71

SECOND HARMONIC GENERATION IN TWO
LEVEL SYSTEMS

B. K. MOHANTY

DEPARTMENT oF Puysics, INDIAN INSTITUTE oF TecENOLOGY, KnArAGrUR, INDIA.

(Received January 30, 1967; Resubmitted June 2, 1967)

ABSTRACT. Interaction of strong electomagnetic field with a two enorgy lovel system

is considered, with special reference to crystals. Socond harmonic genoration due to the

field dopondence of the dipole moment operator is found out. The froquency dependonce
of the dipolo moment expectation value and the ficld saturation effect have been dorived.

The detailod relation between the field and the dipole moment, and the d.c. offoct have beon
briefly discussed.

INTRODUCTION

A revival of interest in the study of propagation of electromagnetic waves
through crystals, accomodating the nonlinear effects like multiple harmonic
generation, has been noticed recently (Briss 1964). This has followed naturally
after the observation of second barmonic generation (SHG) in quartz crystal,
using a ruby lasecr source by Franken and others (Franken, ct al 1961) and allied
cffects in other crystals by scveral other workers (Franken et al, 1963). Al these
effects need highly intense sources (Bonch-Bruevich et al, 1965) and for second
harmonic gencration it is found that the lack of an inversion centre in the crystal
is a necessity. These processes can be described by a higher than first order
perturbation calculation (Ward 1965), which mcans that more than two encrgy
levels take part in the interaction. But it is quite possible that second harmonic
generation can be observed in systems where only two energy levels arc involved
in the interaction (Bonch-Bruevich et al, 1965). In a previous paper (Mohanty
1967) the author has pointed out two separate conditions which are necessary
to generate multiple harmonics of the applied ficld frequency in a two level system :
The presence of a premanent dipole moment in the material system interacting with
the field, or, as in the case of crystals, the dependence of the dipole moment
operator on the applied field which gives a nonlinear dipole interaction operator
in terms of the field. The first condition has already been discussed in the above
mentioned paper (Mohanty 1967). The primary aim of this article is to discuss
the second condition. Further. considering that only coherent radiation from a
laser source is necessary for the process, we will directly find out the expectation
value of the dipole moment for a single particle instead of trying to find the pro-
bability coefficients and then the transition probability.
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DESCRIPTION OF THE MODEL

As our interests primarily lie in the processes where only two energy levels
of the material system take part, the technique to be used in this discussion is
the geometrical representation of the Schrodinger equation due to Feynman,
Vernon and Hellworth (Feynman, et al. 1957). This representation involves
only two energy levels of the material system, and is quite adequate as a mono-
chromatic incident field is expected to induce a transition primarily between two
levels whose transition frequency is nearly cqual to the frequency of the field
itsclf. The representation has the added advantage of giving directly the expecta-
tion value of the dipole moment operator. The technique is indicated in the pre-
vious paper by the author (Mohanty 1967).

The geometrical form of the Schrodinger cquation
(Hy+ V)W = ik -.d.dZ:. (@21
for a two level system, where H is the unperturbed hamiltonian and V the inter-

action operator, is of the form of the equation of motion of a classical gyroscipe,
as explained by Mohanty (1967).

—’
- =
%:mxr . (22)

- -
r and w are defined in the previous paper (Mohanty, 1967).

The physical significance of r,’s arc immediately found out by taking the ex-
pectation values of the dipole moment operator 4 and H,,.

<p> = [Yrwhdv = ppry
<Hy> = ’%9'—2 7y e (23)
where u,, are neglected in comparison with sx;,.

