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ABSTRACT. Tho bulk magnetisation vectora.'^exoited by an acoustic pulse at magnetic 
n^asonanoo has been calculated in a cubic crystal, wl|er0 each lattice site is assiuned to be occu
pied by a nucleus of spin 1 (one). The Hamiltoniail has been cast in a general form, for any
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interaction of the form (/. D J), and calculation h a | been done by setting up the Kabi-Blooh 
matrices, and neglecting, for simplicity, tho spin-spiij interactions. I t is found that with a longi
tudinal excitation in one of tho cubic axes, the transverse components of tho average macros- 
(!opic moment vectors < M x>  or and <M y>  or» Are practically zero, being contributed by 
nufloi located at thin layers (of width equal to half wavelength of the acoustic waves) at tho 
two ends of the sample. The results are identical with those of Kessol (Kessel, 1962) who 
analysed the above situation by a first order time-dependent perturbation method.

I N T R O D U C T I O N
The absorption of acoustic energy at magnetic reasonance in solids, when 

the reasonance is excited by an impressed acoustic field [Kastler (1952), Altshulen 
(1956), Jacobsen and Stevens (1963)J, has been demonstrated both in pulsed 
[Jacobsen, Shiren and Tucker (1959), Tucker (1961), Shiren (1962), and Guermeur, 
Joffrin, Levelut and Penne (1964)] and CW [Proctor and TantiUa (1956), Proctor 
and Robinson (1966), Menes an..Bolef (1958), Bolef and Menes (1969), and Bolcf, 
dc Klerk and Gosser (1962)] experiments. In  such experiments one particular 
lattice mode is strongly excited, and the energy in tha lattice mode is transmitted 
to tlie spin system via the spin-phonon interaction. There must be some relaxa
tion mechanism (other than the so-called direct process) that will maintain the 
Boltzman population excess in the spin system. And since tho excitation is strong, 
effectively equalising the upward and the downward transition probabilities of 
a spin, there will be a not absorption of energy from the excited lattice mode. 
The amount of the absorption is a measure of the direct spin-phonon interaction 
that couples the particular lattice mode with the magnetic spin system. This 
fact, together with the absence of “penetration depth” effect in metals leads to 
several interesting possibilities that can be explored by acoustic magnetic reso
nance experiments. Already, quite a few experiments have been done yielding 
important results [Bolef and Monos (1961), Shiren (1962), and Guermeur, Joffrin, 
Levelut and Peime (1966)]

463
9



454 S. K. Sinha
However, there has not been any induction experiment in this field, so far. 

The possibility of such an expeirment, using pulse technique, was analysed by 
Kessel (X962) a few years back. Although the method used in the ana- 
lysis is sufficient for tackling the situation with simplif3dng assumptions, i.c. 
the neglect of spin-spin interaction, it is felt tha t a density matrix treatment of 
the phenomenon will be more convenient in more general causes*. We describe 
such a treatment which is similar to Lowe and Norberg’s (1967) analysis of 
free induction in olectromagnetically excited NMR. In  our analysis wo shall 
consider a cubic crystal, having lattice sites occupied by nuclei of spin 1 (one). 
The spin system will thus be coupled to the excited lattice mode by nuclear 
quadrupole interaction.

A C O U S T I C A L L Y  I N D U C E D  N U C L E A R  M A G N E T I C  
I N D U C T I O N  I N  A C U B I C  C R Y S T A L

(A) Spin-phonon interaction Hamiltonian in a quadrupolar spin system 
in an acoustically excited cubic c ry stal: Let us write the interaction term in 
the form,

If  =  ^  fe(/. D. / ) ( 1)

where I  is the nuclear spin vector, and D is a tensor of rank two in three dimension, 
containing the lattice coordinates. In a rectangular coordinate system (X, Y, Z), 
where Z  is the axis of quantisation of the spin system (that is, the direction of 
the D.C. magnetic field), it will be seen that the tensor, D, is symmetric for the 
particular spin-lattice system. Expanding (1 ), we can thus write :

+ i(D ,,--D y ,)(/+ 2+ / J ) + 2) ^ ( / J , + / , / J +
'^ D y g { I y I g - { 'I s ^ I iJ y + I y lg ) ]  ... (2)

Dropping the terms that couple states with Am =  0, we have ;

