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Abstract - Using the irreducible representations of the group SO(d+1), we discuss the
degencracy symmetry of hydrogen atoni in d-dimensions and calculate 1its energy spectrum
as well as the corresponding degeneracy We show that SO(d+1) 1s the energy spectrum
generaling group
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1. Introduction

There 1s a wealth of references concerning calculations of energy spectrum and degeneracy of
Schrodinger equation with potential equal to 1/r (i.e. hydrogen atom) in literature [1]. Almost
all of them are confined within the limits of our observed world. However, it is a common
practice to consider (1+d) dimcnsional space-time, e.g. in the domain of string theory [2] or the
Kaluza-Klein theories [3]. We generali.c the matter upto (spaiial) d-dimensions and evaluate
the cnergy spectrum. Symmetry plays an impuitant role in calculating the eigenstate of a

Hamiltonian. Symmetry and degeneracy of energy levels of a system are inter-related
(4-7).

In Section 2 of the present paper, we show that the group SO(d+1) is the degeneracy
group of the d-dimensional Schrédinger equation with potential 1/r. By introducing %—*’D
generators as the generators of the SO(d+1) algebra which satisfy the commutation relations of
the algebra, we show that the Hamiltonian of the system is invariant under the group
SO(d+1), and that the Casimir operator of the SO(d+1) algebra gives its spectrum, and also that

the degeneracy number for a given cnergy is the dimension of the irreducible representation of
SO(d+1).

. In Section 3, we introduce the hyperspherical harmonics which are themselves the
irreducible representations of the rotation group inJ-dimensions, i.e. SO(d). Next in Section 4,
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the d-dimensional Schridinger equation in hyperspherical coordinates are calculated with the
aid of these functions. The derived energy spectrum is also compared with the result obtained
in Section 2.

2. Schridinger equation with potential

1/r and degeneracy group SO(d+1) :

We solve the Schrodinger equation by using the degeneracy symmetry of the group SO(d+1)
in d-dimensions and show that it corresponds to that of the analytical solution. This means, we
must show that d-dimensional Schrodinger equation has an SO(d+1) degeperacy symmetry,
with a spectrum as calculated by the Casimir group of SO(d+1). Also we obq'ain its degeneracy
number by finding the irreducible representation of the group SO(d+1).

The generators and the Poissonian brackets of the rotation group XO(J) satisfy the
following relations '

Lq:x,Pj—x,p,, i,j=12,....d,
(L, Ly =d,L,+d, L, +d, L, +d,L,.
Now, one can easily transform these ‘classical’ relations into quantum mechanics and hence

find the commutation relations. We also note that the quantum mechanical Hamiltonian is the
samc as the classified onc :

H = _j- - .ﬁ. :
=1 2’“ r
We remind ourselves that H is invariant under rotation, therefore
% L,=0. )
11

The quantum mechanical Range-Lenz vector is defined as

1 4 X,
M, =ﬁ1§|(Pj L+ Ly P—k=".

where y is the reduced mass and  is a constant. Also note that M, are integrals of motion,
that is

4y
dr
Considering the fact that

=0. (V)]

{A.B)=—|A,B]
ih ’
one can easily obtain the commutation relation among L;as

IL,L=in(8,L,+6,L,+ 8 L;+6,L,). €

From egs. (1) and (2), it can be shown that L, and M, are the integrals of motion for the above
mentioned quantum mechanical system. So we have
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[H,L,]=0, (4a)

[H M) =0 (4b)
Also note that

. 2H
M. MJ=—ip —L

u ke (5a)
[Mi'Mkl]=_i h (6,[Mk“6,le)- (Sb)
Taking eq. (5a) into consideration, we introduce generator M| as
M’ M; 6
[y ©)
H
where H is the Hamiltonian. It is clear that
[M] . M)=inL, ¢

Eqgs. (3), (5b) and (7) are the commutation relations of the group SO(d+1).
Now, in order to calculate the energy spectrum of the Schrédinger equation for
the potential 1/r in d-dimensions, we must first write the Casimir operator for the group
SO(d+1):
C= Lz + M,~'2

Using the following commutation relations
[PjLu]=ih P d-1),
(P,,L)==-in P (d-1),
[Pk.Lu.]=—ih Pld,“-o-ih P,d,q..

one can easily verify that

Hence,

where we have made use of eq. (6) and

2 2
ijl‘il‘l‘ .

The eigenvalue of the Casimir operator C for the group SO(d+1)is
C=n(n+d-1)p? ®
]
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Therefore,
2 2
_ (d=1Y" pk
"‘"*"‘”-'(T) 2E, - ©)

where E 1s the eigenvalue of the Hamiltonian.

Rewriling,

n<n+d—l>=["+(f‘z—‘l)]2‘(i;)z

and substituting this into cq. (9), we obtain

—M.k»Z

x
2h2(n + fi-i'—') (10)

‘n

where we have also included the # factor.

