beeh utilized in
various ways in fcw-degree-of-freedom systems by a number of workers [1-7] in eighties. For
cxample, Oono and Takahashi [2] have introduced a powerful method for characteristic
mulufractals based on certain partition functions. Widom et. al. [4] considered the cxample of
Julia sets. The method of statistical physics was also followed by Kohmoto [5] to introduce the
entropy and frec cnergy functions for multifractals which are pre-requisite for the existence of
thermodynamics. These functions are related to Kolmogorov-Sinai entropy and Lyapunov
cxponents in the case of dynamical systems. For continuous 8ystem the statistical
mechanical method has been employed to define temperature and entropy analogous to
thermodynamics.

Apart from equilibrium methods kinctic description [7-13] has also been utilized over
the ycars. Ever since the carly numerical study of Chirikov mapping [14] revealed that the
motion of a phase spacc variable can be characterized by a simple random walk diffusion
equation, altempts have been made to describe chaotic motion in terms of Langevin or Fokker-
Planck cquations. It has now been realized that detcrministic maps can result in long time
diffusional processes and methods have been developed to predict successfully the
corresponding diffusion cocfficients [ 15]. While these studics are based on maps, identification
of a noise term in Lorenz equations after recasting it to an approximate Langevin form has
been achicved by Nicolis and Nicolis [9] by successfully separating the distinct time-scales
involved in the dynamics using a center manifold method. Bianuceier. al. [12] have considered
aclosed Hamiltonian system and showed that the system of interest follows a slower dynamics
obeying a Fokker-Planck cquation having a canonical distribution which defines a temperature-
like quantity.

Since the cmergence of stochastici‘ in a nonlinear dynamical system is essentially duc
to loss of correlation of two initially neai by trajectories, one can trace back its origin in the
curvature (second derivative) of the potential in the Hamiltonian systems. When chaos has
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fully set in, the time dependence of the curvature can be described as a stochastic process. In
a number of recent studies [11, 16-17] we have shown that this fluctuation is amenable to a
theoretical description in terms of the theory of multiplicative noise. This allows us to realize a
number of important results of nonequilibrium statistical mechanics like Kubo relation,
Fluctuation-dissipation relation, etc., in chaotic dynamics of few-degree-of-freedom systems.
In this paper we discuss two such aspects ; first, the realization of Lyapunov exponcnt as a
transport coefficient in Hamiltonian systems and second, identifying an early stage of quantum
cvolution of a classically chaotic system in terms of the exponential divergence of quantum
fluctuations. The regime is dominated by chaotic diffusion. In presence of dissipation, the
quantum system is governed by a Fokker-Planck equation reminiscent of Kramers' equation
which describes the Brownian motion in phase space. The present stochastic approach reveals
that the largest Lyapunov exponent as well as the rate of early exponential divergence of
quantum fluctuations (or expansion in phase space) are determined by the correlation of
fluctuations of the curvature of the classical potential. the key point being the chaotic diffusion

in phase space. Our aim here is to cmploy the methods of stochastic differential equation for
the description of this chaotic diffusion.

2. Curvature of the potential and stability of motion

Since the question of instability of nonlincar dynamical motion lies at the root of exponential

separation of trajectories let us bricfly recall the stability aspect which is relevant for our future
discussions.

The classical cqualidn.s of motion for a system with N degrees-of-freedom described by
aHamiltonian v

H@wh%fumy 0

where p, q are N-dimensional vectors of momentum and conjugate coordinate respectively are
given by

q=p
p=-VUq. @

We now introduce the variables Ag and Ap, which measure the separation of the two
trajcctories in coordinate and momentum, respectively as

Agn) = ¢V (-q®m),

Ap@e) = p" i -pP@). 3

For g(? (1) sufficiently close to the reference trajectory ¢'") one may obtain the linearized
equations for Aqg and Ap. Hence

Aq = Ap

Ap
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where V(1) is the N x N matrix of the second derivative of the potential U (g). evaluated along
the refcrence trajectory. Thus

[vw], = aaq,u;q;l ©)

qsq(li(”

The stability of motion is determined by the time-dependent eigenvalues of 2N x 2N

0 1
M=lvo of ©

where 0 and | are the null and unit N x N matriccs. The time dependcent transformation S
diagonalises M so that onc has

matrix

l%_lly = )'l (')611 . (7)

If the real part of one of the cigenvalues is positive the trajectory separation grows
exponentially and the motion becomes unstable.

