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Abstract : Perturbed rotational motions of a rigid body that are close to regular precession
n the Lagrange case when the restoring moment is variable are investigated, depending on the
Euler's angles and the components of angular velocity. Such restoring moment is introduced by
making the rotation of the rigid body 1n an electro-magnetic field It 1s assumed that the angular
velocity of the body 1s large, its direction 1s close to the axis of dynamic symmetry of the body.
and that the three projections of the vector of the perturbing moment onto the principal axes of
nertia of the body are small as compared to the restoring moment The average method 1s
employed and the averaged system of equations of motion s solved ia the first and second
approximations Examples are considcred. Numencal results are obtained, for the averaged
system of cquations of motion, and are discussed n details
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1. Introduction

In the last few decades, considerable interest arose in the generalization of the classical
problem of motion of a rigid body about a fixed point. The motion of charged rigid body in
uniform gravitational and magnetic fields was also considered [1-4]. In [5,6], the restoring
moment is taken as a function of nutation angle only.

In the present work, we get a restoring moment as a function of more than one
variable, namely, the Euler’s angles and the components of the angular velocity.

2. Formulation of the problem

We consider the motion of dynamically symmetrical rigid body about a fixed point 0 under
the action of variable restoring moment and perturbing moments, the equations of motion

can be written in the form :
© 1997 IACS
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Ap+ (c—A)gr = ksin@cos¢ + M,

Ag+ (A-c)pr = —ksinBOsing + M,

cr =M,

¥ = (psin¢ + gcos ¢)cosechd (U]

6= pcos¢ ~ gsin¢
¢=r- (psin¢ + gcos ¢)ctgd

Dynamic equations (1) are written in projections onto the principal axes of inertia of
the body, passing through the fixed point 0. Here p, g, r are the projections of the angular
velocity vector of the body onto these axes; M, (i = 1, 2, 3) are the projections of the vector
of the perturbing moment onto these axes, which are 2 n-periodic of the Euler angles, v, 6,
¢, A and c are the equatorial and axial moments of inertia of the body relative to the\'_ﬁxed
point0, A# c.

The perturbing moments M, in (1) are assumed to be known functions of their
arguments, when M, (i = 1, 2, 3) =0 and k= mgL = const., then the system of equations ()
corresponds to the Lagrange case. Here m is the mass of the body; g is acceleration due to
gravity; and L is the distance from fixed point O to the center of gravity of the body.
Equations (1) may describe motions of a Lagrange top acted upon by perturbations of
various physical origin, as well as motions of a frec rigid body relative tb the center of
mass, when this body is acted upon by a restoring moment generated by aerodynamic
forces, and certain perturbing moments.

We make the following initial assumptions :

PP+@ (e Nk M (K, (=123 @

which means that the direction of the angular velocity of the body is close to the axis of
dynamic symmetry; the angular velocity is large, so that the kinetic energy of the body is
much greater than the potential energy resulting from the restoring moment; the three
projections of the vector of perturbing moment onto the principal axes of inertia of the body
are small as compared to the restoring moment. Inequalities (2)-allow us to introduce the
small parameter £<< 1 and to set

p=¢P qg=¢€0 k=¢K o)
M, =€e’M] (P.Q,r,y.0,¢.1) (i=123)

The new variables P and Q, as well as the variables and constants r, y, t, 6, ¢. K,
A c, M,' (i=1,2,3)are assumed to be bounded quantities of order unity as € = 0.

The problem under investigation is the study of the asymptotic behaviour of the
solution of the system (1) for small £ when the conditions (2) and (3) are satisfied. This will
be done by employing the average method [7-9], which is extensively employed i
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problems of dynamic of rigid bodies in a time interval of order £'. Moisecv [8], reported
that this method was employed o investigate a variety of problems of dynamcs,
essentially for bodies with dynamic symmetry. Chernous'ko [10] was the first to perform
averaging with respect to Euler-Poinsot motion for a symmetrical body. A number of
workers [ 11-14], have investigated perturbed motions of a rigid body.

