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Abstract : The matching of Friedmann-Lemaitre-Robertson-Walker space-times onto 
Kantowski-Sachs space-times with strings is investigated Employing Darmort junction 
conditions, a spherically symmetric homogeneous anisotropic Kantowski-Sachs metric with 
smugs can be joined smoothly to the present day universe represented by FLRW space-times. 
This cosmological model is expected to be an important tool for studying the early stage of the
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1. Introduction

The space-time geometry of the present day universe is believed to be described by FLRW 
type of metric. But the universe did not have the same type of space-lime geometry just 
oiler its birth and has passed through a number of different phases before it reached the 
pieseni day form. Different space-lime metrics are developed to describe such different 
phases and we have the problem of matching of such metrics which occur during the phase 
change. While the formalism for joining two different space-times is well developed, 
successful examples of its application are very few. The reason is that since the matching of 
iwu solutions usually takes place on a surface sharing some of the symmetries, both of the 
two matched solutions must come from a restricted subset of all solutions, which is 
determined by their shared symmetries—this restriction makes the problem of matching a 
difficult one. The best known examples of matching is probably the matching of FLRW 
dust space-times with Schwarzschild interior or exterior spacetimes [1-4]. A second 
example is the matching of FLWR metric with the Kasner metric [5]. In this paper, we will
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present another example of matching of FLRW space-times with Katowski-Sachs space- 
time with strings.

2. FLRW metric and Kantowski-Sachs metric with string

The general FLRW metric in its usual spherically symmetric form, can be written as

ds2 = d t2 -  R2 (t)[dr2 j ( \ - k r 2 ) + r 2{d62 +sin2 6d<p2j\. (I)

The Kantowski-Sachs metric for spherically symmetric homogeneous anisotropic space- 
time in presence of strings is of the form

ds2 = d T 2 - b 2{ T )[ de 2 +sin2 QdQ2] - a 2(T)dp2. (2)

With its solutions for geometric strings [6],

a ( T ) a ( T - T 0 )-'/*

and b ( T ) a ( T - T 0 )2l \

3. The matching

From now on, we will use the symbols F and K to denote indexed quantities associated with 
FLRW and Kantowski-Sachs metrics respectively. Hence, the coordinates of the 
corresponding metrics can be represented by

X ‘F = [f.r.fl,
a,b=  1,2, 3,4

and X ‘t = [ r ,p .e ,< p ] ,* K.b-

We .will apply the Darmois set of junction conditions since it does not require the use of 
the same coordinate systems on both sides of the hyper surface Z  [7]. The two regions of 
space-times are said to match across £, if the first and the second fundamental forms 
calculated in terms of the coordinates on Z , are identical. The first and the second 
fundamental forms are expressed as

y ap = * , > d x ' l du“ 3x1 l dufi ■ = i . 2. 3- 4 (4)
a , p =  1, 2, 3

and n afi = ( / > * - n i t j ) d x '  / * ■  d x i / d u P  . (5)

where u a = [m1 = u, u2 = v, «3 = w] is the coordinate system on the hypersurface and n, 
is its unit normal. Let Xbe given by the functions f  F[jc* (ua )] = 0, f k [jc* (ua )] = 0 and 
two parametric representations x F = h F ( u a ) , x ‘k = h k ( u a ) .  Then n, can be calculated by 
using the relation

«, = / . « ' / ( | g ^ f . a  f , b  | ) ' /2,

where i denotes d / d x ' .

(6)
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Wc now consider a surface represented by the function f  F(x'F) = r - r 0 = 0 where 
r0 is a constant and parametrised by jcJ, =t = u,x2F = Q = v . x \  = <p = w and x 4F - r  = r0 . 
In K-S frame we donot know the form of f K, however, we will use = T = T(u), 
x \  = 0  = 0 ( m, v), x 3k = 0  = w and x J « p = p(u) as its parametrization.

