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Abstract : An analytical expression for tunnel current density across a double barrier has 
been obtained under non-resonant conditions. The derivation is based on the ideas of quantum 
measurement There is a good agreement with observed results in the nature of current-voltage 
and differential conductivity-voltage characteristics.
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1 . Introduction

Tunnelling across a double barrier was studied experimentally by Chang ei al [1] in 
which they had observed resonant tunnelling under suitable conditions. Esaki and his 
coworkers [2-4] later applied the conventional theoretical models to explain their 
observations in such devices which find their application in superlattices. In recent 
times, Roy et al [5,6] have applied the ideas of quantum measurement model to study 
this problem.

Double barrier tunnelling continues to evince interest in workers even now. 
Vanhoof and his coworkers [7] have studied spatially indirect transitions due to coupling 
between hole accumulation layer and a quantum well in resonant tunnelling diodes. 
Kuznesov et al [8] have studied the effect of electron-electron interactions on the resonant 
tunnelling spectroscopy of the localised states in a barrier. Silvestrini et al [9] have 
studied resonant macroscopic quantum tunnelling in SQUID system. Alonzo and his
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coworkers 110] have presented a tunnelling spectroscopy of resonant interband tunnelling 
structures. Song [11] has presented a transition layer model and applied it to resonant 
tunnelling in hetero-structures.

In the present study, the quantum measurement model of Roy and his 
coworkers [5,6J has been used to derive an analytical expression for tunnel current 
density across a double barrier. Since the earlier workers had observed negative 
differential conductivity (n.d.c.) under non-resonanl conditions in such systems, the 
main purpose of this work was to find a theoretical expression which could lead to 
n.d.c. effect.

The quantum measurement model differs from the conventional model 
fundamentally The conventional model seems to rest upon the idea that the electron 
energy must remain unaltered throughout the tunnelling process. But tunnelling of particles 
is not a continually observable process. The tunnelling particle can be reckoned only after 
a definite time r measured from the instant of incidence of the particle upon the'barrier 
because of a finite time becoming necessary for potential energy estimation as required by 
Heisenberg’s uncertainty relation. The electron is then able to recover its wave or particle 
shape that it once lost while making tunnelling transition. In other words, we may regard 
tunnelling as a process ot quantum measurement being carried out by the barrier. Both 
energy and time being conjugate variables, simultaneous and accurate estimation of them is 
not possible because of Heisenberg’s uncertainty relations. So, if a time r elapses in 
reckoning the tunnelling process, the electron energy at the conclusion of the process must 
be uncertain by f i / r. The electron energy is expected to undergo a fluctuation of (V{) -  E) 
energy around its original value E where V0 represents the height of the barrier. This idea of 
quantum measurement has been successfully applied by Roy and other workers [12,13) to 
different tunnel devices.

2. Tunnelling across a double barrier

The electronic wave functions in various regions of a double barrier system (Figure 1) 
can be written as

i//,(*) = a, etk]X + b{ e~tk'x; -°o < jr < x, 0)

if/2(x) = a2e 'xi (x' x' } + b2e*iu"Ti); jr, <* <Jt2 (2)

y {̂x) = + b̂ e‘,k'ix~X2)\ x2 <x< (3)

\j/A{x) = + bAex*{i~*']; x̂  <x<xA (4)

Jt4 <*<» (5)

where ,2 ,2 12 2m*E
k? = kl = kt = - h Y (6)

and
2 m‘ (V0 -E)

x l = x l =  J (7)
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Here m* is the effective mass of the electron in the double barrier system and V0 is the 
barrier height.

Figure 1. Double barrier system

Matching the wave functions and their first derivatives at different boundaries, one 
finally obtains an expression for the tunnelling probability [14,15] as

Z = V k W x U i

° 1  ( * 2  + * , J ) U l  + * 3 ) ( * 4  +  * ? ) ( * 4  + * ? ) l  * 1  I 2

( 8 )
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Ii is found that a resonance is obtained i.e. Z= 1 when the following conditions are satisfied 

simultaneously

0) *, = X 7 = * j = Z 4 =

n
which leads to = 0 < = 04 -  Ps -  *

(ii) X 2 <02 = X * a)A

and (lii) k (̂0  ̂ = n̂ + jj7C wheren = 0, I, 2 . . . .