Because of the inherent time-dependence, the eq. (7) is difficult Lo solve. As\a primary
step one, howcver, examines the stability around the equilibrium points determingd by the
condition ¢ = p = 0, by freezing the time dependence of ¢-s in ¥(1). By minimizing the cnergy
of a conservative system subject to the constraint of linear stability criteria it is possible to
determine the stochasticity threshold. Such a contention was first proposed by Toda [18] and
has been tested in Heiles-Henon and in a number of other related two-degrec-of freedom
systems by several workers [19].

While the above-mentioned stability analysis is local in nature, the truc stability of
motion is only determined by keeping the time-dependence of V(t) matrix intact. Also there is
very little correlation between the local stability and global stochasticity. In view of this it is
necessary to take full account of the time-dependence of the curvature of the potential V(1)
along the reference trajectory itself. To this end we note the following two points.

First, when the motion of the dynamical system along the reference trajectory 1s regular
V(1) is highly correlated throughout the entire course of evolution. On the other hand for a
chaotic motion when the dynamical variables in V(t) behave stochastically, V(1) describes a
stochastic process along the reference trajectory ; the stochasticity originates from the chaotic
motion itslf. The loss of correlation in chaotic dynamical systems thus rests on the decay of

correlation function of fluctuation of V(1), i.e., on (V (nv (t+1')). What follows in the

subsequent sections is a stochastic description of chaotic diffusion in phase space in terms of
this corrclation function in different physical situations. -

Sccondly, although interpreted as a stochastic process, V(1) is determined dynamically
{rom the numerical solution of classical equations of motion and as such onc can not impose
any a priori approximation on the nature of this stochastic process. The special cases that a
stochastic process is Gaussian, or delta corrclated, etc. have attracted so much attention in the
literature that it is necessary to emphasize that we have not made any of such approximation on
the nature of this stochastic process in the subsequent devclopment of the present formulation.
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3. Chaotic diffusion and instability of motion ; Kubo relations

Let us specialize the problem in the case of driven one-degree-of-freedom systems described
by the following Hamiltonian

<

”2 +U(q)+gqcoswt. ®)

H=

" The first, second and the third terms represent the kinetic energy, potential energy and
the driving term respectively. g and ® are the coupling constant and the frequency of the
external field. U(qg) is assumed to be nonlinear such that nonlinearity renders the overall
Hamiltonian nonintegrable. When full global chaos has set in one can treat q, p as stochastic
variables.

The cquation of motion and the equation of separation of trajectories are given by

=-U’'(g)-gcoswt. (&)
and

bq=-U"(g)8q. (10

The standard procedure [20] for calculation of the largest Lyapunov exponent (LLE),
the positivity of which is an unambiguous measure of instability, is to solve the trajectory
equation (9) and separation equation of motion (10) simultaneously for A7 and Aq as functions
of time. The largest Lyapunov exponent is then given by

log 1 d(t)N /11d(O) 11

A= lim (1)
[ !

d0)y—>0

where the norm Il d(1) Il is defined as

dnyl = [Aq? + qu]é.

Since U” (g) is, in general, a function of stochastic variable g, U" (¢) may be interpreted
as a fluctuating quantity such that one may define fluctuation {(¢) of U"(q) as

C=U"(q)-U"(q,) (12)

where U” (. ) is the value of U” (¢) at one of the stable fixed points g, determined by the
condition U’ (g) = 0. It is convenient to work with the following scaled quantities

T = [U"(g)N*t

Ulq)= U’ (@)1 U” (g})
]
o/ [U"(g)))?

g/U”(q;)

0 (13)

K
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and express eqgs. (9) and (10) in terms of them as

dzq ~

—=+U'(q)=-xKxcos 2t

ar q) (14
and

d’ s +0?(1)Ag=0 15

dr? ' 13
where

o’ = 1+al(t). (16)
and

a=[U" @)

Since { (1) is considered as a stochastic process, eq. (15) becomes an equation for
harmonic oscillator with stochastic frequency w? (7).

We point out that we make no approximation about the nature of the stochastic process
(1), which is exactly determined by eq. (9) or (14).

