
SECOND HARMONIC GENERATION IN TWO 
LEVEL SYSTEMS

B. K. MOHANTY
Okpaetment of P hysics, I ni>tan I n stito ie  of Technology, KnAnAOPuii, I ndia.

(R eceived J a n u a r y  30, 1967; ReauhmiUed Ju n e  2, 1967)
ABSTRACT. Interaction of strong eloctOmagnetio field with a two enorf̂ y level system 

is con.sidered, with special reference to crystals. Second harmonic generation due to the 
field dopendenco of the dipole moment operator is found out. The frequency doijondoneo 
of the dipole moment expectation value and the field saturation effect have been derived. 
The detailed relation between the field and the dipole moment, and the d.c. effect have been 
briefly discussed.

I N T R O D U C T I O N
A revival of interest in the study of propagation of electromagnetic waves 

through crystals, accomodating the nonlinear effects like multiple harmonic 
generation, has been noticed recently (Briss 1964). This has followed naturally 
after the observation of second harmonic generation (SHG) in quartz crystal, 
using a ruby laser source by Franken and others (Frauken, ct al 1961) and allied 
effects in other crystals by several other workers (Franken et al, 1963). All these 
effects need highly intense sources (Bonch-Bruevich et al, 1965) and for second 
harmonic generation it is found that the lack of an inversion centre in the crystal 
is a necessity. These processes can bo described by a higher than first order 
perturbation calculation (Ward 1965), which moans that more than two energy 
levels take part in the interaction. But it is quite possible that second harmonic 
generation can be observed in systems where only two energy levels arc involved 
in the interaction (Bonch-Bruevich et al, 1965). In a previous paper (Mohanty 
1967) the author has pointed out two separate conditions wliich are necessary 
to generate multiple harmonics of the applied field frequency in a two level system : 
The presence of a premanent dipole moment in the material system interacting with 
the field, or, as in the case of crystals, the dependence of the dipole moment 
operator on the applied field which gives a nonlinear dipole interaction operator 
in terms of the field. The first condition has already been discussed in the above 
mentioned paper (Mohanty 1967). The primary aim of this article is to discuss 
the second condition. Further, considering that only coherent radiation from a 
laser source is necessary for the process, we will directly find out the expectation 
value of the dipole moment for a single particle instead of trying to find the pro
bability coefficients and then the transition probability.
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D E S C B I P T I O N  OP T H E  MODE L

As our interests primarily lie in the processes where only two energy levels 
of the material system take part, the technique to be used in this discussion is 
the geometrical representation of the Schrodinger equation due to Feynman, 
Vernon and Hellworth (Feynman, et aL 1957). This representation involves 
only two energy levels of the material system, and is quite adequate as a mono
chromatic incident field is expected to induce a transition primarily between two 
levels whose transition frequency is nearly equal to the frequency of the field 
itself. The rcprt*sentation has the added advantage of giving direct ly the expecta
tion value of the dipole moment operator. The technique is indicated in the pre
vious paper by the author (Mohanty 1907).

The geometrical form of the Schrodinger equation
dijf
dt ... (2.1 )

for a two level system, where is tlie unperturbed hamiltonian and V the inlcT- 
action operator, is of the form of the equation of motion of a classical gyrosc/pc, 
as explained by Mohanty (1967).

dr
di = coXr ... (2.2)

r and o  are defined in the previous paper (Molianty, 1967).
The physical significance of r /s  are immediately found out by taking the ex

pectation values of the dipole moment operator fi and
< fi>  '■
< H ,>

J >lr*iiylfdv =
1̂2 (2.3)

where /tn are neglected in comparison with
T H E  D I P O L E  I N T E R A C T I O N

The interaction V, between the field and the material system, is assumed tf) 
be of electric dipole type and is expressed by ;

(3.1)F =  - f i .E
/I being the electric dipole moment operator and B  is the electric field inducing the 
transition between the levels. The semiclassical form of F  is sufficiently accurate 
for the present discussion compared to the fully quantum theoretical treatment 
(Mandel et al 1963; Sudarshan 1963). This interaction tenn is linear in terms of 
the applied field as long as /t is independent of the field.



But for the intense field which is a necessity in the present case, it is no longer 
possible to write /t as a single field independent term, as is done in finding out the 
(expectation value of dipole moment which is linear in terms of the applied field. 
The precise relationship between // and E  is now assumed to be of a tensorial 
nature, but one can write it in the form (Franken et al. 19631;
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(3.2)
This schematic relationship, in tiie form of a power series in E, is sufli- 

ci<>ut for the present discussion and, as can be seen presently, the full tensorial 
form in no way changes the result as the same time dei)endence for all components 
is assurnt^d in these discu.ssions. The value of successive coefficients /î  arc iu 
rapidly decreasing order (Franken ct al. 1963) and so only the first two terms are 
]>reserved. As mentioned, the use of the first term only gives the linear compo
nent oi the expectation value of the dipole moment through the linear comjionont 
of the dipole interaction operator. The second term, however, gives a nonlinear 
component to the interaction operator, with frequencies 0 and 2w. This term is 
('xpected to contribute to the nonlinear exceptalion value of /i.