3. Treatment of average

Introducing the change of variables (3) into (1), we get :

AP+ (c-A)Qr = KsmBcos¢ + eM;

AQ+ (A-c)Pr = - KsinBsing + eM;
cr = €M,

) (4)
v = €(Psind + Qcos ¢)cosecOd

0 = g(Pcos¢-Qsing)

¢ = r—e(Psing+Qcos@)cigd
Let us consider the zcro—z;pproximation system; by putting € = 0 in (4). The last four
cquations n (4) yield:

rErg WE e 0= 6, 9= ri+9, 5

Hewe 1. y,,,6,, 9, are constants equal to the initial values of the corresponding variables
at £ = 0 Substituting (5) nto the first two equations of the system (4) for £ = 0, and
miegrating the resultant system of the two lincar equations for P, Q. The solution 1s given
i the lorm

P = acosy, + bsiny, + Agsin(rgt+9,).
Q = asiny, - bcosyy, + Agcos(ryt + @),
a'® = P, - A,sin6,

b0 = - Q) + Aycos9,,

(6)

such that /10 = Kuc‘lr(;l sin 80' Yo = Nyl

ny = (c-A)A ", 2 0, l"u/’ul Sl Ky = Kl
Here Py, @y are the initial values of the new variables P, Q, introduced in uccordance

with (3), while the variable y= %, has the meaning of the oscillation phase and is defined
by the equation

y=n y0) =0 n=(-AA"'r (7)

For e = 0 we have y= % = no t which is consistant with (6). The two systems (5) and (6)
defing (he general solution of the system (4) for € = 0. By eliminating the constants
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with allowance for (5), it is possible to rewrite the first two expressions in (6) in the
equivalent form :

P = acosy+bsiny+Asin(y+¢),

Q = asiny-bcosy+Acos(y+¢), ®
and to solve for a, b

a = Pcosy+Qsiny-Asin(y+¢),

b = Psiny—-Qcosy+Acos(y+¢) o

System (4) is essentially nonlinear (the natural oscillation frequency of the variables P, Q
depends on the slow variable r) and therefore an additional variable 6 is introduced, which
is defined by the equation

r=r,+&é (10)

Now. let us consider system (4) for £ # 0 and expressions (8) and (9) as change of variables
formulae (that contain the variable 7). This defines a change from variables P, Q to
variables a, bof the Van der pol type [7] and vice versa. Using these formulac is system (4),
we convert from the variables P, Q, r, y, 6, ¢, Y to the new variablesa, b, r, v, 6, &, §
where

a =Y+ n

After some manipulations, a system of seven equations is obtained, which 1s more
convenient for subsequent investigation, then the six equations in (4) will take the form :

a = eA"'[MPcosy + MYsiny] + A”'K sinBcose - A”'K, sin@cosa

1=l cos O(h 1,1 0 11 sin Bsi 3K0
- EKoc rg' cos ( —Koc rg'sin cosa) — Ec rg' sin@sina 20
X (acoso+bsina) + €2K,c"'ry28cos 8(b - 2K c'ry! sinBcos )
2.-1,-2 : 9K, . ; 2k 22 M0 sin Osina
+ £2c7'rg?ésin sina Ty (acosa+bsina) + €K c™*ry* My sinOsin
K,
- €x2rg'M? —;ri sin @sin o - 12.1)

b = eA”'[MPsiny - MJsiny] - A-'KsinBsina + A~'K;sinBsina
NP Ll JK,
+ eKyclry' cosB(a+ K yc'ry! sin Osina) + ec”'rg! sin Ocosa =0

x (acosa+bsina) — e2K,c™'rg?8cosB(a + 2K c'rg! sin Osin @)
i aKO H 2 -2,-2A40 oi a
- €%c7!rg28sin Gcosaﬁ (acosa +bsina) - £2Kyc ry2 M) sin Bcos
0

oK
+ £2c ' M? —% sincosax (122)
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5= e M)