The harmonic oscillator with random coefficients has been subject of cxtensive
investigation over the last few decades, particularly in connection with wave propagation. linc
broadening, lasers, mechanical systems [21-23] efc. Eq (15) offers itself as a candidate for
similar study in chaotic dynamics. What follows next we make usc of a standard result derived
by van Kampen [21] for linear stochastic differential cquations. From eq. (15) one first derives

&’ 4y’
4 Aq% |=[A, +al (1) B1| Aq°
ac| 7 |70 71 . T
A94q Aq4q
where A and B arc given by
0 0 2
Ap=| 0 0 =2, (18)
-1 1 0
and
00 0
-1 0 0
The equation of motion for the sccond moments arc given by
) (49°) 0 0 2 \((ad?)
AN 2 P 9y -2
d—t(dq)- a’C, a’C, -2-2aC|| (44) 0

(Ag49)| (-1-aC+aC, | -a?C, )|(AqAq)
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where the average and the correlation functions of the fluctuation of the curvature of the
potential are expressed as

c, = J: <<{(t){(t-1")>>sin 2T dr’,

c, = I(: << {(1) {(T-7")>>(1=cos 27")dr’ .

C, = J: <<{(7) C(tf T')>> (I+c0s 27°)dr’, | @n
C = (o),

<<xx>> = (xix})—(xi)(xl).

The relevant eigenvalue determined up to second order in atis

a’(c,-C,)
Ag=- 2 (22)

which corresponds to zero frequency of the unperturbed case [implying the conservation of
% (Aq2 + Aq 2) ]. In the language of harmonic oscillator it is the encrgy which grows owing to
the fluctuation in the force that have twice the proper frequency of the oscillator. Or in other

words the scparation of the nearby trajectories grows exponentially at a raic A, So when
expressed in terms of relations (21) the LL E is given by

l=%j: << {(T){(T-1")>> cos 2T’ d1’. (23)

The above result associates the L L E 1o the correlation function of fluctuations of the
curvature of the potential. Since the divergence of scparation of the trajectories is responsible
for diffusive motion in phase spacc, the rclation (23) may be viewed as a fluctuation-diffusion
rclation in chaotic dynamics. Secondly, the formal similarity of eq. (23) with Kubo relation for

transport co-efficients. such as, conductivity g expressed as a Fourier transform of current-
correlation function as

o(w)= k_lf ;cxp (—iowt) (J(0) J(1))dT, 24
can hardly be overlooked. Thus eq. (23) can alternatively be viewed as a Kubo relation in
chaotic dynamics and L L E as a transport coefficient for Hamiltonian systems. Detailed numerical
calculation for the specific choice of the U(q) ensures that the agreement between the above
theoretical proposition and the L L E calculated by the standard method of Benenttin et. al. [20]

is fairly satisfactory. The theory can also be generalized to treat N-degree of freedom Hamiltonian
systems.

A few [11] related parallel as well as subscquent developments may be noted here.
Evans [24] has derived a fluctuation expression for the temperature derivative of the L L E for
a large system in contact with a thermal bath. The resulting equation is similar to statistical
mechanical expression for temperature derivatives of thermodynamic variables in a canonical
ensemble. Suhl [25] has discussed chaos in the context of a Kubo formula. Barnett and Tajima
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[26] have established a link between Lyapunov exponents, correlation functions and transport
coefficients in a many-body system. Stochastic perturbation theory has been used to derive a
proportional relationship between the L L E of a many-body system and the correlation function
of the second derivative of the interparticle potential. Two specific cases have been examined
by them ; (i) a weakly coupled gas and (ii) onc dimensional mono-atomic lattice with nonlinear
nearest neighbour coupling. They have shown that the connection with transport coefficients
can also be established in a many-body system.

4. Chaotic diffusion and quantum evolution

In the last section, we have discussed the role of fluctuation of the curvature of the potential
in determining the global stability of motion and how the instability results in chaotic diffusion
in phase space. We now address ourselves 10 the question of quantum evolution. In this
context, we first point out an interesting observation of some numerical experiments carried out
recently [16 and 27-28] in a number of prototype Hamiltonian systems. It was demonstrated
that the initial growth of quantum fluctuations of the canonical dynamical variables, such as,
position or momentum for a classically chaotic trajectory is exponential in natuge. This has
been identified as a semiclassical manifestation of classical chaos. In this section,
attention on this aspect, particularly to examine the evolution of quantum fluctu
present analysis revcals that the rate of carly exponential growth depends cruciplly on the
correlation of classical fluctuations of the curvature of the potential. When disyipation is
incorporated in the systcm we show that an interplay of chaotic diffusion and dissipation leads
to an ultimate equilibrium in the dissipative systems. We make use of Wigner's distribution
function [29] and -scaling [27] in our semiclassical analysis and derive appropnate Fokker-
Planck equation, where the drift and diffusion terms have their origin in the dynamical properties
of classical chaos and dissipation due to an external thermal bath.