With regard to the commutation relations (4a) and (4b), where it is explicitly shown that
H commutes with all generators of the group SO(d+1). it is quite clear that according to the
Schur’s lemma [4,5) the Hamiltonian must somehow be related to the Cas’lmir operator of the
group. All quantum eigenstates with encrgy given by eq. (10) belong to the irreducible
represcntation of the group SO(d+1) with eigenvalue of the Cusimir operator given in eq. (8).
The degeneracy number is the dimension of the representation which according to eq. (23) of
Secuon 3 is equal to

= @ntd-D)(n+d-2)
n! (d—1)!

3. Hyperspherical harmonics ind-dimensions

We demonstrate that Gegenbauer hyperspherical harmonics are the irreducible representations
of the group SO(d). Then, using the tensorial representations of the degenerate group SO(d),
we calculate the dimension of the representation.

The d-dimensional Laplacian in hyperspherical coordinates is defined as

2
-1 d
vio_ L 1 Q(rdl_)' i

p2 ,.d—" ar ar
where L? contains angular components of the Laplacian and r is the radial component in
hyperspherical coordinates.
In d-dimensional hyperspherical coordinates, we have
x,=rcos 6,

x,=rsin 6, cos 6,

2
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x,=rsin 6, sin 6, cos 6, ,

X, ,=rsin@siné,...cos 6, ,,
x,=rsinb, ....sin6,,sin6, ,
with the length element as

ds® = g .5 dq” d¢?

withg, =r and q,= 9,., (i=2,....,d-1) and where 8ap the metric of the space, is defined as

Writing L? in hyperspherical coordinate axis, we obtain

1 0 d 1 J d
L2 =|——— " sin?29 + —— sind730, ——
sin"'ze‘I 98, : 90, sinzelsin"-:'q2 2 2 96,
1 d d-4 d
+ ~———sin° 0, —+
- 3l
sinzolsinzozsind 403 96, 06,
1 2

sin20 sin6,.....sin%60,,_, (96,_)*

One can easily see that L? satisfies the following recursion relation

1 J k-1 d Lz(")
sin” ' @,_ + .
sint'0,_, 90,_; 1=k 0, sin%0,, (12)

2 =
Ligsry =-

In order to find the eigenfunctions and the eigenvalues of L2, we benefit from the resemblance
with the rotational group SO(3) where its eigenfunctions, i.e. its irreducible representations,

are Y,m(O. @). One can write the eigenvalue relation for L%d) as

2
Layty 1, ,.10,61:02--.85 =1yl +d=2),

d-1d-27 7211

Yot 016284 )). (13)

d-1d-2"

Now, we prove that YI‘Hl bl (6,,6,--.64_1) are the eigenfunctions of L%d) , that is they

are the irreducible representations of the group SO(d) which satisfy equation (13) as well as the
following

Jd@y*1,_ 1y ,...1,,(8,.6,...0,_, Wit pr61,05..,84 )=

Widy 6, r

d-1' 41"

where YI,,_II B RA e, 392 ++»84_1) are the hypersherical harmonics.
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In order to find an expression in which the eigenvalues of L (k) hold, and to obtain the
corresponding differential equation, we write

2
LesiyYy s

Lk-1"

4 =hl k=Y, (14a)

L(k)yll

E k-1

g =heali +h=28, (14b)

From egs. (12) and (14), we derive the following differential equation

lk (llz +k— I)C«k DIZ)(LOSGk )=-— _3___ w“a_.__ sm" Iok ag C((k 2\/2)((:050*)

\

lk U |+k -2) C(k-212) "

— (cosf,), \
Sln ek l l(l-li k . (ls)

where

Vit . 11, (61,655, 6, )= C((k 2)/2)((:080‘) Yooy 44,(61,64,..., 04 5).

Eq. (15) is the most general differential equation in which C,“" ]l (cos@, ) are satisfied. To solve
this equation, we put

X, =C05q,.

Hence the associated Gegenbauer differential equation [8]

1 d k2 d LUy +k=2)
T AC A R = R s
[“_xf)(k-zyz dx, dx, I-x,2

C«k 202) (x,)=0. (16)

k(k [}]

To solve eq. (16), we consider first the case in which tl;e last term is absent, that is

1 d 2
l:(_l—xf)("'z’” dx, —(1-xH? = dx, —+ L +k- l)]c«k Z)m(‘ )=0 qayp

of which we get the following solution

I,
- 1 d 2.0, +(k=2)/2
clk 2)’2(.! )= a ( ) [ ) ]
A k A (l_xf)(k—z)/z dx,
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The normalization condition determines the coefficient a