N o w  the condition y Fafi * y K(#  implies that

1 = (dT/du)2 - b 2( 3 0 / 3u )2 -  a 2 (dp/du)2.

( 3 0 / dv)2 = R2r 2 / b 2 , 

R2rl / b 2 = sin2  0 /s in 2  0, 

b 29 0 /9 u  9 0 /d v  = 0 .

(7)

( 8) 

(9)

0 0 )

From [10] we find that at least one of the terms b 2, 9 0 / 9u or 9 0 j9 v  must vanish. 
However, if b2 = 0 or 9 0  j  9v = 0, then according to [8 ] and [9] we have R(u) = 0 which is 
not allowed. Hence, we are left with the only condition 9 0 / 9u -  0 i.e. 0 is  a function of v 
only. Eqs. (7) to (10) then reduce to

a n d

1 = (dT/du)2 -  a 2 (dp /du)2, 

(dQ /dv)2 = R2r 2 / b 2 , 

R 2r% j b 2 = sin2  0 /sin 2  6.

(ID

( 12)

(13)

From (12) and (13), we have 0 =  0by adjusting the constant of integration* Thus (12) and 
(13) give us

. R2r 2 j b 2 = 1, i.e. R ~ b .  (14)

Let us now compute the second fundamental forms. The unit normal in the FLRW space- 
time can be calculated by using the eq. (6 ) and also using f  F(ic'F) = r -  r0  = 0 , we get

n Fj = & ? n F4.

As can be seen, the normal is space like, i.e. n Fn Fi = -1. Further, we have & Fap = 
OV a, s in ce  9xF / 9ua = 9r0 / 9ua = 0.

The unit normal in the Kantoswki-Sachs space-time in presence of string is more 
complicated to obtain since we donot know the explicit form of f k (x'k ) except that it 
should not depend on © and 0. However, must satisfy the two conditions

and

"It =  - 1

nKi3x‘K !3ua = 0.
(15)

Thus, we obtain a set of two equations for two unknowns which enable us to derive nK, as a 
function of ua. We have

72A(4>- i i
nKi = [ i a  dp/du,  0, 0 + a dT/du\. (16)
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N o w  d i f f e r e n t i a t i n g  ( 1 5 )  w . r . t .  ua, w e  g e t

nKld 2x'K / duPdua = - n Kl J dxJK / duP dx'K / dua ( 1 7 )

a n d  f i n a l l y ,  Q Kap =  V Khj nK dxhK /  dua d x!K / duP + n Ki d 2x ’K j  du&dua . ( 1 8 )

F r o m  e q .  ( 1 6 )  a n d  n o t i n g  t h a t  22, f lK T ]K ^  a n d T j | 4  a r c  t h e  o n l y  n o n z e r o  

C h r i s t o f f e l  s y m b o l s  o f  i n t e r e s t ,  t h e  c o n d i t i o n  £2Fap =  0  =  Q Kap i s  a l r e a d y  s a t i s f i e d  

e x c e p t  f o r  £2Kap ^  d i a g o n a l  t e r m s .  T h e s e  t h r e e  r e m a i n i n g  t e r m s  a r e

n Ki\ = r 'K4inKl{dp/du)2 + r 'KiinK4dT/du d p / d u + n Ki d 2T / d u 1

+  n K4 d 7p I d u 2 -  0 ,  ( 1 9 )

O ku = r 'KJ2nKi =  o .  (20)

a n d  =  0 .  ( 2 1 )

F r o m  c q s .  ( 2 0 )  a n d  ( 2 1 ) ,  w c  f i n d  t h a l ^ i  =  0 .  T h e n  f r o m  ( 1 6 )  w e  h a v e  

<\p/du =  0 .  

a n d  f r o m  ( I I ) ,

d T  =  ± d u =  ± dt

N o t i c e  t h a t  c q .  ( 1 9 )  i s  a u t o m a t i c a l l y  s a t i s f i e d .  N o w  f r o m  ( 1 4 )  w e  g e t  