To start with, we consider a quantum system in contact with a thermal balh The

Hamiltonian of an N-degree-of-frecdom system is given by .

"w pz
= ——+U D, i=1...N,
§'2m +UdgD. 25)

T

where {g, p,} represents the coordinates and momenta of the system.

The bare system is now coupled to a reservoir of harmonic oscillator modes. After
appropriate elimination of reservoir variables in the usual way, using Born and Markov
approximations we are led to the following reduced density matrix equation for the evolution of
the system [30-31]

ﬂo_
dr

Here a and a' are annihilation and creation operators. We have assumed that only one

= —%[Ho, pl+ %(2apa* —a'ap - pa'a) + D(a'pa + apa' - a'ap - paa'). (26)

1
(q) of the system modes is coupled to rescrvoir, where 4 = m(ﬂl"' aT ). w refers, to the
frequency of the harmonic oscillator on the basis of which full quantum cilculations are
performed. 7 is the relaxalion or dissipation rate and D (= ny) is the thermal diffusion coefficient.

n(= [exp( ) -1 Yis the average thermal photon number of the reservorr.
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The first term in eq. (26) corresponds to the dynamical motion of the system that
generates Liouville flow. The second term implies the loss of cnergy from the system to the
reservoir, while the last term indicates the diffusion of Aluctuations of the reservoir modes into
the system of interest. The terms containing ¥ arise duc to the interaction with the surroundings.

Eq. (26) is the basic starting point of our analysis. Our next task is to transform the full
quantum problem to an equivalent c-number problem described by the Hamiltonian which
leads to Eq. (26). A standard procedure is to apply Wigner distribution function W [29, 34] and
the time evolution of the dynamical system is now given by,

W _ S| __pi W (U)W
;—Z[ 2, aq.-*(aq,»]ap.]
h)n,+ +n =1

o +,,~Lc7"'q,...9"”q,v nlo.ny!
odd and > |
allr".nﬂ a azw

X——  W+2y—pW+ D
L0 P L oM™ Py 3]) apl (27)

The first term is the usual Poisson bracket which generates classical motion. Both the
Poisson bracket and the higher derivative terms result from an cxpansion of the Moyal bracket
on the basis of an analytic U (g). Thg last two terms are the same as those of eq. (26) but without
the rotating wave approximation. It is important to note that the failure of correspondence
between classical and quantum dynamics is predominantly duc to higher derivative terms [29]
which make their presence felt roughly beyond the Erhenfest regime.

As a first step we invoke the symplectic structure of the Hamiltonian dynamics. For
this, we specify

g fori=1...N
i =

p;, for i=N+1,...2N. (28)
Defining I as
p 0 E
- -E 0 ) (29)
where E is an N x N unit matrix, one can write the Hamilton’s equation

. oH

g -Zl.j _“,;zi (30)
1

In the second step, we introduce the scalingz; in analogy to van Kampen’s £2-expansion
as[16 and 27)

z; =z (1)+h"7n, G
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with
n,=H, fori=1....N
=V _x fori=N+1...2N 32)

1-s refer to quantum fluctuation variables in coordinate (1,) and momentum (v,). One obtains
the cquation of motion for quantum fluctuation distribution function.

d ¢(n) 3¢(n)
¢ 77 =- Z —— = 2y=—(1,6(n) (33)
» 7'1
where we have assumed that %=0 for j=1..... N

and};:ufor j=N+1....2N

Hcere
| r) H
Z Kooz, : (34)

contains the second derivatives of the potential. The matrix J is thus determined by the naturce
of the classical motion. For chaotic motion, the stochastic fluctuations of J thus\affect the
cvolution of quantum fluctuations as dctermined by cq. (33).

For further treatment cq. (33) may be rewritten 1n a more compact form as follbws :

%:[—F(z).V+2Ny]¢, (35)

Finh=Jn-2yKn. (36)

Vrefers to differentiation with respect to components of 73 . Kis a 2N ® 2N matrix defined as
k,=0 i#]
K, =0 for i=1...N
K =1 for 1=N+1...2N
Two important points arc to be noted here. First, we consider a fully developed strong
chaos such that the measurc of rcgular region is sufficicntly small so that F (2) in eq. (35).

which is governed by classical chaotic {luctuations in the curvature of the potential [cq. (34)]
can be treated as a stochastic process.

Second, we do not make any a priori assumption about the nature of the stochastic
process F (1). Eq. (35) may thercforc be rcgarded as a stochastic differential equation with
multiplicative noise. We notc that F (1) . V can be partitionedinto two parts ; a constant part
F,. Vv and afluctuating part F, (r).V, Thus we writc.

