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ACOUSTIC FREE INDUCTION IN A QUADRUPOLAR
SPIN SYSTEM IN A CUBIC CRYSTAL

8. K. SINHA

SAmA INsTITUTE OF NUCLEAR l}’m{sms Carcorra-9
(Reoeived May 30, 1966 ; Reaubm?md February 2, 1967)

ABSTRACT. The bulk magnetisation vectorsiexcited by an acoustic pulse at magnetic
reasonance has been calculated in & cubic crystal, w)jere each lattice site is assumed to be occu-

piod by a nucleus of spin 1 (one). The Hamiltoniag has been cast in & general form, for any

—>—>—> &
interaction of the form (Z. D.I), and calculation hal been dono by setting up the Rabi-Bloch

matrices, and neglecting, for simplicity, the spin-spin interactions. It is found that with a longi-
tudinal excitation in ono of tho cubic axes, the tranmsverse components of the averago maocros-

copic moment vectors <Mz> gy and <My> 4, are practically zero, being contributed by
nuclei located at thin layers (of width equal to half wavolength of the acoustic waves) at tho
two ends of the sample. The results are identical with those of Kessol (Kessel, 1962) who
anslysed the above situation by a first order time-dependent perturbation method.

INTRODUCTION

The absorption of acoustic energy at magnetic reasonance in solids, when
the reasonance is cxcited by an impressed acoustic field [Kastler (19562), Altshulen
(1956), Jacobsen and Stevens (1963)], has been demonstrated both in pulsed
[Jacobsen, Shiren and Tucker (1959), Tucker (1961), Shiren (1962), and Guermeur,
Joffrin, Levelut and Penne (1964)] and CW [Proctor and Tantilla (1956), Proctor
and Robinson (1956), Menes an..Bolef (1958), Bolef and Menes (1959), and Bolef,
de Klerk and Gosser (1962)] experiments. In such experiments one particular
lattice mode is strongly excited, and the energy in tha lattice mode is transmitted
to the spin system via the spin-phonon interaction. There must be some relaxa-
tion mechanism (other than the so-called direct process) that will maintain the
Boltzman population excess in the spin system. And since the excitation is strong,
effectively equalising the upward and the downward transition probabilities of
o spin, there will be a net absorption of cnergy from the excited lattice mode.
The amount of the absorption is a measure of the direct spin-phonon interaction
that couples the particular lattice mode with the magnetic spin system. This
fact, together with the absence of “penetration depth” cffect in metals leads to
soveral interesting possibilities that can be explored by acoustic magnetic reso-
nance experiments. Already, quite a few experiments have been done yielding
important results [Bolef and Menes (1961), Shiren (1962), and Guermeur, Joffrin,
Levelut and Peane (1965)]
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However, there has not been any induction experiment in this field, so far.
The possibility of such an expeirment, using pulse technique, was analysed by
Kessel (1962) a few years back. Although the method used in the ana-
lysis is sufficient for tackling the situation with simplifying assumptions, i.c.
the neglect of spin-spin interaction, it is felt that a density matrix treatment of
the phenomenon will be more convenient in more general causes*. We describe
such a treatment which is similar to Lowe and Norberg’s (1957) analysis of
free induction in clectromagnetically excited NMR. In our analysis we shall
consider a cubic crystal, having lattice sites occupied by nuclei of spin 1 (one).
The spin system will thus be coupled to the excited lattice mode by nuclear
quadrupole interaction.

ACOUSTICALLY INDUCED NUCLEAR MAGNETIC
INDUCTION IN A CUBIC CRYSTAL
(A) Spin-phonon interaction Hamiltonian in a quadrupolar spin system
in an acoustically excited cubic crystal : Let us write the interaction term in
the form,

Y
— > —>
] = — #(I. D. I) v (1)
—

where?is the nuclear spin vector, and Bis a tensor of rank two in three dimension,
containing the lattice coordinates. In a rectangular coordinate system (X, Y, Z),
where Z is the axis of quantisation of the spin system (that is, the direction of
the D.C. magnetic ficld), it will be seen that the tensor, D, is symmetric for the
particular spin-lattice system. Expanding (1), we can thus write :

B’ = ~H{i(Dst Dy o+ H2Dys+ Doa— D) LA+
+*(Dm""Dﬂy)(I+s+I—2)+Du(ImIz+IzIac)+
+ DI 1+ LI+ Doy LI, +1,1,)) )
Dropping the terms that couple states with Am = 0, we have :

H = —k [%(Dcm— yy)(I+8+I~-a)+Du(ImIZ+I¢Iw)+Dyz(IyI;+Ieg)+
+D LI, +1,1,) .

