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Abstract ; A method foi the determination of the activation energy E o f a 
thermoluminescence (TL) peak obeying mixed order kinetics by using a set of expressions, is 
presented The method has been applied to the numerically generated mixed order and general 
oider TL peaks and expeiimental TL peak of BcO
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1. Introduction

Thermoluminescence (TL) is often used for the spectroscopic studies of trap levels, in 
particular, for the evaluation of the trap depth (or activation energy) [1]. The study remains 
active because of its application in dating and dosimetry [2,31. A large number of TL peaks 
can be explained in terms of the three parameters (activation energy £, frequency factor s 
and the order of kinetics b) formalism. In order to study TL peaks obeying general order 
(GO) kinetics whose shape factor jiH lies between 0.42 and 0.52, Chen [4] used the 
empirical relation given by May and Partridge [5]

/(f) = -jin/dt  = s 'nh exp (-E/{kT)), (1)
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where I (f) is the intensity of emission at time t, £  (cV) is the activation energy, s' the 
pre-exponential factor having a dimension of cm1(/Kl) se c 1, k (eV J r 1) the Boltzmann 
constant, n (cm’3) the concentration of trapped electrons at lime t and T the absolute 
temperature.

In spite of the extensive use and application of GO kinetics by a number of research 
workers it, however, lacks the physical basis and a more physical mixed order (MO) 
kinetics has been developed by Chen et al [6] from the set of three differential 
equations [7]. The first order equation [8) and the second order equation (91 can be derived 
from these differential equations. Yossian and Horowitz (10J have successfully applied 
MO kinetics both to the synthetic TL glow peaks and to isolated peak 5 in Lif7 : Mg, Ti 
(TLD-100) following post irradiation annealing at 165°C and commented that MO kinetics 
is a viable alternative to GO kinetics in the intermediate range (I <b <2). Chen et al |6] 
have also presented a graphical picture of variation of with a (a = n0/(nt) + c), where 
n0 i s  the initial concentration of trapped electrons and c is the concentration of trapped 
electrons or holes not taking part in TL process in the temperature range being 
considered) by choosing a certain value of um {um = E/(kTm), where Tm is the temperature 
at peak intensity /,„) and reported that fjR is relatively a strong function of or (0 < a < 1) 
and a very weak function of They have also applied the half intensity peak shape 
formula [4] for determination of activation energy £  to synthetic glow peaks generated 
using MO kinetics equation and shown that the values of £ arc within 3% of the 
given values.

In this paper, the dependence of on uni is taken into account in obtaining the value 
of a  from vs a  curve by taking average of for different values of um (20 < um < 40) 
We alsrr present a set of peak shape formulae involving the parameter a  for the 
determination of activation energy £  for TL peaks obeying MO kinetics unlike those of 
Chen [4] used by [6] which do not require the information of a. The set of formulae has 
been applied to numerically generated MO TL peaks to obtain £  and found to be in good 
agreement with the input energy. Recently, Sakurai and Garlia [11] used the exact solutions 
of the basic differential equations involving thermally disconnected traps to fit the 
experimental peak of BeO to determine the five important intrinsic trapping parameters, 
namely, activation energy, frequency factor, retrapping probability, recombination 
probability and concentration of Lhe disconnected traps. In the prescnt_paper the 
applicability of MO kinetics is discussed as an alternative model to analyse the 
experimental TL peak of BeO irradiated with X-ray (5 minutes).

2. Theory

Following Chen et al [6] the intensity of a TL peak obeying MO kinetics can be 
written as

(2)

with

/(f) = -dn/dt  -  .v'7i(fl + c)exp (-E/(kT))  

s"  = sA„ /  NA„ , (3 )
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where .v is the frequency factor ( r 1), N the total concentration of traps, A„, and A„ are 
icspcctivcly the probabilities ( r 1) of recombination and remapping. The solution of eq. (2)
lo r a linear healing rate /?is given by

j /,c 2aexp («  " /0 )J?% x p ( - £ /  (kT'))dT' exp (-£ /(* £ ))

jexpi (« " //3 )J r7 txp(-EI(kT' ) )dT' H
uheie 7[) is the initial temperature wheiwi = //()>

