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Abstract : Supersymmetrized SchrOdinger equation for Fermion-Dyon system bps been 
obtained by dimensional reduction of supersymmetrized four-dimensional harmonic oscillator 
and it has been interpreted as an ensemble of two Schrtkjinger and one Pauli's equation each 
describing the motion of an electrically charged particle in the field of a Dyon with different 
magnetic charges.
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1. Introduction

Monopoles and dyons became the intrinsic parts of all current grand unified theories [1] 
with the enormous potential importance in connection with their role in catalyzing proton 
dacay [2,3], the quark confinement problem of QCD [4,5] and RCD [6,9] and CP-violation 
in terms of non-zero vacuum angle [10], The dyon-fermion dynamics has been worked out 
by various authors [2 , 11-13] and it has been shown that the nature of dyons is strongly 
perturbed by fermionic sector which couples with them. In our recent paper [13], we have 
undertaken the study of dyon-fermion bound states and showed that in dyon-fermion 
system the fermion moves on a cone with its apex at the dyon and axis along its angular 
momentum. It has also been shown that the exact solution of Dirac equation for such a 
system is not possible due to the presence of terms vanishing more rapidly than r* in the 
potential of the system.

Keeping in view the symmetry of Schrddinger equation for a fermion in the field of 
monopole [14,15] and the difficulties faced [16] in supersymmetrizing the Pauli’s equation
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of a fermion in the field of dyon, in the present paper, we try to obtain the 
supersymmetrized solution of Schrddinger equation of fermion in dyonic field by the 
dimensional reduction of supersymmetrized generalized four-dimensional Harmonic 
oscillator that we can derive the modifications in our earlier results of eigen values and 
eigen functions of fermion-dyon system as the result of supersymmetrization. The 
supersymmetrized Schrddinger equation for this system has been interpreted as describing 
the quantum dynamics of a supermultplet of two spin- 0  and one spin-1 / 2  particles in a 
Coulomb field. It has also been interpreted as an ensemble of two Schrddinger and one 
Pauli’s equation each describing the motion of an electrically charged particle in the field of 
a dyon with different magnetic charges.

2. Dimensional reduction of four-dimensional harmonic oscillator to fermion- 
dyon system

Let us consider the motion of a fermion of mass (m = l/2) and charge in the field of a 
dyon carrying generalized charge

9 = *2 “ ^2  '

in terms of electric and magnetic charges e 2 and g 2 respectively. Its Schrddinger equation 
may be written as [13]

HD\if=Ew (2 .1 )

where (2 .2 )

with II l

*

K = exev (2.3)

P = e , g 2.

In eq. (2.3), V is the potential of the field of dyon. Rescaling by a(r = cor), eq. (2.1) may 
be written as follows :

h '"1 = —D a r
(2.4)

with H™  =(rv* - r  + P*/ r ) , for a  = 4 - E

and H f  =(rv* + r  + P*/ r ) , for a  = VE, (2.5)

where < II 3̂ 1 (2 .6 )

Equation (2.4) may be written in the following specific form :

» i T V= [ r ( p k + f]v^=  -§ v - (2.7)
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The corresponding angular momentum operator may be written as follows :

~ e f k )  + P 'rr  (2-8)

with L20t) = 1(1 + /) + e f g l  = / '( f ' + l). (2.9)

Solution of eq. (2.7) has been obtained in the following form in our earlier paper 113]:

u(r )
(2.10)

where Yf g {, m, (9, 0) are the spherical harmonics for a fermion-dyon system and u{r) is 
given as follows in terms of confluent hyper-geometric functions:

u(r) = (ar ) (J exp ( - a r ) f |a  -  2a, 2ar

with a =  -i +[( / '+ I/2)2 - ( f , * , ) 1]1 1 /2

(2. i n

(2.11a)

The corresponding bound stale energy of fermion-dyon system has been obtained in the 
Allowing form [13] :

( e ,e , ) 2

r (r + i ) - e2s 2 + i  + i +n
(2.12)

where n is an integer and we have chosen fermionic mass m = 1 /2, Equation (2.4) is 
equivalent to the Schrodinger equation for the four-dimensional oscillator [141

- -  K - H y  = — y  
a (2-13)

wilh the constraint

X y  = -  i ~  y  = P y  
0(0

(2.14)

where H= - r " 1 JL 2 A 1+ —iT" 1 9_ ( . a 9 ) I 9* ' sin 0 -t— + — -- - - - - —
r 2 d y r 9y r 2 sin 0 90 V 06 ) sin2 0 <902 _
1

sin2 0

3 2  3 2
3 + 2cos0 3

d(02 dipdco
(2.15)