*  =  h l r o =  1 / r o ) 2,}

( 22 )

( 2 3 )

4. Discussion

F r o m  ( 2 3 )  w e  f i n d  t h a t  t h e  F L R W  r e g i o n  h a s  a  s c a l e  f a c t o r  R -  l / r 0 ( / - / 0 ) : / ' w i t h  

c o n s e q u e n c e  t h a t  t h e  s p a c e - l i m e  is  E i n s t c i n - d e  S i t t e r  t y p e  ( a  t r i v i a l  d i s p l a c e m e n t  in  t m a k e s  

t h e  a r g u m e n t  m o r e  e v i d e n t ) .  T h u s ,  w e  w o u l d  s h o w  t h a t  t h e  s p a t i a l l y  f l a t  E i n s t e i n - d c  S i t t e r  

s p a c e - l i m e  c a n  h e  j o i n e d  s m o o t h l y  t o  a  K a n l o w s k i - S a c h s  s p a c e  t i m e  w i t h  s t r i n g s .  T h e  

p r e s e n c e  o f  t h e  s t r i n g s  i n  K - S  s p a c e - t i m e  a l l o w s  t h e  m a t c h i n g  o f  t h e  t w o  s p a c e - t i m e s  

s m o o t h l y .  M o r e o v e r ,  s u c h  a  m a t c h i n g  c a n  b e  c o n s i d e r e d  o n l y  a t  t h e  v e r y  e a r l y  s t a g e s  o f  t h e  

u n i v e r s e  d u r i n g  w h i c h ,  it  i s  b e l i e v e d  t h e  u n i v e r s e  p a s s e d  t h r o u g h  a  s e r i e s  o f  p h a s e  

t r a n s i t i o n s  a l o n g  w i t h  s p o n t a n e o u s  b r e a k i n g  o f  s y m m e t r y .  S u c h  a  s y m m e t r y  b r e a k i n g  m a y  

g i v e  r i s e  t o  t o p o l o g i c a l l y  s t a b l e  d e f e c t s  s u c h  a s  a p p e a r a n c e  o f  d o m a i n  w a l l s ,  s t r i n g s  a n d  

m o n o p o l e s .  O u t  o f  t h e s e  t h r e e  o n l y  s t r i n g s  c a n  l e a d  t o  a  v e r y  i n t e r e s t i n g  c o s m o l o g i c a l  

c o n s e q u e n c e  a s  c a n  b e  s e e n  f r o m  t h e  f o l l o w i n g .

W c  h a v e  s e e n  t h a t  a t  a  s u r f a c e  d e f i n e d  b y  r =  r0 =  c o n s t a n t  a n d  p  =  c o n s t a n t  t h e  t w o  

s p a c e - t i m e s  c a n  b e  j o i n e d  s m o o t h l y  w i t h  R =  b / r 0 =  l / / - () ( /  - r 0 ) 2̂  . T h i s  c a n  a l s o  b e  

s e e n  b y  n o t i n g  t h e  f o r m s  o f  t h e  t w o  m e t r i c s  a t  t h i s  s u r f a c e .

dsfaRW = d t2 -  1 / (t - r 0  j 4 / 1 [dr2 + r 2 [d62 -l-sin2 6d(p2)] (24)

and ds*s = d T 2 [d Q 2 + sin2 Q d& 2 ] - ( 7 - 7 ’0 y V ' d p 2 (25)
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we find from (24) and (25) that the two space time are identified on surfaces r = cons'tant * 
r0 and p =  constant if we simply assume 7 =  f, 0 =  0and <p =  <£. It is also interesting to note 
that since the space times ae matched across surfaces with r = constant and p = constant one 
can co n s tru c t a universe of alternating layers of FLRW and K-S regions. In this scenario, 
the thickness of the K-S layers would be decreasing as (r -  t0Yl//3 so that FLRW regions 
iTrow with lime and at a certain time the K-S region is completely wiped out and the 
universe becomes FLRW type.
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