The condition for maximum intensity is given by

(4)

kT\
■ + Us" /P)exp( ( -E / (kTm )) exp|(ci" / P) \7r "‘ exp( - £ /  (kT'))dT'^~ a

= 2 (r.v"//))exp(-£ /(*7m ))cxp|(c.«"/j8)J^” c x p ( -£ /(kT'j)dT'}. (5)

helming dimensionless quantities u = E/kT, uu = E/kTn, end u,„ = E/kT„, and expressing 
ihe temperature integral in terms ol second exponential integral (12], one can write eqs. (4)
and (5) as

s c 2 orexp|(t\Yv£ /  (/%))  ( £ \  ( m) / u -  E2 (u 0 ) I uu ) ]CXP( - w) 

|exp[(« "E / (Pk)) (£ ,(« ) / u -  E2 (u0 ) / u0 )] -  «}"
(6)

and 1 £ i cs" ,£«», +-^-CXp (-«„,)
Pk

Now, the fractional intensity x(x = l!Im) can be expressed as

expf(w " £ 1 (00 ) (£'2 («) / U -  E2 (u0 ) / u0 )|
X = B exp(nm - u ) - ---------------------------------------------------------- (8)

|exp[(cs "£/(/)*)) (E2(u)/u - E 2(ua ) l u ^ - a y  

with B = A(cs“i P ) l a \ ( k l E ) 1U*m exp(2«„, ) - ( cj" /j0)2 ]“'. (9)

Using Newton-Raphson method [13], we can calculate Tm from eq. (7) and 
temperatures T j on the rising side (7" < Tm ) and T* on the falling side (T* > T m) of 
TL peaks at fractional intensity x from eqs. (8-9). A plot of the pairs of variables 
I«■».«;/ ( h; - « „ ) ] ,  [um,u* / ( u m -u * ) )  and [ « „ , « ; « * / « „ ( « ; - < ) ] ,  where 
"i -  E f  (kT~ ) and u* = E / ( kT*) for values of um in the range 10 < < 40, are
lound to be linear so that we can write

= c i ( « ; / ( « ;  - « n ) )+ £ )i. (10)
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(12)

(11)“« m Ct {u* / ( u m - « ; ) )  + jD2,

and u m =  C ^ ( u ; u * / u m ( u ; - u * ) )  +  D j .

A linear plot of um as a function of u~ / (u~ - um) for a =  0.5 and x = 0.5 are shown in 
Figure I . Similar results have been obtained for other pairs, namely [um,u+ /  (um -  u +)] 
and lum,u~u+ / u m(u j - u +)] and different values of a . The linear plot has been 
obtained for x = 0.2 and x = 0.8 also.

F ig u r e  1 . V a r ia tio n  o f  uj} 5  - um )
against um fo r  a  =  0 .5 .

Eqs. (10- 12) can be recast in terms of activation energy and temperatures as

E ,  =  Clk T l / { T a - T ; ) + D ikTm. (13)

Ei  = C , k T l / ( T ^ - T m) + D 2kTM, (14)

and £ , = C jtr*  / ( r ;  -  7 ; )  + D , i r B. (15)
•>

The coefficients Cj and D, (j = 1-3) for a particular value of x occurring in eqs. (10-15) 
depend on a  By using the method of non-linear least square regression [14], each of the 
coefficients Cj and Dj can be expressed as a quadratic function of a (0  < a £  1) as

Cj = Cj o + C,,a + C,2a 2, (16)
and Dj = D, 0 + D; , a  + Dy2a 2 ■ (17)

The coefficients Cj* and Djk (j = 1-3, k = 0-2) occurring in eqs. (16-17) for jc = 0.2,0.5,0.8, 
are presented in Table 1.

T a b le  1. C o e ffic ie n ts  Cjk and Djk (j =  1-3, k =  0 - 2 )  o ccu rin g  in eqs. (16-17) f o r *  =  0 .2 ,0 .5  and 
0 . 8  resp ective ly .