_ (k=2)IT, +k/2+1/2) }é
ol s k-2, +k12-1)
Now, in order to solve eq. (16). we note that having differentiated eq. (17) m times, where
m= ’(h-!)' we obtain the following equation

d? d
(1-x2k);—; €, ™ +(chxy ~2mx, ) =€, ™ +

[1-mm-1)—km+1, ¢, +k-D]C™ =0. (18)
]
The solution of eq. (18) can be shown to be

(M) (X ) Y(Xk )C((k 2)/2)( k ) (]9)

Now, substitutmg €q. (19) in eq. (18), we obtain

(l_xkz)q:"(lf:?””(x)-r[ —(-x2)- kxk-me*]C}(bz)’z) (X)+[(l Xy )u___]

(kx -2mxk)~—— 1y +k—1)— km—m(m— l)]c‘“‘ 1) _, 0)

t(k )]

In order that the differential equation (20) preserves its initial form, i.e. eq. (17), the following
relation must hold

(U=xp)? = —2mx, =0. @n
Fromeq. (21) we get

u(x,)=(1-x,2)™2.
Note that differentiating once from eq. (21) with respect tox and applying condition (21) on eq.

(20) we get eq. (16). This indicates that the proposed solution (19) is the solution of the
equation (16) :,

1 2 d k-1
) = - x, e (2—;) Cy, (xp)- @)

Orthononnahty determines the coefficient yof eq. (22) :

(I, +k+m-=-2)!
=(=D"q, k"""
L N ayrp— sy

Havi’n.g obtained the general solution of the differential equation (16), now we write down the
explicit form of the hyperspherical harmonics as
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d (7720

YI ’,(91.02. ..... .Od_l)=

Id2

(cos8,_;) €1 (03B, _,)....C; (c038,)C; | (c0s8,)C (cosB))

which satisfy the following orthonormality

Ja@y»> | 11618584 )Yy (81,6504 )=

d-1d-2"

81081y, 01

d-1" d-\

Ly 2lyg 220y 2| |
We complete this section by calculating the dimension of the irreducible reprciemation of
SO(d). To do this we remind ourselves that traceless symmertrical tensors 7, ,
(i=1,2,...,d) are also irreducible representauons of the group SO(d). So we calculate ﬂhe number

of permutations of the indices i Ji, of the tensor 7' The result is

P Jop
(I, +d -1
8 |( = kT .
d-ni!
Since the tensors arc traceless, therefore the degeneracy number is calculated by the following
relation ’
(I, +d-3)!

=800~ Zoya-n

@2 +d-2)I, +d -3)!
- 1M (d-2)

k=d-1. (23

4. Solution of the radial Schrédinger equation with potential 1/r ind-dimensions

Consider the following Schrodinger equation
- -
Y VZ+V(r) y(r)= Ey(r) (24)
with the central potential defined as

V(r)=—-k~;
r

where k is a constant and r is the radius of a d-dimensional sphere :
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with the Laplacian defined by eq. (11). Inserting the Laplacian in eq. (24) we get

' 2
L 1 d( g4-19), 2mk 2mE
ki dm o
On separating the variables according as

V(=R 11 0).6;.....0,_)

and making use of the eigenvalue equation of the spherical harmonics i.e. eq. (13), the
differential equation (25) transforms into

k
R"(r)+- ——~R( )+[imr 2:'25 ! 5 laa Uy +d - 2)]R(r) 0. 26)

This is the radial differential equation in d-dimensions, by means of which one can calculate
the energy spectrum. To do this, we consider first the asymptotic behaviour of R(r) :

R =r%ePy (r), @

where Y, (r) are the confluent hypergeometric functions. Substituting eq. (27) into eq. (26) one
can see that Y (r) satisfy the confluent hypergeometric equation

ry':'(r) +Qa+2ifr+d- l))Y’:(r) +[a(a—l) ; +20a’ﬁ—rp2 +a(d-1) % +]

2mk 2mE

[1B+(d—l) —r=l_ Uy, +d-2)- ]Y,,(r)=0. (28)

We know that the general form of confluent hypergeometric differential equations are of the
follwoing form

" (x)+(c-0Y (x)-a¥(x)=0. 29
In order that eq. (28) reduces to the standard form (29), the parameters a and  must satisfy

=l

=2 0
~h
With a change in variable as
2ifr=-x
the eq. (28) becomes

d-1_imk
X¥(x) +[21,, +d-1)-x]¥,(x) - [1,,.+—2—-Lph—]l’ (0=0. @
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Now, in order to have a polynomial solution to eq. (31), we must have

2 ﬂhz - 32

withJ as a positive integer. Combining egs. (30) and (32), the energy spectrum for the Schrodinger
equation in d-dimensions can be easily obtained :

2
2 d-1
ne3) |

[

where \
n=J+l,,.

Note that this result is exactly the same as the one we obtained in Section 2, i.e.;eq. (10).

In conclusion, we see that Schrodinger equation with potential 1/r has an accidental
degeneracy in any arbitrary dimension. The corresponding spectrum can be found by the
representation of its degeneracy group, that 1s SO(d+1) in d spatial dimensions.
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