Writing the interaction term F ;

=  X i„  cos 
0

Re. S ... (3.3)

wliere

tlic nonlinearity of the dipole interaction oprator is now clearly demonsli atcd. 
«o,

COi 2(In) cos not

n
2(In) sin not ... (3.4)

As Oi and o>2 contain sinusoidal terms of three frequencies, 0, o  and 2co, 
the values of the r components are now expected to contain all these, as well as 
the higher harmonics of co. The second harmonic component of < /i>  then 
emerges as the sum of the product of /CiE in eqn. (3.2) and the linear frequency 
component of and the product of /Iq (3-2) second harmonic
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component of One then writes for the second harmonic value of <{i>, 
u^ing (2.3) and (3.2);

— (/̂ 12 1̂)20

=  (/^o)l2(^l)2fl» +  (/^l'^)l2(̂ l)c« ... (3.6)

To solve the eqn. (2.2) one can now subject all the r components to the rota
ting coordinate transformation given in 1 , which gives the changed equation :

di

with
co'i =  (iCj+iCg cos coO
co'2 =  0

C O > A'.

whore Ihe F,i and F22 terms in w'3 arc neglected in comparision with Wjg 
The explicit form of the above equation is :

*̂ *̂1 — _A r'_ _ _  _  A? 2

dr'
dt^  =  Ar'j—[A^-f A'2 cos (3.7)

dr’
dt5- =  [Aj-l-Aj cos totjr'g

where
A =  <0x2—w.

T H E  V A L U E  O F  (rju, A N D  (ri)gM 
A solution of the type

r'l — £  fj, (n)e“‘*"‘ (4.1)

is assumed to solve the set of equations (3.7). r̂ , (o) and rj,(n) are the linear solutions 
and rx, (x> and r̂ , (x> are the second harmonic part.
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After performing the necessary differentiation and collecting the coefficients 
of one gets :

— =  Arj,(n)—■ K'irg,(„,~ ^  f*'s.<n-i)+r„(„+i,J

One must consider also tlie symmetry pioj)erties of rj,(„,’i

Now putting .
2K, D and Uii N-,

... (4.2)

... (4.3)

and expanding rj,,„,(Q,i in terms of Q :
n.(n)(Q) =  £  QiJ-o ... (4.4)

one sees, using eqn.(4.3), tha t only even combinations of « and j  can exist in the 
expansion of ri,(„f(Q) in eqn. (3.4).

Using equations (4.2) and (4.4) and collecting the coefficients of Qi, one gets :

3̂>(nd 3̂>(n-i)j (/~1)
^nNr2,{n)j =  ^2»(n)»j +  ̂ 2»(nil)'<i-l) +  ̂ 2'(n-l)>()-l) *•*

I t  is quite easy to seem that for jf =  0; r/,(„),o is indopoudent of Q(eqn. 4.4) 
and as this solution may be assumed to be an exact one with only a frequency 
Ci> for r ,̂ and no higher order solution exists. (Mohanty 1967; for a similar 
comment, also see Sengupta 1967)
So,

0 ~  df„ô Zi(n)»0 ***
Then the zeroeth order {n — 0) solution, giving the value of ( î)© •

*̂2»(0)» 0 ®
(17)



The first order (?? =  1 ) equation is :

— —^8>(l)d"*“ Ŝ»(0)»0

One then has.
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(4.8)

1̂»(0)>0 — A'l 8̂>(o)>o

T.  r,. , 2 = „

A2—

2̂>(l)d ~ itoATi
A * - o/ + A ‘i* (4.9)

Effecting the inverse transformation given in (Mohanty 1967) and collecting 
the relevent terms :

/•i(co)
6>i2 ^ »'8.(0)-0 COS tot

« (OW   ̂ - J?̂ 2(tOi2 —2 to)^ “ 4 O)72(t0,2-2to) +  i:»

rj(2to) 8̂>(0)>0 C®® (4.10)4 <Oi„(tOia—2oj)+A'i*
From these values, making use of eqn. (2.3) we have,

... (4.11a)
</<>o =  (2ft)-irs,„„„ (4.11b)L ( ^12— 2 (̂ ’h2—26))c0j2~f'*^l J

DISCUSSION
We shall now discuss the exact tcnsorial nature of . The schematic

dependence of polarisation P(dipole moment per unit volume) and the field. P  is 
written down as (Bonch-Bruevich et al, 1965);

P

The process of second harmonic generation is described by x< “ evident
that this is related to </t>o,8» of the eqn. (4.11). For the generation of second



harmonic an essential condition is the lack of a symmetry centre in the crystal, 
otherwise a strong, static electric held must be applied to enliancc the nonlinearity 
of the relation between the crystal polarisation and the appliwl field. In general, 
for such a case the quadratic part of P  is written down a.s
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(6.2)
Consideration of the fact tha t the order of writing down the fields Ej and A’* is 
is immaterial and tha t this tensor is formally similar to the piezo-electric tensor 
(Franken et dl. 1961) enables us to write down a contracted form by replacing the 
suffixes i, j  by only one suffix m. A further symmetry restriction proposed by 
Kloinman (1962) allows the inter-change of i and j, which has the advantage of 
reducing the number of independent toisor elements. is a 3 x 6  tensor, and 
particularly, for quartz, .

P<*> t=

E J
X u - X u  0 X14 9 0 V

0 0  0 0 - X u  - X u
2 E ^ ,

0 0  0 0  0  0
2 E J ! z

... (5.3)

By suitable experimental arrangements the contribution from some elements 
can be reduced and one can check the additional symmetry requirements (Miller 
1903). Under this condition eqn. (5.3) gives :

pit) ^ (5.4)
A comparison of the contributions from Xii A'i4 shows that Xn> > Xu  

for a ruby laser. This demonstrates the possibility of reducing the number of 
elements of tho tensor by suitabe arrangements.

Finally a few words about the generation of a frequency independent part 
of < /4> ,  otherwise known as tho d.c. effect are in order. An inspection of the 
value of </^>0 in eqn. (4.1 1 b) shows the inherent difficulties in the experimental 
detection of this effect. At CO22 =  as tho fundamental harmonic part of 
</i>  =  predominates; and also at =  2o), as there is negligible power
transfer a t or near this frequency in tho case of </^>o> ^ difficult effect to
detect. This may explain the inconveniences originally encountered in the
observation of this effect.
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