(123)
¥ = ecosecB(asina-bceosa) + eKyc'rg' - 2Kycrg28 (12.4)
6= &(acos o + bsin ar) (12.5)
Here M," denotes functions obtained from M,‘ as a result of substitution (8)~(10), i.e.,
M%a,b,r,y,8,a.7,1) = M'(P,Q,r,y.6,0.1), i=1,2,3 (13)
The system of equations (12) can be written in the form :
x = €F,(x,y) + €2F,(x,y), x(0) = x,, (14.1)
Y = o + eg(x,y) + €2g,(xy) y'(0) =y, (14.2)
¥ = @, + Eh(x,y) + €2y (x,y), y1(0) = Y%, (14.3)

where the vector-function x = (x',x2, ..., x%) represents slow variables a, b, 8, v, 6, while y!
and y? represcnt fast variables a, 8. In (4) @,, w, arc constants phases and equal to c(A%' ry
and (c - AY) (AY)! ry, respectively. The vector-functions F,, g, h, (i = 1, 2) determine the
ught hand sides of system equations (12) and construction treatment of approximate system
(14) 1s described in References [7] and [9]. In accordance with this treatment we will
change to variables :

x=x" + au(x",y") + €uy(x"y) + .,

y =y + ety + el (xTy") + .,

y

', yh), = (M0
Yo 0ty gLk =g

Thus system of equations (14) in new variables (x*,y*) takes the form :

.

X

A (x°) + E2A,(x") + ..., (15.1)

il

y

o+ eB(x°) + E2B)(x") + ..., 0= (0,0, (15.2)

lt1s known [9], that the equations of veotor-functions uy, v| have the form :

a

w ?“.1 = F(x",y") - A(x") (16.1)
3" » L -

Q’WI‘ = 4,(x"y") - B(x") 16.2)

and through (dF/ax) we express the differential matrix with respect to fast variables
I oF, /3x, | G.j=1,.... 5) functions A,(x"), B,(x") are determined in the form :

. l 2 2 . . »
AGx) = mL"L'F,(; Ly )y ldy™ any
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L] l 2. 2‘ - * L] *
B(x") = m-jﬂ .[o ,(x",y")dy"'dy"? (172

The function uy(x*,y") is the solution of the following equation

du .« . oF, aF, Ju .
;}w = F(x°.y") + X}u' + FLv, - gl-A,(;.r )
%y o .
e L ICORFNCOY (18)
. 2x p2x oF, oF, a
du o . !
- T;yJ:BI)dy Idy*? ' (19)

We determine the first approximation of averaging system of equations of slow
variables as :

x o= eAx), x50 =x, (20
and the second approximation for slow variables as :

x, = €A(x]) + E2A,(x7),  x3(0) = xy . @n
and the second approximation of system of equations for tast variables as :

Y, = @+eB (). y(0) =)0 Y = ('™ (e
which is directly integrated to give

() =)0 + ot + eJ:B(x,‘ (s))ds (23)
It is convenient to introduce an independent variable 7 = &¢ for investigating the second
approximation system (21), so the system (21) takes the form :

dxyfdt = A(x;) + €Ay(x;) - 24

Thus, the time interval (0, 7€) which we considered in the initial system (14), will be 0.7
and is independent of the small parameter €. We will assume a solution of the system (24)
in the form :

x5 (1) = x(1) + &xP(7) + 0(e?). (25

Substituting in (14) we get the following system of equations for vector-function
xX(1)=x{1), (t=€t,i=1,2);

dVdr = A (xV), xD(0) = x,; @
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dxm/d‘t = A,'(x“)(r))x"’ + Az(x‘”(t)). xm(O) =0 27
where A denotes the matrix of differential components of vector-function A,(x) by
fast variables.