F.V=F0.V+F| .V. (37)

We now proceed to the third step. Making use of one of the main results for the theory
of linear equation of the form cq. (35) with multiplicative noisc, we derive an average equation
for ¢ as given by (for details, we refer o [21]) ;
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2‘-§¢T)={—F0-V+2Ny-(i', -V)+L:d‘t

dn~*

dn

«Fl (n' ')' VrFI(n-t' t- 1)» ; V—r

dn
| afle
~ The above consideration is bascd on an expansion in @7 . (by van Kampen), where a
is the strength and T is the correlation time of fluctuations |in the derivation above we have

put &= 1]. The expansion is valid in the casc where fluctuations are not too large but rapid and
corrclation time T, is short but finite. Second, the derivation above neglects the effects of
higher powers of n and thus the eq. (38) is an effective semiclassical cquation for quantum
fluctuation distribution function. Since it contains sccond derivatives with respect to
components of 7). it has the form of a Fokker-Planck cquation. Third, the theory discussed so
far is valid, in gencral, for N-degree-of-frecdom chaotic systems in presence of dissipation.

We now return to the specific one-degree-of-lrcedom Hamiltonian system [eq. (8)] for
illustration of gencral eq. (38). For this purpose we choose U(g) = aq* - bg?. Note that N = 1.

The cquations of motion for quantum fluctuation variables 7, and 7, corresponding
1o g and p read as follows :

d((n, un
4 =J
dt ('72) _('71) )

Following the procedure a8 described earlier J can be calculated as

1
_U”(q) 0

with— U"(q) = { (£) + 2b, where £ (1) and 2b, represent the fluctuating and the constant parts of
the curvature of the potential U(g), respectively, Here £ (#) is given by

L(ty=-12aq
If one takes into consideration of the y-term then F(7) in eq. (36) can be identified as
F=Fy+F, (1), @D
where
1 0 0
Fy = 12 +( )[nl]
2bm, ) \0 =7){(n
1
21n,-Y N,
and

0
F ()=
1 () (C(')'h] 43)
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Making use of the mapping transformations n — n* for the unperturbed motion one
calculates the first and second derivative terms in eq. (38) [For details we refer to [21]). The
Fokker-Planck cquation can then be written in a compact form as follows :

where
c = {{0)
¢ = J:((C (N(e=1)))e" Tdr,
o = J(eotu-o)er Tar,
A= 00, -, (0n,0)c,.
B = nj O,
w? = 2b+c+c,,
m =l \ @

Note that in the expressions for diffusion coefficients A’ and B we have freezed the time-
dependence of 1, and n, by setting their initial values. This corresponds to the weak noise
approximation. The above Fokker-Planck equation which governs the evolution of distribution
of quantum fluctuations n, and 1, corresponding to co-ordinatc and momentum variables,
respectively, in presence of dissipation has a formal similarity in structure to Kramers’ cquation
|32] which describes the Brownian motion of a particle in phase space. While the stochasticity
in Kramers’ equation originates from the thermal fluctuations derived from the true statistical
properties of the reservoir which is a many body system, the stochasticity in the present
problem owes its origin to the dynamical properties of classical chaos in a low dimensional
system.

We now take into account of appropriate quantum-classical correspondence by scarching
a conditional probability solution for (¢( 1, r)) subject to an initial condition which corresponds
to a coherent state. The uncertainty in coordinate 47, and that in momentum An, are then
given by :

an} =(nf)-(n)" = 5[ 52,

(/)]

any =(n3)-(m.)" = [@]w )

The uncertainty product A7, An, at any time is then given by

an,an, =T @), @
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where I" (¢) is expressed as

24
F(O=re” +=—(1-¢"").
y € @8)

with
A:A_.
w

ro=1. “9)

The egs. (46-47) relate the evolution of quantum fluctuations as functions of time in
terms of I'(1) which by the virtuc of eq. (49) is determined by thc initial condition I"(0) and the
other two parameters A and ¥. Note that A is the diffusion coefficient defined by egs. (45) and
49) [this is not to be confused with the thermal diffusion coefficient D in eq. (26) which arises
duc to the interaction with the surroundings] and ¥ refers to the dissipation rate of the system
in contact with the surroundings. Since A is rclated to the fluctuations of the curvature of the

classical potential {(r) through ¢, and ¢ in cq. (45), the origin of diffusion coefficient A 1s
essentially the classical chaos.

