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ABSTRACT. Theorotical work on the wave propagation in an clastic-plastic string
struck transversely at its middle point is discussed in this paper graphicully.  The only hasic
assumption iy that tho tension of the string is 'some known non-lincar function of strain
This moans that the phase volocity of the trangverso wave changes from pomt to point as
the pulse is propagated through such a string which ultimately becomes assymetrical in shape.
The main object of this paper is to explain graphically :

(1) wvariations in displacements with time,
(if) variations in prossure with time,
(iii)  timo of collision under different plasticity conditions, into three difforent soctions.

INTRODUCTION

Before the discussion of the problem under consideration something must
be said about the clastic-plastic behaviour of the string employed in the present
issuc.  The foundation of the theory of plasticity has not yet bheen firmly estab-
lished and the various survey papers about the subjeet differ from one another
not only in scope but also in the points of view of their respective authors. In
the case of a perfectly elastic string vibrating under transverse impact the stress-
strain law is provided by a lincar relation which is independent of time. It may
be noted in this connection that any deviation of the assumption about this
lincarly in the stress to strain relation will introduce plasticity in the material
of the string. Tn the present theory strain is neither linearly dependent on
strain nor does it depend upon the strain-rate but unlike the case of a perfectly
flexible string the tension is assumed to be a known non-linear function of strain.
The important contribution of this assumption is that the phase velocity of the
string due to transverse impact does not remain constant as the pulse is pro-
pagated along the string, but depends upon strain and changes from point to
point of it. Thus the velocitics at different poiuts are different functions of
strain, Naturally the velocity gradients at different points of the string are
also differcnt functions of strain and the measure of the change in velocity gra-
dient at the struck point is evidently a measure of the plasticity of the string.

For the purpose of a thorough and a much better investigation of the above
theory some theoretical graphs are drawn and the various intercsting results
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coming out of them are found to agree well with the earlier theories of the subject
matter under discussion. In this paper special attention is given to the dis.
cussion of the graphical results as stated in the abstract in three different sections:

EXPLANATIONS OF THE SYMBOLS USED
! = Length of the string = a+b.
a = Shorter scgment of the string.
b = Longer scgment of the string.
& = Variable mcasured along length of the string fixed at s =0 and s =,
t = Variable time.
ya = Displacement of the struck point.
p = lincar density of the string.
m = Mass of the hammer.
€ = Variable strain at any point of the string.
c,(€) = Velocity of the transverse wave motion of the string in the portion
o<s<a.
c,(€) = Velocity of transverse wave motion of the string in the portion a < s < I.
¢,(€) = Velocity of transverse wave motion at the struck point.
vo = Velocity of impact.
P = Pressure exerted by the hammer.

vo = [(@ )3 ).-)

— 2pca
= m
r = 9y(e)
0,; = %—q

It has already been stated in the abstract that the paper proposes to find out
displacement and pressure fluctuations at the struck point of the string. In
doing so computations are made with the help of some numerical datas as:

I = 96 cm, m = 25 gms, p =1 gm/cm, ¢ = 3000 cm/sec.

ve =40 omfsec, 0 = 2L — .084 sec, g = 2P — 300.
C m

and V@—dr = 104/800—12¢(¢)
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TIME DISPLACEMENT VARIATIONS AT THE
STRUCK POINT

The expression for the displacement at the struck point as obtained by
Ghose et al (1965) in an earlier publication during the 1st epoch is,

Ya ' =%°—_‘:; [e“ - e-"]

-4

where (, §) are given by

Tt can be easily seen that the nature of the values of («, 8) depend upon

the discriminant of (2) i.e., \/W:H—y/f@); Thus the values of («, #) will be
either all real distinct or real equal or else imaginary depending upon the values
of (). The discussion is therefore restricted to these three different cases that
may arise. When ¢% > 47 i.c., when ¥(¢) < 75

yﬂ = ,.__‘.2_00____e—§q

Vei—ar

t
i 1 2_
sinh {2_ V@—4ar } i
when ¢® =4r, ie., when y(e) =175,

Ya = Vot e-iq‘

when ¢? < 4r ie., when ¥(e) > 75,
—3qt 1 I
Ya = '——201: € ta sin {: Vér—g¢® }t
Viér—gt ‘
Fig. 1 represents the complete behaviour of time displacement. variations for the
case Yr(e) < 76.
>
The curve for ¢(e) == 0, i.c. when the string is clastic shows that the dis-

placement increases with time exponentially and ultimately becomes steady at
a finite value.