3. Tunnel current density

Regions 2 and 4 of Figure I are barriers whereas region 3 is a potential well. The current in 
this system Hows by the quantum measurement mechanism through regions 2 and 4 an<4 by 
conventional mechanism through region 3. The principle of continuity suggests that fhe 
current densities through all these regions must be the same.

The one-electron tunnel current density through region 4, generated by quantum 
measurement process, is given by [ 13]

s in  to ,  r  , v
m i

q. ' lhXd  i t  •
where V0I = ----- | u4 e -7*‘a ‘ . ( 12)

m

which on lurther simplification leads to

•'«, * (* 5 + ^ ) z l« , I2- 03)
X 4

~^ r  2m*w/ r ------- ----- , r =  — — the tunnelling time.
h hxl

When a group of electrons having a random phase difference amongst themselves is 
incident upon the double barrier system, the differential tunnel current density is given by 
[12,131

dJ(E) = p l ( E ) f , ( E ) d E ^
sin to. r

7 ~ + V  Sin K r+61) (14)

where p/ (E)ft (E) dE is the density of the wave group at the incident end 

The minimum phase difference at ihe transmitted end is
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where € r is the difference in consecutive energy levels at that end. Thus, the summation of 
(14) can be converted into integration as

dJ(E) = p l (E) f l (E)dE f - ^ - 1
U r

r  s in  CO, X .
f — —J Cl), T '

+J<n Jsin(<u|rT+0)rf(<BJi r)

which finally leads to (12,131

n h
dJ(E) ^  I — “ \Jq\ P, (E)f,  (E)dE.

But e t can be expressed in terms of the density of slates pr as

—  = p r (£)[l - f r (E)]n,

(16)

(17)

where i2 is the volume of the electrode at the transmitted end. Substituting (17) in (16), 
we gel

dJ{E) = - f r(E)]p, (E)pr (E)JE.

For absolute zero temperature, f ( (E)[l -  f  r (E)] = 1 and hence

dJ(E) = E M L j ^ Pi{E)Pr{E)dE

(18)

(19)

Substituting for J0] from (13) and putting

T =
2m* = h

H i  = Vo ~ E
, one finally obtains

dJ(E) =
2 29/2 nLlqin**!2 1 a, |2 (V̂0 — E)5?2 dE

JC, | 5

After certain simplifications, it is found that

| K} |2 = 4 sin2 (202 -  k^co^ I ?4*?"2 t 

where x 2 a ) 2 =

Thus, one gets

£ 5(Vn - E ) ^ 1 e~KiV» 'E)',:
dJ{E) = P ------- --------------------- ------ dE,

sin2(202 -  )

(20)

(21)

(22)
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where
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2 19/2 JtQqm**12 | a { |2
P =

h r' V 1n v 0

and K ^
4V2m‘l/::w,

(23)

The lunne! current density can be expressed as

H} {VU - £ )V 2 -£')'/= dE
J(E (24)

sin: (20: -  k^0)?)

where ^ is the applied bias. fcq. (24) has been obtained for non-resonant conditions.

4. Results and conclusions

The integration was done numerically with the help of a computer The ciirrcnt- 
vnliage characteristics lor AIGaAS-GaAS-AIGaAS as double barrier system, arc shi^wn in

FiRure 2. Currcm-volt^e ihunictensucs

g s 2 and 3 tor different ranges of biases. Negative resistance regions arc 
ly seen in these plots. Figure 4 shows the differential conductivity-voltage

characteristics. One finds a good agreement so fai as the nature of these characteristics 
are concerned.
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fcure 3. C.iirrcnt-voltage characteristics.

Figure 4. differential conductivity-voltage charactenstics
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