Jt CjO CJM C , 2 Dj0 dJT Dn
0 . 2 1 2 .5 0 6 3 0 .6 3 7 3 - 0 . 2 5 1 8 - 3 . 0 0 2 2 - 1 . 1 8 4 7 0 .3 2 1 4

2 1 .4 6 4 0 - 0 . 1 7 2 9 1 .6 5 49 - 0 .0 2 6 1 2 .0 6 0 8 -  1 .8 0 59

3 3 .9 5 6 9 0 .4 1 1 3 1 .4 2 55 -  1 .7553 0 .5 1 7 9 - 0 . 1 4 3 9

0 .5 1 1.4411 0 .5 2 5 6 - 0 . 1 9 4 7 - 2 . 0 7 6 3 1 .1 8 69 0 .2 0 5 3

2 0 .9 8 61 0 .3 2 3 4 0 .5 6 0 7 - 0 . 3 1 3 4 1 .7 8 57 -  2 .3 5 8 5

3 2 .4 2 4 6 0 .8 2 7 4 0 .3 8 2 4 -  1 .3 1 70 0 .4 8 91 - 0 . 9 8 4 4

0 . 8 1 0 .7 3 6 8 0 .3 5 0 3 - 0 . 1 1 3 9 -  1 .4 8 45 -  1.0331 - 0 . 0 3 1 5

2 0 .5 8 5 8 0 .3 3 7 6 0 .0 8 6 8 - 0 . 5 0 9 1 0 .7 5 0 3 - 1 . 7 0 3 3

3 1 .3 2 22 0 .6 8 3 9 0 .0 2 3 7 -  1 .0 3 9 0 - 0 . 0 5 2 2 - 0 . 8 6 9 8

Eqs. (13-15) can be used to determine the activation energy of a TL glow curve.
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3. Results and discussion

The activation energy of a TL peak can be calculated using eqs. (13-15) not only at a point 
where x = 0.5 but at any other suitable points where x = 0.2 and 0.8 also, using the values of 
C,k and Djk (j = 1-3, k = 0-2) from Table 1 and eqs. (16-17) to obtain C; and D} (j = 1-3).

Mixed order TL peaks have been generated numerically with £  = 1.0 eV. s - 1010 j r 1, 
N = no = 1010 cm"3, Am-  = 10"7 s~l and P = 1.0 °C r 1 and different values of a. Using 
eqs. (7-9), we have calculated Tm and T +3. The values of <5 = T+5 -  Tm and 
(O = Tq5 - T q5 are presented in Table 2. The values of E\t £2 and £3 obtained by using 
the present set of expressions (13-15) for jc = 0.5, have been applied to the generated peaks 
and are presented in Table 2 along with the values of £  and £ jr calculated using Chen’s 
peak shape formulae [4] and initial rise method [9]. From Table 2, it is seen that the values

Table 2 . A c tiv a t io n  en erg ies  E\ ( e V ) ,  £ 2  ( e V )  and £ 3  ( e V )  o f  n u m e r ic a lly  generated  M O  T L  

peaks ( f j n =  1 .0  e V . r  =  lO 10* " 1, Am =  An =  K t Y 1. /V =  n 0  =  1 0 , 0 cm ‘ 3. 0 =  l 0 ° C . r '  and  

d iffe re n t values o f  a, using the present set o f  expressions ( 1 3 - 1 5 )  and Chen's fo rm u la  [4J. £ | r  is  

the  ac tiva tio n  energ ies  obta ined by using in it ia l rise m ethod.

£ )n a  Tm(°C )  5 ( ° C )  tu (° C )  E , (e V )  £ 2  ( e V )  £ 3  ( e V )  £ , ( e V )  £ 2 ( e V )  £ 3 (e V )  £ IR (e V )

( e V )  Present C hen

1 .0 0 .1 1 4 1 .4 2 7 2 1 5 .1 2 5 0 3 5 .6 5 0 3 0 .4 2 4 3 0 .9 9 7 3 0 .9 9 6 4 0 .9 9 6 8 0  9 8 3 9 0 .9 8 5 4 0  9 9 2 8 0 .9 8 9 0

1.0 0 2 1 5 1 ,4 8 0 6 1 6 .6 45 3 3 8 .6 44 1 0  4 3 0 7 1 0 0 1 5 0  9 9 9 2 1 .0008 0 .9 6 9 6 0 .9 8 3 5 0 .9 8 3 3 0  9 8 7 7