Curves for 0 < y¥(e) < 75 which is the critical value of ¥(e) [y/(¢) > 75)
show a distinct feature analogous to the damped vibration in string. Here the
maxima of the displacements decrcasc as yr(e) incrcases. But the rate of fall
of displacement increascs progressively with (). This is clearly due to increased
damping associated with the increased plasticity of the material

The case for y/(s) > 756 makes the time-displaccment curve damped oscilla-
tory. The amplitude of vibration of this curve though at first increasing is much
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less pronounced in this casc than in other cases of ¥(e). It then remains almost
constant during the first epoch as it is clear from the graph itsclf. This shows

Y(edeo

Di

that immecdiately after impact the pulse propagates along the string with more
or less a constant velocity. The fall of displaccment is however much more
slow in this case due to increascd plasticity of the string as the casce shoull be
At large value of plasticity it is associated with large damping. Tho ampl tude
is therefore very small and the curve resembles a highly damped motion.

The theoretical time-displacement graphs obtained by the present aut'ior
reveals the fact that the displacements gradually diminish duc to increased plasti-
city of the string, a conclusion quite analogous to that derived by Kolsky (1960)
in the case of thin bars which are visco-elastic in nature.

PRESSURE-TIME VARIATION AT THE STRUCK POINT

The expressions for pressure at different cpochs exerted by the hammer on
the string as derived by the author in an earlicr publication (Ghosh, 1965) ar¢
as follows :

During the interval, 0<it<b,
P, = MVn [a2e=* — fre*!] (1)

@—4ry
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During, O < t < 20,
Py =P+ qum?'fff [02(2+ A —aty)e ™% fr2— A —pr) ~P4) @)
where,
la, 8] = } g + Va*—4gy(e)] @)

It may be observed that the r.h.s. of (3) actually explains the nature of the
roots (&, f). The only undefined quantity on the r.h.s. of (8) is y(e) which is
termed as the ‘representative of plasticity’ in the string and capable of assuming
any arbitraty value. Naturally the values of (a, #) may be cither real uncqual
or real equal, or else imaginary subject to the 3 conditions ¢® > 4qy(c) i.e.,

<

Yle) < 76
>

The main object of this section is to study the pressure-time variations under
different plasticity conditions i.e., corresponding to different values of Y(e).
It is thercfore necessary to define the expressions for pressure at different epochs
suitably relative to various valucs for y(e).

Thus for values of ¢® > 4qi/(€) i.e., {r(¢) 75 the pressure expression during

<

the different ¢pochs are given,

During. 0 < t < 6, when g2 > 4qy(c) i.e.. when Y(c) < 76

_myeiet R et 4 PRSP S (q2—4r) t]
P, = @2{ ) [ (92—2r) sinh e ! q(¢*—4r)} cosh 1

Similarly when, q® = 4r, i.e., Y(e) = T75.
P, = mug(ot e

Similarly when, g% < 4qy(e) i.e., Y(e) > 75

. 2
= (1%% Yr(€)e—44 sin {; (47 —q?)¥+-tan-? q%_'-_-_—-gz—)i}
1t will be observed later that pressure falls to zero during the 1st cpoch in all the
cases oxcepting the critical one and so the expressions for pressure in higher
epochs are not written here.

With these expressions for pressure as a function of time a few graphs.are
drawn under various plastcity conditions and the different interesting conclusions
derived from them agree well with the earlier theoretical results about the matter.

7
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Figs. 2 and 3 correspond to the pressure time variations under different,
values of yr(e).

Time
Fig. 2

Time

Fig. 3

Fig. 2 represents the pressure-time curve for i(s) = 0. The case corres-
ponds to that of perfectly elastic string. Here the pressure which is very large
at the beginning falls to a minimum, becomes high as a fresh new wave is generated
at the beginning of the 2nd epoch. The behavioiur of the sting in this case is
quite similar to that derived by Ghose (1952) in the casc of a perfectly flexible
string. Fig. 3 is a complete picture of the pressure-time variations duc to the
increased plasticity of the string.