Denoting by X(7, c), the general solution of the first approximation of system (25) :

X, = A(X)  X(O0c) =c =X,

Thus, the functions x"X(7), ¥2Xt) will take the following forms
(D) = X(xxy), X)) = 6 ¢ (rynez, ), 28)

where (1) = ||ax< 7,¢)/dc IL=

X'
(1) = A (xV(T)) = A (X(T,x,))

We define the vector-function

5.0 = xWen + exP(er) + eu (xV(er), y0 + awx

+ ej'; B, (xM (s)ds) 29.1)

V()=y + o+ EI(:B,(x“’(Es))ds (29.2)

Thus, the approximate solutions X, (t), y.(f), are obtained as follows : with the aid of
Founer series, we solve equations (16) and (18). Hence, using formula (19) we construct
the vector-function A, (x*), and in accordance with (28) we determine the solutions x'X1),
¥1) from egs. (26) and (27). Finally using formula (29), we get the required
approximation.

4. The case of variable restoring moment

As an example, restoring moment depends on the components of the angular velocity and
further on the angles 6 and . Consider the rotation of a symmetrical rigid body in an
eicctromagnetic field such that the magnetic field of strength D is horizontal and a point
charge (e), on the axis of symmetry. Thus the motion of the rigid body is under the force of
gravity and Lorentz force which equal e(w A D) [15) where w is the vector of the angular
velocity of the rigid body. The resultant of restoring moment K, taking into account of the
inequalities (2), can be written in the form :

K = mgL + eDL’[r - %r"(psin ¢sin8 + gcos ¢sin 6 + rcoso)z] (30)

where L’ is the distance of the position of point charge (¢) from the origin.

A In the following, we will employ the above technique to consider some specific
cXamples of perturbed motions of a rigid body.
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S. The case of linear-dissipative perturbed moments

Let us consider perturbed Lagrange motion with allowance for the moments acting on
the rigid body from the environment. We will assume that the perturbing momenis
M, (i =1, 2, 3) are linear and dissipative [16] :

M, = -€1P. M, = —€*1,Q, My = —€lyr, I, I; > 0 @n

where 1,, /4 are constant coefficients of proportionality that depend on the properties of the
medium and the shape of the body. The first three egs. of (12) for the considered problem,
with the variables (a, b, 8, y, 6, a, ) take the form :

where

a=-eA"'l(a+ Acry'sin@sin @) €A™ u sin? @ cos O[asin acos

—bcos?a + Ac'r! smecosa]elc" = cose(b Ac'ry! sin 0\cosa)

—&c™' psin? @ cos @sinax(acosa + bsina) + 2Ac' rgt cos 6

x(b - 2Ac™'ry' sin@cos@) - £2Ac?rg' Iy sinBsina + %e’ A

x (1 + sin? 6) sin Osina - %s’A"pr‘;' sin’ @ cosa(asina - becosa

+Ac7'r;' sin6)? + €2Ac™' A~ urg? 8sin® 6 cos B cos

+€2A7 [ Ac ' ri? 8sinOsina, . (2.1
b= -eAl (b - Ac7'rg' sin Ocosa) + €A™' usin? @ cos 8 (asin? a

—bsinacosa+ Ac”'ry' sin@sina) + eAc' ry! cos 6

X (a + Ac7'ry' sin@ssin a) + ec”' usin? O cos B cosa (acosa + bsina)

-ezlc"r‘25c059(a + 2Ac7!r;' sin Bsin a) + €2Ac72rg' Iy sinBcosa

- -;-e’c" Lu(l + sin? 8) sin@cosa + -12-&4";"6' sin3 @ sina(asina

~bcosa + Ac™'ry' sin8)? - €2Ac™' A~ urg? 8sin3 Bcos Bsina
-€2A' [ Ac' rz? 8sinB cos a, - (322)
5 = —gc”! Liry - €2c7'1,6, 323
MP cosy+Msiny = -l A™ [a+ Ac™'rg! sinOsin al
+€2A L Ac' rg? SsinBsina (33

MO siny- M3 cosy = -l A" [b-Ac'r; 5! sinfcosa]

-€2A7 | Ac ' rg? 8sinBcosa (332

The other four equations are the same as in (12).
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Applying the last described average method to the system of equations (33), the
components of vector-functions A; and B, which are defined by the formula (17) take
the form :

AW = —A-llga - Ac7'r'bcos@ - -%—c"ubsin2 fcos@

+ %A ibsin? 0.cos 6, (34.1)