1 0 0 3 1 5 7 .6 4 0 3 18.0741 4 1 .2 0 7 4 0  4 3 8 6 1 0 0 2 7 1 0 0 2 6 1 0 0 3 2 0  9 5 8 6 0 .9 8 31 0  9 7 6 7 1.0000

1.0 0 .4 162 1039 1 9 .4 82 8 4 3 .6 9 3 7 0 .4 4 8 3 1 . 0 0 2 0 1 .0 0 46 1 0 0 3 7 0  9 5 1 9 0  9 8 4 8 0 .9 7 3 6 0 .9 8 5 6

1 0 0 .5 1 6 5 .5 5 7 5 2 1  2601 4 6 .2 1 7 3 0  4 6 0 0 1 .0 0 0 2 1 0 0 3 7 1 .0023 0  9 5 0 3 0  9 8 8 5 0  9 7 4 4 0  9 8 6 0

1 0 0 . 6 1 68 .2 9 3 8 2 3 .1 2 6 8 4 8 .8 1 0 5 0 .4 7 3 8 0 .9 9 81 0 .9 9 3 4 0  9951 0 .9 5 4 7 0  9 9 3 2 0 .9 7 9 0 0  9 8 6 0

1.0 0 7 1 7 0 .4 6 0 3 2 5 .1 5 8 1 5 1 .4 2 9 8 0 .4 8 9 2 0 .9 9 81 0 .9 9 3 4 0  9951 0 .9 6 4 9 0 .9 9 7 5 0  9 7 9 0 0  9861

1.0 0 . 8 1 7 2 .1 4 6 9 2 7 .1 9 2 2 53 9 0 0 5 0 .5 0 4 5 0  9981 0 .9981 0  9951 0  9 7 9 0 1 . 0 0 0 2 0 .9 9 4 6 0 .9 8 5 8

1 0 0 .9 173 .42 6 1 2 8 .8 2 5 6 5 5 .8 2 0 8 0 .5 1 6 4 1.0028 1.0077 1 .0 0 59 0  9 9 1 9 1 .0 0 07 1 0 0 0 8 0 9 8 5 7

of £  obtained by using the present set of expressions arc more accurate than those 
obtained by using Chen’s formula and initial rise method. But the present expressions 
require the prior knowledge of a  To Find a  for an experimental peak, one has to calculate 
the shape factor and derive a  from the fi^vs a  curve [6]. Chen et al [6] have presented 

w a  curve and observed that the curve is modified slightly with the change in £  and s"
i.e. with um, since Tm can be found for a particular £  if s" is known. In Figure 2, we have 
presented the variation of versus a  for um = 20 and um = 40. The value of ^  decreases 
slightly by around 3% when um changes from 20 to 40 in agreement with the observation of 
Chen et al [6]. But it is observed that a  increases appreciably by around 0.1 to 0.2 when um 
changes from 20 to 40 for a particular value of /ir  For a TL peak since we do not have prior 
knowledge of um to find the accurate value of a  from vs a  curve, the average values of 
fig for um = 20 and 40 are obtained for different values of a  and are plotted as a function of
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a  (solid line in Figure 2), The average îg vs a  curve can now be used as a preliminary 
estimation of a  to find £. Talcing into account of the error in the estimation of a  by this 
method, we have found that the possible error in the evaluation of the activation energy E 
docs not exceed 3%. It is to be noted that for many experimental TL peaks, um lies between 
20 to 40 except for a limited number of peaks.

Figure 2. Variation of fjg (at jc = 0 5) as a
function of a. (a) - • - ■ - for um = 20, (b)-----
for um = 40, (c)--------correspond to average
of the values of fig at um = 20 and um = 40.