•We may note that the density-matrix method is offictively equivalent to the ordinary 
time-dependent perturbation method, upto oertain degree of approximation. However, 
the former is different from the latter when the actual calculation is concerned. In  the time- 
dependent perturbation metliod, one expands the time-dependent wave function in a complete 
set of time-independent basis functions, and solves for the expansion coefficients Omt 
from a set of coupled differential equations. One popular way of doing this is to reduce these 
differential equations to a set of coupled algebraic equations by making use of Laplace Trans
forms. In  genera], it is difficult to obtain these transforms. However, in density*matrix 
method one avoids this difficulty by calculating the products* (an Ont) which are more directly 
useful for calculating expectation values.
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The components of D are functions of the local strain a t the nuclear sites, 
and one can expand D in terms of the strain components eij in a Taylors series. 
Thus introducing the spin-phonon coupling constant 0, wo can write (in Voigt 
notation) :

Df ==: G^jiC<+higher order ijjprms. i, j  =  1 ,2 , 3 , 6.
where

Oh dci (4)
In  order to define Q uniquely, the (4)' îs written in the coordinate system 

(Xo, n ,  Z0) that coincides with the orya|allographic axes. This also enables 
one to simplify the expansion (4) by using |ymmotry arguments. For example, 
in cubic sjrmmetry, we have the expansioli:

J5xoXo= ^  (2cxoXo—

^  (2 t̂/o2/o“~^2:o2o—«XoXo),

DzqZq == ^  (2€2ôo —eXoXo —€2/o2/o),

DxqVq == Ĝ44exoVo 

Dẑ Zq = (5)
The components of X), used in the Hamiltonian (3) can then bo obtained by 

using tho following usual transformation relations :
— S oĉv ocifiDyfi*

{PH )

Dif — £  { O f i i fc i ip i )D j / i i(VM) (6 )

where
(v/«) ^  (â oXo), (2/0 yo)> (Vo)» (i*̂o2/o)>(2/o2o). and (Xô o)- 

and the coefficients a are given in table I.
TABLE I

Transformation coefficients. for two Cartesian coordinate
systems, i and v, having the same origin and their mutual orienta- 
tion being specified by the Eulerian angles 0, <f> and

\ Vo
X 008 %!f COS ̂  COS ^+sin sin ̂ cos ^  sin 0 00s 0—sin tft 00s ̂ cos ^  sin 0
V sin ir cos (ft cos ~̂~ooa sin (f> sin ^  sin <f> cos 0-hoes ^  cos ^ sin ^  sin 0
z —COB ̂  sin ^ -~sin0 sin 6 COB 0
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Wo will now consider a special case. Let us assume that a longittudinal 

acoustic wave of circular frequency w has been impressed in the crystal with the 
propagation vector in the crystallographic (001) direction. We also assume that 
the laboratory F-diroction and the crystal (010) directions coincide, and the crystal
has been rotated about the F-axis such that the propagation vector k  (still in the 
crystal (001) direction) makes an angle 8 with the D.C. magnetic field, ie. the Z- 
direction. This longitudinal wave will generate a standing wave pattern, and an 
axially symmetric strain field (time-dependent) in the crystal, the axis of symmetry
being in the direction of k- Lot us also choose the laboratory Z —axis such that
it coincides with the projection of K  on the X — T  plane. In such a case, we see 
that the only strain component is where the direction Zq is the crystal (001) 
and thus from (5), we g e t :

DxgZo =

DxaXo = 0 11 C2„Z,0*0 ... (7)

=  I>2/o*o — D zoXq —  0
Transforming (7) into the (X Y Z ) system (using (6), and the table I, with <j> —
=  0),

^ie*o*o(3oos«0-l), =  2 îi®*o*o sin 0 cos 0

■ D«w= ^^l-ezoZo(3sin2d—1 ), — J-̂ yt -- 0

D.w 0 11 ... (8)

The Hamiltonian (3) then becomes :

=-^[|<?„CM o(/+® +/-® )sin*0 + 1  W a in 2 6 >  ] ... (9)

The above formulation holds for any interaction of the form (1). Nuclear 
quadrupolar interaction is also of this form and the Hamiltonian (9) is applicalbe 
to this case. The constants etc. in (9) can be measured by suitable experi* 
ments,
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However, to obtain the theoretical expression for 0 ^ ,  one has to consider 
the particular interaction, in this case nuclear quadrupolar interaction, explicitly. 