AP = —ALb+ Acr5'acos 6 + Ql-c"pasinzecose
+ %A"uasinlﬂcosﬂ, ) (342)
AY = L, AY = A, A® = o, (343)
B" = cA7'8 - Ac'r;' cos@, (344)
B? = (c-A)A'S. (345)
The components ul“) and uI(S) of vector-function u, = {u{')}. (=12 ... L))

take the form :

u® = — 7 Ary' cosecO(acos a + bsina) (35.1)
ul‘” = ¢'Ar;' (asina - beos a) (35.2)

The expressions of M? cosy+ MJ siny and M? sin y ~ MJ cos 7, as obtained from
eqs. (33) are independent of the variable y and right hand side of these equations contain
only one fast variable c. This fact is maintained in [17] as enough condition for possibility
of averaging the equations of motion only by the angle of nutation.

Using formula (19), the components of vector-function A {x*), take the form :
AV = ¢! r‘(;'b[)lra' 8cos + %—A"urg'l sin*@ - %c"uz sin® Ocos? 8
X (Ac'-1) - -i—c'zAraz(llz cos? @ — A%sin? @ + 2r,A psin? @ cos? 0)
+ %uc" ’6'(’0“ sin® @ cos2 @ + 34 sin? @ cos? @ — Asin? 9)
- %/12,4 c2rz?cos? 0 + %;U'Lc" r3' sin? 6 cos? 0] - % Lac?r?
x[2Acos @ + roHsin? 6 cos 6], 36.1)
AP = crila [—lrg'&cos 0+ %A"uro"ﬂ. sin* 6 + -&c“y2 sin* Bcos? 6
X (Ac™ =1) ~ % c?Ar2(A2cos? 6 - A2sin? 6 + 2r,Apsin? Bcos? 6)
+ %uc" rg'(ro[.t sin* @ cos? @ + 3Asin? 6 cos? 6 — A sin* 9)
+ %A’Ac‘z rstcos? @ + -liy).c“ r3!sin? @ cos? 9] - ai-l,bc'2 3

% [24 cos 6 + rypsin? @ cos 8], (36.2)

TIRc&
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AP = -c'1,8, (36.3)
AY = —Ac' 25+ AX e r3 cos B, (36.4)
AP = Al c2r?sing (36.5)

Hence, the solution of the averaged system equations (20) in the first approximation
for slow and fast variables takes the form :

a" = exp (€A™' I,1) (a® cos it — bOsin1pr), (37.1)

b = exp (~€A™'1 1) (b° cos nt + a®sinnr), (312)

oM = —gc'ryt, (37.3)

v = edcT' g+ v, (37.4)

o = g, - (315)

a = cA”'rgr - €Ac' ry! cos Byt - %EZA"IJ rot? + 9. (37.6)

¥ = nyt - %ez (c-A)A ¢y, (317

1 o ’

where n= E[elc"ra' cos - 5c"usin’0cos€] _5[7 HA-"* sin? Bcosﬁ] .

and the quantities a, b°, ny arc determined in accordance with (6); .8y, @, are constants
and equal to the initial values of the corresponding angles at t = 0.

On the basis of a given formulac (29), we can construct the components of the
functions xdr) and yt) for the variables y, 0 to take the form :
V(D) = vy +e[Aerg't = ¢ rgl AcosecBexp (—eA' I 1)

x [a®cos(a'? - nr) + B0sin(a™ - nr)] + €2(-Ac ! rg? 8V

+ AR 1 cosh)], ) @80

6,(1) = 8, + ec™'rg'Ayexp (€A™ 1;r) [a® sin(nt - &)
+ b0 cos(nt - a))]. (38.2)

Thus, we have constructed the solution of the second approximation system for the
precession and nutation angles. The above equations are solved numerically. Figure !
shows the behaviour of y{r) at given initial y, = /4 for different values of magnflic
field. From this figure, it is observed that the rotation of y is steady at the beginning
for a short time and hence will be oscillatory. The intervals of steady rotation and
oscillations are increasing with increasing of time. Also, we note that the behaviour of wd)
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at various values of magnetic field is similar but there exist dilatation in time Figure 2
shows the behaviour of angle 81) atinitial 6, = /4 and for different values of magnetic

v (1)

D-08 -
D=06

0-02

ul_

n‘l =

Figure 1. Shows the behaviour of w7) for a given imtial value g = 774 and for differcnt values
of magnetic field (e =001, D=-02.06.08)

lield, we note that all the motions are oscillatory. Also, we note that the period of time is
Increasing with the decrease of the magnetic ficld.