Solution of eq. (2.14) may be written as

y  = y{r, e, 0, (o) = e*°> (y, 0, 0), (2.16)

where to is the angular velocity in the domain (0, 4/i). The condition for single-valuedness 
oi V/ requires that P should be quantized in half integral units :

d 1
P  =  e l * 2  =
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The system described by eqs. (2.13) and (2! 14) possesses SO(4, 2) spectrum 
symmetry. The angular momentum operator corresponding to Hamiltonian of eq. (2.15) 
operates through the following relation

L t W =  exp [/Po]!,. (JT)Vf. (2.17)

where
r -  8.

[}k) = e - p J — h h .  
' rsin2 6

(2.18)

showing that the projected SU(2) generators have a P-dependent contribution. 

Choosing

: * 2 e
91 K'?

r / 3

* + ' f )
or in spherical coordinates

Vr = 0, V, -  0, Vq = - g 2 cos9. \

as the potential for a monopole of strength g2, this L of eq. (2.18) may reaiily be 
recasted in the form given by eq. (2.8) for fermion-dyon system. Then Hamiltoriian of 
eq. (2.13) for four-dimensional harmonic oscillator reduces to that of eq. (2.7) for the 
motion of a fermion through the field of a dyon. This reduction takes place under the 
projection

k.R+  x 5 3 -> R+ x S 2 (2.19)

imposing the mapping

(Z, ,Z 2 ) ^ ( r , Z , / Z 2 ),

z i = V^T+ 'V^T’ Z2 = V 'T +

such that z a Z o = | Z , |2 + | z 2 |2 = r > 0.

(2.20)

(2.21)

(2.22)

Taking a 2-sphere of radius r and projecting the point r —  of C -> 5 2 through 

north pole, we get

_LL -  i 2
Z 2 ‘  r ~ r 3

or r. = ff.(Za ) = Z a a'abZh,

which is Kustaanheirtio-Stiefel (KS)  transformation with 0) as standard Pauli matrices. 
This projection defines 4 principal fibre bundle

M ~  R+ x S 3

with 1/(1) as the structural group.
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3. Supersymmetrized Fermion-Dyon system

In order to supersymmetrize the system described by eq. (2.7), let Us start with the 
supersymmetrization of generalized four-dimensional harmonic oscillator described by 
cq. (2.13) and then perform the dimensional reduction through eqs. (2.19) and (2.20). To 
meet this end, let us choose the supercharges

This H has a n = 2 conformal supersymmetry. In addition to the operators Q, Q* and H, let 
us also construct the following operators :

(3.1)

(3.2)

where W is a real function of Zan Z and r\ satisfies the following Clifford algebra :

K .n » }  = o.

{r]^, 77J } = 2<5fl̂  fora, 6=1,2.

(3.3)

Choosing W(Z, Z) = A In (Zfl Za ), (3.4)

where A e R, the domain of Clifford algebra of eq. (3.3), we get

/ / =  ^ { e . e +}

(3.5)

where (3.6)

<ind S ‘ = j (3.7)

and

(3.8)

72A(2HO
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These generators satisfy the Osp (2.1).structure relation and remain invariant under the 
SU(2) action generated by the operators

Operator C, given by eq. (3.6), commutes with all the Osp (2,1) generators and also with J. 
As such, the full invariant algebra of this problem is Osp (2,1) ® SU(2) ® U(l). Within this 
algebra, the Hamiltonian of eq. (3.5) for supersymmetried four-dimensional harmonic 
oscillator may be generalized in the form of the following operator

But the generators Q, Qf, S and S+ do not commute with x  and hence the supersymmetry 
of R will be lost under the projection involving this constraint. Thus, we modify this 
constraint to the following equivalent condition

where the operator C, given by eq. (3.6) commutes with every element of Osp (2,1) 
® SU(2) algebra and it will affect the projection without breaking any symmetry of the 
four-dimensional system. Condition (3.12) may be understood as the supersymmetrized 
version of the constraint (2.14). Then eq. (2.16) may be obtained in the following 
supersymmetrized form

where j ( is SU(2) generator given by eq. (3.9) and j ) n) is given by the following 

supersymmetrized form of eq. (2.8):

(3.9)

R = H + K = H + ZaZ a. (3.10)

The constraint (2.14) may then be written in the following form

showing that every component of \j/ transforms according to the same U(l) represenWion

C\jf = 2 P\jf9 (3.12)

(3.13)

where (3.14)

Then eq. (2.17) is supersymmetrized into the following form

(3.15)



with * k mP k ’ [ P - j 2 ) v ? (3.17)

and V ® as the potential of a Dirac monopole of unit strength. In eqr (3.16) £. is the spin 
matrix given by eq. (3.7) with

' l l  = ^ « [ 7 J +«74]. 