By studying the pressure time curves for various values of ¥ (e) it is found

that for values y(e) < 75 i.e., ¢ < 47, the pressure suddently jumps to a valuc
kv, at ¢t = 0 and then falls exponentially to zero within the first epoch with
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comparatively little change in nature. But the duration of contact diminishes
as ¥(€), the representative of plasticity, increascs. This means that the medium
hecomes more and more dispersive as well as dissipative in nature. The above
remarks receive a strong support from the experimental results of Ghosh et al
(1965) who, in the case of a thin bar, has shown that the pressure terminates
during the first cpoch when it is struck by alight and soft, (or plastic) load.

The curve for y(e) = 75 i.e., for ¢> = 47 is critical. By studying the pressurce
time variation in this case it is found that the amplitude of the stress pulse is
much diminished showing that the response of this critical plasticitycondition
on tho pressurepulse is so marked that the shape of the pressure curve is changed
altogether. The progressive rise of the pressure pulse is rather smooth and
the rate of fall is more slow showing no tendency of the pressure being terminated
within the first epoch.

The curve for y/(¢) > 75 i.c., shows that when the material of string is more
plastic. stress is not generated in the string by impact shown by the negative
values of pressure. The energy of impact is dispersed so quickly that the string
undergocs very small displacement at the struck point as shown by the time
displacement curve for i(e) = 100.

Phase angle versus y(e) :

1t has been observed that when ¢* < 4r, the pressure cquation becomes
damped oscillatory.  Thix result is in agreement with the case of a light and soft
load striking a flexible string transversely. The values of ¥(e) > 75 i.e., large
values of plasticity are responsible for the initiation of a type of waves through
the material that the stress developed in the specimen due to the propagation
of pulse is no longer in phase with it. The stress becomes more and more out of
plase with the pulse as the value of y(e) increases. This feature is depicted in
fie 4. in which the variation of & with (7(¢) is shown  For large values of ¢(c),

ad. nf.

gle

Loss

Time of

¥(e) e

Fig. 4 Fig. &
% is necessarily large which means that the stress needs a longer time to rise.
Here,

A qtr—g

d = tan 5 g
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TIME OF COLLISION UNDER DIFFERENT
PLASTICITY CONDITIONS

When the impacting load strikes the string, it first moves in the forward
direction, then momentarily comes to rest and then begins to move in the opposite
direction. The duration for which the string remains in contact with the moving
load is defined to be the time of collision.

The time of collision plays a very important part which explains the actual
acoustical behaviour of the string vibrating in any mode. The amplitude of
vibration at different harmonics depends upon the pressure imparted to the string,
as well as, on the time of collision for which the pressure acts from the beginning.
The expression for pressure at the struck point has already been derived by
the author in a previous publication. The purpose of this section is to examine
graphically the time of collision under different plasticity conditions, i.e., y(c).
the representative of plasticity, assuming different arbitrary valucs.

The time of collision for any particular epoch can be found algebraically to
be the lowest positive root obtained by solving the pressure equation at the struck
point to zero i.e., P,(t) = 0. This method is employed when it becomes difficult
to obtain time of collision graphically, usually at higher cpochs.

Fig. 5 represents graphically how the nature of the times of collision between
the load and string changes as the plasticity increases more and more.

The time of collision is comparatively large in the case of an elastic string
i.e., corresponding to value of ¥/(¢) = 0. It then falls suddenly and then attains
almost a steady state for values of 0 < y(e) < 76. The portion of the graph
for this range of values of i(€) is almost a straight line whose slope gradually
diminishes until the critical stage is recached. When the critical value is attained
by (e) i.e., when r(€) = 75 the time of collision jumps to infinity showing thereby
that the load remains in contact with the string and moves with it.

The discussions made in the above three sections depict the actual dynamical
conditions of the string struck transversely at its middle point. The corres-
ponding conditions when it is struck near one end will be published in a subscquent
issue of the journal.
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