To analysis the growth of quantum fluctuations quantitatively [eq. 47] we now consider
the classical chaotic motion govemed by thc Hamiltonian (25) and introducc a phenomenological
damping yin the classical cquation of motion. We choose the paramncter valuesm=1,a=0.5,
h=10.w,=6.07,y=0.001. The coupling constant cum ficld strength, g is choosen 14.0 and 18.0
for two scts when other parameters remain fixed. We also choose the initial condition gy =-3.5
and p, = 0.0, which cnsurcs strong global chaos. To calculate classical cnsemblc average of the
quantities likc (( ( l)) and «g ng(t- r))) which appeared in the expression for chaotic diffusion
coelficient A in eqs. (45 and 48), we carry out averaging over long time serics.

For a full quantum-mechanical calculation to verify the basic theoretical propositions of
semiclassical dynamics [eq 47] we now return to eq. (26). The eigenvectors {|n)} of a harmonic
oscillator which satisfics [(f)2 12m+(1/2)mw*§* )] In)=[(n+1/2) hw]in) are chosen as
bhasis vectors Lo solve cq. (26). The frequency wis arbitrarily adjusted to economize the size of
the basis sct. For the present purposc, we choose @= 6.25, i = |, and 120 basis vectors. In this
representation, the equations of motion for the reduced density matrix clements (eq. 26) are
solved. The quantum cvolution is followed by locating the average position and average
momentum of the initial coherent wave packet corresponding Lo the initial position and
momentum of a classically chaotic trajectory. As a numerical check we have compared our
results with those of Lin and Ballentine [33] in classical and quantum cases for D = 0,

7= 0. Anothcr important check for the numerical calculation is the keep Trp = 1 for the cntire
cvolution,

Having calculated A as described above we follow eq. (47) to plot a typical representative
variation of In [An, An,] (An, and An, are the quantum variances corresponding to position
and momentum, respectively) as a function of time in Figures | (a, b) (dotted line) for different
values of g. This is compared with full quantum calculation for the above-mentioned parameter
values (full line). We have also checked basic proposition for other parameter scts. The agreement
is found to be quite satisfactory in all cases.
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We summarize the main results of this section.

(i) s-scaling identifies an early stage of quantum evolution in which the thermal diffusion
term has no significant part to play.

(ii) This stage is dominated by chaotic diffusion. The drift and diffusion terms have
their origin in the intrinsic dynamical properties of the classical chaotic system. Formally, the
Fokker-Planck equation is identical in structurc with Kramers’ equation which describes a

Brownian dynamics in phasc space and is valid for general N-degree-of freedom Hamiltonian
systems.

(iii) We have analytically solved this equation as an initial value problem to study the
evolution of quantum variances for a specific example. It can also be shown that the dissipation
plays a significant rolc for attainment of equilibrium.

124 o

093 4

062 4

0314

log ( uncertainty product )

'
0004/

Time .

0.31

log ( uncertainty product )
E

(b)

-0.31
23

Figure 1 : Plot of log of uncertainty product with time for different values of g. The
continuous line represents the numerical calculation (fully quantum). The dotted line refers
to semiclassical calculation (eq. (24)). (a) g = 14.0 and (b) g = 18.0. (Both units are
arbitrary).
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5. Conclusions

A key-point in determining the stability of motion in a nonlinear dynamical system rests on the
fluctuation of the curvature of the potential. We have shown that this fluctuation is amenable
{o an analysis in terms of a theory of multiplicative noisc. We take full account of the noise
process generated by exact solution of the classical equations of motion and as such no
explicit or implicit assumption on the nature of this process is madc in the treatment. The
validity of the theory, however, lies on the shortness (but finite) of the correlation time compared
10 the coarse-grained timescale over which the average dynamics cvolves in time. We also note
that, however small the fluctuation is, this lcads to exponential scparation of initially nearby
trajectories. Thus the fluctuation of curvature of the potential may be idcntified as a generic
causc of instability of classical motion. We have also shown that the correlation of fluctuation
of the potential is instrumental in determining the carly rate of divergence of quantum
fluctuations. Furthermore in a dissipative system the interplay of dissipation and chaotic
diffusion results in a situation which mimics the conventional Brownian motion in phase
space, described by Kramers® equation. Although chaos implies stochasticity in low-
dimensional system our theoretical propositions on the Kubo relations and analogy to Kramers’
equation carry the message that deterministic strong chaos can be conveniently described
within the framework of timc-correlation function methods and noneqilibrium statistical
mechanics, in general.
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