*12 “  + *72]• (3.18)

Choosing chiral basis

r = \-io> f  }  5,4 - ( ?  o r

and

we get

and

y 5 — _ y I y 2 y
v - ( i  .:)•

4 o ’ 0

S' =
0 0
0 l / 2 a ' (3.19)

which is fully reducible form showing that the system under consideration comprises two 
spin-0 and one spin-1/2 particles. Then equation

D-  K -Rw = — w 
a

reduces to the following supersymmetrized version of eq. (2.7)

R {K) w = — w, 
a

where /?<*> = r[Pi -  ( P - 1 / 2 X ) V ° ] 2  + r

( X - P ) 2 -  PX + 1/4X 2  2Xr'S‘
r r 2

Rescaling by a, eq. (3.20) may be written into the form given by eq. (2.1) where 

h d  = [ p , - ( P - 1 / 2 X ) V , D]J - K / \ x \

[ ( X - P ) 2  - P X  + 1/4X2] 2 Xx‘S ‘

(3.20)

(3.21)

WJ w 3

(3.22)



The spectrum of this hamiltonian may be obtained in the form of following supersymmetric 
generalization of eq. (2 .1 2 )

E =
e } e 2

+ + 1/4(9- A ) 2  -  1/4(1 - * ) «  + 1 / 2  + n]]

= E
n . J , a ,  j ’ (3.23)

where x  stands for chirality, j{j + 1) gives the eigen values of the operator J2  with J given 
by eq. (3.16) and a  denotes the eigen values of the operator A given by

A = i [ e fS +] + «[fi+.S]. (3.24)

The eigen functions corresponding to these energy eigen values (3.23) satisfy the following 
equations:

t iD\j,m,a,x,n) = E\j,m,a,x.n),
J2\j, m, a,x,«) = ;'(j +1)|j, m, a,x> n),

Jj\j, m, a,x> n) = m\j,m,a,x,n),

A\j, m, a, X, n) = a\j, m, a, x,n),

Y51/'. m, a, x, n) = x\j< a, x, n). (3.25)

The eigen states |j, m, a, x>n) obviously belong to a representation of Osp (2,1) ® SU(2 ) 

Setting A= P, the two lower components of eq. (3.22) become

e}g2x. a
Hp = ( p - e , V ) 2 - clc2

H W3
(3.26)

which is the Hamiltomian of Pauli’s equation for the spin -.1/2 particle of charge e\ (and 
mass = 1 /2 ) in the field of dyon carrying electric and magnetic charges e2 and g2 
respectively. For this case, eq. (3.23) reduces to

n'J'a 4 [V>0' + l ) - « f * 2  + l /4  + 1/2(1 -  a) + «]]

which is Pauli’s generalization of eq. (2.12).

For H D given by eq. (3.22), the supersymmetric equation for the fermion moving in 
the field of a dyon may be written as follows :

H Dyf = E y , (3.28)

where eigen values L  are given by eq. (3.23) and the corresponding eigen functions satisfy 
eq. (3.25).
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4, Conclusion

The eq. (3.28) can be interpreted as describing the quantum dynamics of a supermultiplet of 
two spin-0 and one spin-1/2 particles in a Coloumb field. It can also be looked at as an 
ensemble of two Schrddinger and one Pauli equation each describing the motion of a 
particle with electric charge-e2  in the field of dyon with electric charge e} and with magnetic 
charges respectively equal to (elg2 - l / 2 ) / e ,  , (e,g 2  + l /2) / e ,  andg2 . Taking e] as 
the electric charge of the point particle sitting at the origin, we can fix the electric charge of 
the supermultiplet to be e2. From the coupling to the potential V P , we see that the spin- 0  

particles must be assigned magnetic charges equal to g2 ± 1 /2 ^ while the spin-1 / 2  particle 
will have its magnetic charge equal to g2.
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