6. The case of perturbed moments producing from a cavity filled with high
viscous fluid

Let us consider perturbed rotational motion of a symmetrical rigid body containing a cavity
filled with incompressible viscous fluid. The components of the vector of perturbing
Mmoment in this case, take the form [18] :

M, = pAic' Py [c2 (A-c)pr* + Kc(c — A)rsinOsin ¢

+ KAcpcos8 |, (39.1
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M, = pA2c'PvI[c? (A - c)qr? + Kc(c - A)rsin B cos ¢

+KAcqcos@ | (392)
M, = pA2c Pyl [Ac(c- A) (p* +q2)r
-KAcsinO(psin¢g + qcos¢)] (39.3)

Here, p and v are the density and the kincmatic viscosity of the fluid. The constant
symmetric tensor P depends only on the form and dimensions of the cavity. Since in the

0D (1)

—0D=02
—D=06
— D=15§

[}

bl‘

Figure 2. Shows the behaviour of &) for a given initial value 6y = x/4 and for different valucs
of magnetic field (¢ =0.01, D=0.2,0.38, 1.5).

considerable case of heigh viscous fluid, Reynold’s number is small, thus we can replace
v-! by the small parameter €. The first three equations of (12) in this case, take the form :

a = €A”pPc(A-c)r*a - epA~'sin? Ocos B[asin acosa — b cos? @
+Ac'rg'sin@cos a] - €Ac7'ry! cos O(b - Aclrtsin Ocosa)

—epc sin? Bcos @sin @ (acos & + bsin @) + 262473 6ry Pp(A-c)a
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- &2upPryA~3(c - A)sin? 8 cos 0 (asin? @ - bsina cosa

+Ac7'rg! sin@sina) + €2 Ac' rg2 ScosB(b - 2 Ac! ro' sin 6 cosa)

- %ezA" ry! sin® 8 cos a(asin @ - beosa + Ac7! ;! sin 9)2

+€2Ac' A ur?8sin? B cosBcosa (40.1)
b = €A pPc(A-c)rg?b - euA™'sin? 9(:058[asin2 a - bsinacosa

+4c7'ry!sin @sin a] +€Ac!rg coaG(b + Actrg! sin Bsin a)

+€pc sin? @cosBcosa(acosa+bsina) + 26247 §ry Pp(A - c)b

+&2pPryA=3(c - A)sin? 6 cos O (asinacos & - beos?

+Ac7'rg' sinBcosa) - €2Ac' rg? ScosB(a+ 2Ac ryt sinOsina)

+ ;e c'A prg? & sin? Osma(asma beosa+ Ac™'ry! smO)z

- €A~ 8¢ Ar;? sin? B cosOsina (40.2)

5=0 (40.3)
The other four equations will be the same as in (12).

Uulizing the last described average method for the system of eqs. (40), the

components of vector-functions A; and B, which are defined by the formula (17), take the
form .

AV = A3 pPc(A-c)ria - Ac'r;'beos - ;—bc"u sin2 @ cos @

+ > bA- sin? 6 cos 6, (L)
A = A3pPc(A-c)rib + Ac'ry'acos + %ac"psinz B cosb

+ %uaA" sin2 @ cos 6, 41.2)
Alm =0, (41.3)
A® = Aetrg, @1.4)
A9 = o, (41.5)
B" = cA-'§- Ac'r o cos6, (41.6)
B® = (c-A)A™'S. @17
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The components uf" and u,‘s' of vector-function u, = {u,(”}. (i=1,2,..,5) take the
form :
u® = - Ac'r;' cosecO(acos @ + bsin ) 421
u® = Ac" o (asina - beos ) “22)

Here, the expressions for M,“” cosy+ Méo) sin yand M,(m siny - M;o) cos Y,
depend only on one fast variable ¢, which allow averaging the equations of motion only by
the angle of nutation 6, as mentioned above.