0.5 a

To show that MO kinetics model is a viable alternative to the GO kinetics model, 
we have generated numerically GO TL peaks with E = 1.0 eV, s = 1013 s"1, 0 -  1.0 °C r 1 
and different values of b (1 < b < 2) and computed the values of Tm, Tq 5, T+5 and fig (at 
x = 0.5) using the expressions of Gartia ex al [15] and also used the present set of 
expressions to obtain £,, E2 and £3 (Table 3). The values of 8 (5 = Tq5 -  Tm) and 
co (co = Tq5 -  Tq 5) of the numerically generated GO TL peaks are given in Table 3. In 
computing the values of £, we have used Figure 2 (solid line) to obtain the values of a  from #

Tabic 3, Activation energies E\ (eV), E2 (eV) and £3 (eV) of numerically generated GO TL 
peaks (E = 1 0 eV, s = 10135“ 1 and different values of b, calculated using present set of 
expressions (13-15)

E
(eV)

5
(r 1)

b 6
(°C)

10
(°C)

H E\
(eV)

£2
(eV)

£3
(cV)

1.0 1013 1.1 11.8 27.3 0433 1.0398 1.0230 1.0323

1.0 1013 1.2 12.7 28.5 0.446 1.0530 1.0345 1.0445

1.0 IQ13 1.3 135 29.6 0.457 1.0559 1.0403 1.0485

1.0 I013 1.4 14.4 30.7 0.468 1.0523 1.0374 1.0450

1.0 1013 1.5 15.2 31.8 0.478 1.0457 1.0296 1.0376

1.0 I013 1.6 16.0 32.9 0.487 1.0370 1.0157 1.0261

1.0 I013 1.7 16.8 33.9 0.495 1.0285 1.0055 ~  1.0165

1.0 I0'3 1.8 17.6 34.9 0.503 1.0202 0.9985 1.0088

1.0 1013 1.9 18.3 35.9 0.511 1.0120 0.9940 1.0025

the values of = 0.5). The values of £), E2 and £3 agrees well with the input value £. 
Hence our present set of expressions can be used as an alternative method for finding the 
value of activation energy.

Finally, the applicability of MO kinetics model and the present set of expressions for 
determining the activation energy, is discussed by taking the well-studied experimental TL 
peak of BeO (Tm 3 160.1°C) [l 1] irradiated with X-ray (5 minutes). Sakurai and Gartia [11]
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fitted the peak with their numerically generated peak and obtained the activation energy £ n 
as 1.09 eV (Table 4), Now the present method for the determination of the activation energy

T a b le  4. T h e  values of activation energies E2 and (eV) of the experimental TL peak of 
BeO. £mocf and En are respectively the activation energies of the peak obtained by curve fitting 
with MO kinetics and numerical method [11].

Tm 7 0.5 r 0+5 £i *2 ^3 ^mocf En
(°C) (°C) (°C ) U * 0.5) (eV ) (eV) (eV) (eV) (eV)

160.1 135.6 18S.6 0 .5 1 0 1.0418 1.0374 l 0397 1 0410 109

using the expressions [13-15] and half intensity points Tq 5, T +5, has been applied to this 
peak. The value of a  of this peak used in the computation of the activation energies is 
observed from the Figure 2 (solid line) using the value of /zg (at x = 0.5). The values of Tm, 

.v 5 * Vn (at x = 0.5), £ h £2 and £3 are given in Table 4. The experimental peak of 
BeO can be fitted with a MO kinetics peak using the values of £mocf = 1.041 eV, a=  0.85, 
s = 6.67 x 1010 s~\ Am = An = 10-7 r 1, N = n0 = 1010 cm-1 (Figure 3). The values of 
£,, £2 and £3 are in good agreement with the value of £^  and lies between the value of £„

TCC)

Figure 3. Curve fitting of experimental TL 
peak (full circles) of BeO (Tm = 160 1°C) with 
MO kinetics (continuous line) (E = 1.041 eV, 
s = 6.67 x lO’V 1./)^ - An- K r V 1, N = riQ = 
1010 cm' 3 and a = 0.85).

obtained by Sakurai and Gartia and 0.98 eV obtained for the same peak by curve fitting 
with GO model.

4. Conclusion

In the present paper, we have derived a Set of expressions for the determination of 
activation energy of a TL peak obeying mixed order (MO) kinetics involving the important 
MO parameter a  which can be determined from the value of shape factor ^  at half 
intensity points. We have also applied the method to the experimental TL peak of BeO and 
obtained the activation energy. A comparison of the value of activation energy thus 
obtained, is made with the value obtained by using curve fitting technique with mixed order 
kinetics as well as general order kinetics model. It is observed that the values obtained in 
the present paper is comparable with the value obtained by Sakurai and Gartia [11].
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