*We may note that the density-matrix method is effictively equivalent to the ordinary
time-dependent perturbation method, upto certain degree of approximation. However,
the former is different from the latter when the actual calculation is concerned. In the time-
dependent perturbation method, one expands the time-dependent wave function in a completo
set of time-independent basis functions, and solves for the expansion coefficients am, an etc.
from a set of coupled differential equations. One popular way of doing this is to reduce these
differential equations to a set of coupled algebraic equations by making use of Laplace Trans-
forms. In general, it is difficult to obtain these transforms. However, in density-matrix
method one avoids this difficulty by ealculating the products® (a am) which are more directly
useful for calculating expectation values.
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The components of D are functions of the local strain at the nuclear sites,
and one can expand D in terms of the strain components ej; in a Taylors series.
Thus introducing the spin-phonon coupling constant @, we can write (in Voigt
notation) :

Dy = D,“”-l—% Gjies+higher order terms. ¢, ;j=1,2,3,...,6

N

where

P

Gy = —‘?— (nge‘_,o . (@)

In order to define G uniquely, the (4); ;is written in the coordinate system
(Xo Yoo Z,) that coincides with the cqeﬁllographxc axes. This also enables
one to simplify the expansion (4) by using Qymmotry arguments. For example,
in cubic symmetry, we have the expansion:

¢ :
Dxoxy = 21 (2exox,—eYoy,—E2y%,), Dayy, = GQyqexoyo
2
()
Dyoyo = "2 (2ey,yo—ez5z,—exoXo), Dy,z, = Gyeeyozo
2
G
Dzyzy = 21—1 (2ezy2, —e€x0xe —€YoY,), D2z, = Gy4e202, ee (D)

The components of D, used in the Hamiltonian (3) can then be obtained by
using the following usual transformation relations :

Dy= Z Ay “iuDvll-
(vu)

Dy; = (}v:m(a‘" aju+04y @in)Dyu )
where

(i) = (@), (Yo Yo)» (20%0), (%o¥o):(¥o%0)> and (%e20)-
and the coefficients a are given in table I.

TABLE I

Transformation coefficients. ‘ay,’, for two Cartesian coordinate
systems, ¢ and v, having the same origin and their mutual orienta-
tion being specified by the Eulerian angles 6, ¢ and v

R 1 4
b Zo Yo 20

@ cos Y ¢os ¢ cos O-+-8in ¥ sin @ 008 ¥ sin ¢ cos f—sin y cos ¢ cos ¥ sin 6
Yy sin ¥ cos ¢ cos §—cos Yeing  sin ¥ sin @ cos 0+cosyrcos g sin Y sin 0
2 —ocos ¢ sin @ —~gin ¢ sin 6 cos 8




456 S. K. Sinha

We will now consider a special case. Let us assume that a longittudinal
acoustic wave of circular frequency » has been impressed in the crystal with the

propagation vector in the crystallographic (001) direction. We also assume that
the laboratory Y-dircetion and tho crystal (010) directions coincide, and the crystal

has been rotated about the Y-axis such that the propagation vector_l: (still in the
crystal (001) direction) makes an angle 6 with tho D.C. magnetic field, ie. the Z.
direetion. This longitudinal wave will generate a standing wave pattern, and an
axially symmetric strain field (time-dependent) in the crystal, the axis of symmetry

-
being in the direction of k. Let us also choose the laboratory X —axis such that

—
it coincides with the projection of K on the X—Y plane. In such a case, we see

that the only strain component is ez.,, where the direction z, is the crystal (001)
and thus from (5), we get :

Drgzy = Gy 252,
Q
Dxoxy = Dyyy, = — —21-1 €z,z, v (7

Dxyyy = Dyozo = Dzoxo = 0

Transforming (7) into the (XY Z) system (using (6), and the table I, with ¢ = ¢
=0),

Dy, = %‘ ez,%(3 cos? 0—1), D, = ° G ezyz,8in 0 cos 0

3
2

Dcu = %1_ €2yz¢ (3 sin? 0-——1), Dmg: Dyz =0

_Gu

2

I

D, €202, e (8)

The Hamiltonian (3) ‘then becomes :

H = -—h[gGuezoz, (L31.%) sind 043 Gy ezye(1,1,+1,1,) sin 26 ] ()

The above formulation holds for any interaction of the form (1). Nuclear
quadrupolar interaction is also of this form and the Hamiltonian (9) is applicalbe

to this case. The constants Gy, eto. in (9) can be measured by suitable experi-
ments, , ,
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Howover, to obtain tho theoretical expression for @y, one has to consider
the particular interaction, in this case nuclear quadrupolar interaction, explicitly.