The componeme of vector-function A4x"), using formula (19), take the form :

A;') pPA ‘ary(A- c)[46r + usin? 8cosB] + b 'r; {lb'ro coqﬂ

A pAr; sin® @ - —r "u?sin® @ cos? @(c'A-1)

Nl—' N—

c?r; A(l cos? 6 — A2sin? 0 + 2ryApsin? 6 cos? 9)
+ %I»‘(""(]' x (rop sin® 6 cos? @ + 34 sin? O cos? § — Asin* 8)
_ %,12,4('2 rg2cos? 6 + %;M.c"r(;' sin? @ cos? 9}. (43.1)

AD = %pPA“‘bro(A —c)[4& + psin? Bcos 9] - ac'ry! {lﬁr&' cos@

+ %A"yr(;‘ sin 0 - %c-';ﬂ sin* 8 cos? B(c-1A 1)

- —;— 2r;?A (/12 cos? @ — A2sin? 6 + 2ryApsin? 0 cos? 9)

- —pc Iry! ( roisin® @cos? @ + 34 sin? 6 cos? @ - Asin® 0)

1

- %ler‘z re2cos? 6 + %ﬂlc" ry! sin? 6 cos? 6}. 432
A;}) = 0‘ . (433)
A = - A8c7'rg? + AA%crg cos, @34
A® = 0, (435)

The averaged system equations of the first approximation (20) are determined, for slow and
fast variables to take the form :

a® = exp(eA7pPc(A-c)r3t)(a® cosnt - b0 sinnr), @4
0}
&M = 5O, (443

exp(EA=*pPc(A - c)rat)(b° cos it + a%sin nt), (442
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v = edclri't + v, (44.9)
o0 = 6, (44.5)
a® = cAlrgt ~ €Ac7ry! cos @yt - -;-EZA"tZ + ¢, (44.6)
M = nyt - lzez(c—A)A"c"tZ 44.7)

= -l | 3 2
where n= e[lc 'r0 coseo + 3¢ '#smz gocosgo _ ZM-I sin? 90 cosao]

The quantities a% bY, ngy are determined in accordance with (6); y,, &), @, —are constants
and cqual to the initial values of the corresponding angles.

On the basis of the given formulae, we can construct the components of the function
A} lor the variables Y, O to take the form :

v =y, + E{/lc"r(;'t - c'rg'A cosecB exp(eA—*pPc(A - c)rdt)
x {a° cos(a™ - nt) + bOsin(a( - nt)} + e’(-lc"r(;’ 8
+ AL cos B ), (45.1)

6r(1) = 6, + Ec"rg'Acxp(eA‘%Pc(A-c)rgr){a" sin(a! - nt)

- b cos(ah - m)}. (45.2)

D=15

8 (1) D=08
D=02

x

e

X

T

Figure 3. Shows the behaviour of 8(/) for a given initial valuc 6 = /4 and for different valucs
of magnetic field (¢ =0.001, D=0.2,08, 1.5).
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Now, we will solve the above equations numerically to show the dependence of 6, and v
on the value of magnetic field with time. From Figure 3 it is noticed that 6, (1) is ,
periodic function with time and it is increasing with the increase of the magnetic fielq
From Figure 4 we nolice that y(r) increases at decreasing of magnetic field with time.

v (1) D202 =
D=08 iam—

T De 15

o|n

Figure 4. Shows the behaviour of 1) for a given initial value yg = 774 and for different values
of magnetic field (¢ =0.01, D=0.2,0.8, 1.5)

The variation of y, has no regularity and the effect of magnetic ficld is very small at large
time and this effect is negligible at small time.
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