THE DIPOLE INTERACTION

The interaction V, between the field and the material system, is assumed to
be of electric dipole type and is expressed by :

- B
V=—uk . (31

7bcing the electric dipole moment operator and_i' is the electrio field inducing the
transition between the levels. The semiclassical form of V is sufficiently accurate
for the present discussion compared to the fully quantum theoretical treatment
(Mandel et al 1963; Sudarshan 1963). This interaction term is linear in terms of
the applied field as long as x is independent of the field. -
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But for the intense field which is a necessity in the present case, it is no longer
possible to write 4 as a single field independent term, as is done in finding out the
cxpectation value of dipole moment. which is lincar in terms of the applied field.
The precise relationship between 4 and E is now assumed to be of a tensorial
nature, but one can write it in the form (Franken et al. 1963);

# =ttt B+ ... (3:2)

This schematic relationship, in the form of a power series in £, is sufti-
cient for the present discussion and, as can be scen presently. the full tensorial
form in no way changes the result as the same time dependence for all components
is assumed in these discussions. The waluc of successive coefficients M4y are in
rapidly decreasing order (Franken et al. 1963) and so only the first two terms are
preserved.  As mentioned, the use of the first term only gives the linear eompo-
nent o1 the expectation value of the dipole moment through the lincar component
of the dipole interaction operator. The second term, however, gives a nonlincar
component to the interaction operator, with frequencies 0 and 2w. This term is
expeeted to contribute to the nonlinear exceptation value of 4.

Writing the interaction term | :

V= —pli—(E)E

2 2
=2 I, cos nwt = Re. X I, e-tnot e (3.3)
n=0 Nn=0

where
—uE.2
Io=1I=-- ‘/%‘9 i Iy = —poby

the nonlinearity of the dipole interaction oprator is now clearly demonstrated.

So

W, =2 2(—1%)-‘—3 cos nwt
n

Wy = Eg-igﬂb!- sin not e (34)
» [

-

As «, and , contain sinusoidal terms of three frequencies, 0, © and 20,

the values of the?components are now expected to contain all these, as well as
the higher harmonics of . The second harmonic component of <u> then
emerges as the sum of the product of 4,F in eqn. (3.2) and the lincar frcquenc.y
component of 7,, and the product of #, in eqn. (3.2) and thelsecond harmonic



658 B. K. Mohanty

component of r;. One then writes for the second harmonic value of <u>,
using (2.3) and (3.2);

<U>30 = (M2 T1)200
= (Mo)13(71) 20+ (#1E)1a(T1)e e (3.5)

To solve the eqn. (2.2) one can now subject all the r'components to the rota-
ting coordinate transformation given in 1, which gives the changed equation :

’ - b 4
dr' _ o'xr
dt

with
(.!)’1 = (K1+K2 cOo8s O)t)

(.0’2 =0
= W0, K, =

where the ¥V, and V,, terms in o', are neglected in comparision with o,,

The explicit form of the above equation is :

dr'y A

5= Ar'y

_"Zt 2 = A —[K,+K, cos otfr's . (37)
dr'g

where
A = w,—o.
THE VALUE OF (n)e AND (r)we
A solution of the type
¥y =Z 1, (n)esnut .. (41)

is assumed to solve the set of equations (3.7). ,, (o) and 7,,(, are the linear solutions
and 7y, ;) and r,, (4, are the second harmonio part.
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After performing the necessary differentiation and collecting the coefficicnts
of e~tn¥! one gets :

—MATy(n) = "’Arm(n)
; — K
— W7, () = Arl,(,.,—K,r,,(,,)_. —;)-1— [ra,(”_”-}-rs,(”“d

(4.2)

. K
—INWTg,(p) = K,rz,(,,,—f-—-—-‘)z [T8sns1)F+T20in1)]

Onc must consider also the symmetry propertics of Thn) !

K »
o= ) =00 el 1)
1 1

(4.3)
Now putting K, A

§ = pa— - = ':m.——— .
3K, Q; K, D and K. N;

and expanding r;,,(@; in terms of @ :

(@ = Z Thinj @ v (4.4)
J=0
one sees, using eqn.(4.3), that only even combinations of n and j can exist in the
expansion of 74,.,,(@) in eqn. (3.4).
Using equations (4.2) and (4.4) and collecting the cocfficients of ¥/, one gets :

ANTL (mg = Dry, (nysj

—nNT3 018 = Dryyinni =731 3004 1:0-0 = T8 (n-1> (=D

—'”N"'s,(n)j = rav(n)vj+rzv(m -0t T2 (n—10-1 - (4.5)