Writing

- -
—> -
H = —K(@Q) : (VE)

- -

- “ -
where @ is the nuclear quadrupole moment tensor, and (yE), the clectric field gra-
dient tensor at the nuclear site, one obtaigs in this special case.

- 0 :
Gll == Aem(q)]ezozo__) 0 3, oo (10)
where
= 9
2I(2I-1) ”
and eq = ? e)(3 cont 6;—1)r,~3

@ is the scalar quadrupole moment of the nucleus, and ‘eq’ is the axial electric
ficld gradient with the symmetry axis along the zj,-axis. In the definition of

‘eq’, j refers to the jth. charge-point external to the nucleus, and r; is tho veetor
joining this charge-point with the origin (the center of the nucleus), and 6,

-
is the angle betwecn 7; and the symmetry axis.

(b) Total Hamiltonian for the spin-lattice system : The total Hamil-
tonian can thus be written as

H = Hy+H,+H,+H'(t) v (1D)
H, is the Zeeman Hamiltonian for the spin system, H, dcscribes the magnetic
dipole interaction between the spins, and H, stands for all other terms in the total
Hamiltonian for the statistic spinlattice system. #1'(t) is given by the expression
(9). If we neglect thoso parts of H; and H, that couples states with Am # 0,
we are left with the following Hamiltonian :

H = H,+H'(t) o (12)
where
Hy= —kZ olz,
n
and
H'(t) = —#Z[20,V(Txpl 2y 12, Iz,)+ 0, P (L2 + I2-,)] cO8 3}
" .

with

(l)o = 'yHo

W) = 3 @, ez,2,(0) sin 26
L § Gu ez2(0) . (13)
0® = 3 Gy 62,%(0) sin 20
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It has been assumed that ez, = ex,2,(0) cos wt, and y is the gyromagnetio ratio
for the nucleus. We shall be concerned with the cases where H'(t) can be treated
as a small perturbation.

(C) Rabi-Bloch matrices for the system : The Schrodinger equation
is:

ik ’a% Yit) = HEyw(t) o (14)

If we write (1) = exp(— %H(O) ) ¥'(t), the equation (14) transforms into

exp (;if H(O)) H'(t) exp (—-’% H(O)) Yt) = ik %g%”'(‘) e (18)

We now assume that the acoustic wave is impressed only for a duration ¢,, in the
form of a square pulse of carrier frequency w, and that ¢, is sufficiently small so
that those terms in H, and H, which do not commute with H'(f) or H(0)
have expectation values much less than 1 when multiplied by ¢,/k. Their cffect
upon H'(t) may then be ignored. Thus retaining only the terms H, in H(0) the
equation (15) is approximated as :

oxp (—iwgE Tz H'(t) oxp (i0ytS Iz () = ik b_‘:. ). .. (16)

Using the transformation properties of the spin operators under the rotation about
the Z-axis, the equation (16) reduces to

iL(t) ¥e) = 5 V) . (17)
where

L(t) = 3 [20,Y{(Ixal 2+ T2,] x5) cO80et 4 (Iynlen =124l y,) sin ot}

420, P{(Lxp2—Ty,2) 008 2wgt+(Lxglys+Tyulx,) 8in 2000t}] 008 08 ... (18)
The solution of (17) is

tn -
¥(ta) =exp { i | Ly o e (19)
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which reduces to (neglecting small terms containing ¢

)

Y(to) = Ro=w,(0), when o = W,

and '/’(tm) = Rﬁ’=2a)o?/f(0), when o = 2(,)0 (20)

where

"

Ro=w, = exp ( i6, % Iz,.) expg{i E OyuTyalsa+ ) |
n n

-

Romtey = oxp (8,2 1o, ) 430 {§ 3 0ua(Tx— Tt

B e ity A

0, = o, 0, = 0N, and 0 =w®i,. (2D

In a representation in which 7, is diagonal, the matrices Ro -0, and Ro— 20,
have been evaluated. The results for spin I = 1 are given in tables II and I11.