It is quite easy to seem that for j = 0; 74,(,). is independent of Q(eqn. 4.4)
and as this solution may be assumed to be an cxact one with only a frequency
o for 7,, and 7, no higher order solution exists. (Mohanty 1967; for a similar
comment, also sce Sengupta 1967)

So,

Tlin) 0 = Aol (n1r0 . (4.6)
Then the zeroeth order (n = 0) solution, giving the value of (r,), i8 :

Tororr 0 = 0

(4.7)

Tvono = 3 7350000 voo
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The first order (» = 1) equation is :

N'u(l)’l = D’z’u)» 1
—Nrg,3n = Dryyn =701 =800
—Nrgqp1 = fan (4.8)

One then has,

i4

—_— 1
Tioo = _— - Tas(o1o

T = Aoy K T3:(000

1107.¢
"o = g ‘(')2“41_—1—{:, 73100000 (4.9)
Effecting the inverse transformation given in (Mohanty 1967) and collecting
the relevent terms :

ri(w) =— T3s(0):0 CO8 i

1 Kz( 012—20‘))

{0 1 o1p(@ya—20)+ K 2 Ta o0

=1 K010 4.1
r1(2w) =T oeon—20)FK2 73,(0150 CO8 2t (4.10)

From these values, making use of eqn. (2.3) we have,

= -1 L (/‘o)lz(/‘oEoz)xz_m 2‘ﬂlEo)|n(ﬂc>Eo)1a] 20!
<u>30 = (2k) ra,(o),o[2(0)12_2&)_*_21(1,/@‘2 T log—w) cos 2w

(4.11a)
— (of) 2Bl (B g Wpoalta Bl onn—20) 1 411y
<ﬂ>o == (2k) ra’(u‘;o [ (wlz— 0)) + 2 _A( (,)12—2w)ﬁ)12+K12 ] ( ))
DISCUSSION

We shall now discuss the exact tensorial nature of x . The schematic
dependence of polarisation P(dipole moment per unit volume) and thoe ficld & is
written down as (Bonch-Bruevich et al. 1965);

P = x,E+xE*+... . (81)

The process of second harmonic generation is described by x, and it is evident
that this is related to <> 0,4, of the eqn. (4.11). For the generation of second



Second Harmonic Generation in two Level System 661

harmonic an essential condition is the lack of a symmetry centre in the crystal,
otherwise a strong, static electric field must be applied to enhance the nonlinearity
of the relation between the crystal polarisation and the applied field. 1In general,
for such a case the quadratic part of P is written down as

Pg(’) =2 zx¢jkEjEk (5.2)

Consideration of the fact that the order of writing down the ficlds E; and Ey is
is immaterial and that this tensor is formally similar to the piezo-electric tensor
(Franken et al. 1961) cnables us to write down a contracted form by replacing the
suffixes ¢, j by only one suffix m. A further symmetry restriction proposed by
Klcinman (1962) allows the inter-change of ¢ and j, which has the advantage of
rcducing the number of independent temsor elements. y is a 36 tensor, and
particularly, for quartz,

Eq?
g2

Ezl

2E,E, .. (63)
2F,E,

2E,E,

X —Xn 0 X1¢ Y 0
PY=_ 0 0 0 0 —y, —x.
.0 0 0 0 0 0

By suitable experimental arrangements the contribution from some elements
can be reduced and one can check the additional symmetry requirements (Miller
1963). Under this condition eqn. (5.3) gives :

P(.) — ?xllEU‘—J:\2XI‘EOEI (5'4)

A comparison of the contributions from yx,; and y;, shows that x;;>>x,
for a ruby laser. This demonstrates the possibility of reducing the number of
elements of the tensor by suitabe arrangements.

Finally a few words about the generation of a frequency independent part
of <u>, otherwise known as the d.c. offect are in order. An inspection of the
value of <u>, in eqn. (4.11b) shows the inherent difficulties in the experimental
detection of this effect. At wy, = o, as the fundamental harmonic part of
<#> = <p>, predominates; and also at w,;; = 2w, a8 there is negligible power
transfer at or near this frequency in the case of <u>>,, it is a difficult effect to
detect. This may explain the inconveniences originally encountered in the
observation of this effect.
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