(D) Computation of <M ,>g,, <My>4, and <M,>q,: Weknow that if we
assumo that the solution of the time-dependent Schrodinger equation :

|
ik 5 VUa(t) = Hu(@)Pa(t)

is of the form

Yalt) = B,(t) ¥a(0)

then
<Ixy> = [ Yt (0)Bp*()Ix,R(t) Ya(0)dr (22)
Expanding
an(o) = pz ap.(O)up,.

we have

<Ixy> = Trace {p,(0)R,*(t)Ix,R,(t)} (23)
where

<u9nlpn(0)|“}’n> = ap,*(0) ag.(0) .. (24)

For a system of N spins, if we neglect the mutual interactions between the spins,
we obtain

12,..N - = -
o = exp (QI%)R”'*")’,?'('I:I,;,, +31ya)+ klz,)R,,
<M>e =7 7 Traco { Trace {exp(lam)} )

n

where exp ({Iz,)/Trace {exp ({Iz,)} has been taken as equal to p,(0). ¢ =7k
Hy[kT, T being the temperature of the sample and k, the Boltzman factor. The spin
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gystem is here assumed to be at thermal equilibrium before the application of the

acoustic pulse.
We the R matrices as given in tables II and III, and using the expression

(25) we get the following expressions for the mduced bulk nuclear magnetxsatlon
at the end of the acoustic pulse.

TABLE 11

The matrix, R, for spin / =1, in a represcntation in which I,
is diagonal. The elements are <q|K|p>, and S,0, = the sign
of the angle @,.

N ; -
1 exp(i6,)(1+4cos 6,)/2 Syba(i exp (30,) sin 6,)[+/2 oxp(16,)(1—cos 6,)/2
0 S,0,(isin 6;)/4/2 cos 6, Sy Oa(—1 sin 63)/+/2
-1 exp(16;)(1—cos 6,)/2 Sy Ox(—2 oxp(—16,) sin 0;)/4/2 exp(—16,)(1+cos 05)/2
TABLE 1II

The matrix R .z, for spin I =1, in a representation in which
I, is diagonal. The elements are <g|R|p>, and 8,0, = the sign
of the angle ;.

\\ p
1 0 -1
N
1 exp(26;) cos O, 0 8g 05(¢ exp(46,) sin ;)
0 0 1 0

-1 Sg 0,(1: exp(-—i 0,) sin 0,) 0 exp(-—t'ﬂ,) cos 03
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C&Be I. W= (.d“
heol 12,...N
_ cosh {— . .
<M, >g =Yk TT2 cosh ¢ sin 6, ; Sy(02,) sin 262,
he—1 12,8
cosh {— .
= il M 0
<M,>q, = vh 19 ocsh ¢ cos &y Z 8,4(02,) sin 262,
inh ¢ 1,2,.. %
si ;
= — 3 icos 02, 26
<Mi>a, = 7R 1+2cosh ¢ 08 (26)
Case II. o= 2w,
<Mw>a” = 0
<M”>av =0
ah 12,..,N
2 si
= yi 28mh§ 2 : 63, 27
<M,>,, ykl+2 cosh € &- cos 203 (27)

After the withdrawal of the pulse, the time-dependence of <M,>, and
<My>,will be given as usual by the Fourier transform of the steady NMR
line shape.

Refering to (26), and from the definitions of 6, as given in (21) and (13), we
sec that

T 8,(62,) sin 202, = 8,{a e z,(0)} sin {_;‘ ewzozo(())}, . (28)
n n

where

a = {3} Gy, sin 26}¢, .

ez22,(0), for a standing wave pattern where end surfaces of the sample are
at antinodes, may be written as

ez 20(0) = 2K A, sin KZ,,.

and hence we see from (28) that the main contribution to the summation will
come from the two layers at the ends of the sample, layers having a thickness
“l’ given by

kl=m/2 or | = A[4.

4As an example, for experiment at 10 me/s, [’= 10-2 cm. and an insignificantly
small number of nuclei are taking effective part in contributing to <M,>

and <M,>,,.
10
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