Writing

where Q is the nuclear quadrupole momei|t tensor, and (y^7), the electric field gra
dient tensor a t the nuclear site, one o b ta i^  in this special case.

d
0 ^On Ae- -(3)L (10 )

where

and

A — e®2 /(2 /- i ) ;
cj =  S  e/(3 co«* dj—l)r f^  i

Q is the scalar quadrupole moment of the nucleus, and ‘eq’ is the axial electric 
field gradient with the sjmimetry axis along the Sg-axis. In the definition of
‘eq’, j  refers to the jth . charge-point external to the nucleus, and'jv is the vector
joining this charge-point with the origin (the center of the nucleus), and Oj 

—►is the angle between r, and the symmetry axis,
(b) Total Hamiltonian for the spin-lattice system ; The total Hamil

tonian can thus be written as
H  =  H g-|-H ,+ //2-t-H'{<) ... (1 1 )

Hg is the Zeeman Hamiltonian for the spin system, describes the magnetic 
dipole interaction between the spins, and stands for all other terms in the total 
Hamiltonian for the statistic spinlattice system. is given by the expression
(9). If. we neglect those parts of H i and that couples states with Am 0, 
we are left with the following Hamiltonian :

where

and

with

H  =  Ho+H'(t)
Hg =  —&S <l)g7a„n

H'{t) =  -feS[2o>„'i)(/*gJa.-l-/*,/*.)-l-Og<*H/*+„+/®-„)] cosotfl

o ,  =  yHg
=  f  O n  evi>(0) sin 2d 

jg(B) _   ̂ G'ij«»o*g(0) sin ®d

( 12)

(13)
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I t  has been assumed that =  «*o*o(0) cos wt, and y  is the gyromagnetio ratio 
for the nucleus. We shall be concerned with the cases where H \t) can be treated 
as a small perturbation.

(C) Rabi-Bloch matrices for the system : The Schrodinger equation
IS:

in f( t)  =  H {t)n ) ... (14)

If  we write =  exp^— ~H {0) j  '̂(<)> the equation (14) transforms into

exp ^(0)j  H'{t) exp ( — |  £1(0)) ^  ... (16)

We now assume that the acoustic wave is impressed only for a duration in the 
form of a square pulse of carrier frequency and that is sufficiently small so 
that those terms in Hi and which do not commute with H'(t) or H{0) 
have expectation values much less than 1 when multiplied by tfajH. Their effect 
upon H'{t) may then be ignored. Thus retaining only the terms Hq in H(0) the 
equation (15) is approximated as :

exp {—ia>JLIz„}H'(t) oxp Izn)^'(t) =  iti ~ ... (16)» n V*
Using the transformation properties of the spin operators under the rotation about 
the Z-axis, the equation (16) reduces to

where
iL{t) n t )  =  n t )  ... (17)

L{t) =  S  [2<jin̂ ’̂>{(IxJzn+IznIxn) ^OBf/*>^-\-[IyJzn+IZnIyn) Sm «ô >

+ 2w„<*>{(/*,*—/{/„*) cos sin 2a)„t}] 008 ot ... (18)
The solution of (17) is

V!r'(U =  exp f L m ^ i O ) ... (19)



which reduces to (neglecting smaU terms containing t^), 
i/r{ta) =  Rw=taoir{0), when <o =
^{ta) =  Bu^2o)oir{0)> when to — 2<o„
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and
where

(20)

=  exp(t0, 2  7a,) e x i ||t  S e2„{Iy„Ix„+Iz„I:s:„) j
V1

Ba=2uo =  exp /  i0i S  Izn ) |x p  ( i s  6f„{Ixn^—IyJ)  1
ft0  ̂— ti>o«, 0^ =  o)<^>*a|and 0^ (21)

In a representation in which is diagonal, the matrices Ria^uo and Rc>-̂ 2o>o 
have been evaluated. The results for spm 7 = 1  are given in tables II  and 111.

(D) Computation of and : We know that if wo
assume that the solution of the time-dependent Schrodinger equation :

ift f  n(0 ==
is of the form 
then f j t )  =  ^«(<) 1̂ "«(0)

< 7x„>  =  J ^„+(0)i?„+(l)7x„i?„(0 i fM d r (22)
Expanding

V̂n(0) =  ■ £ OjJ,(0)«p„ V
we have

< Ix n >  == Trace {pJ0)R „+ {t)IxnR Jt)) (23)
where

<«?o l/»n(0) I «JJ«> =  oi>«*(0) aq„(0) ... (24)
For a s3TBtem of N  spins, if we neglect the mutual interactions between the spins, 
we obtain

1 .2...N

n
where exp (^is„)/Trace {exp (£7*»)} has been taken as equal to p„(0). f  =  yft 
TTo/AT’, T  being the temperature of the sample and k, the Boltzman factor. The spin
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system is here assumed to be a t thermal equilibrium before the application of the 
acoustic pulse.

We the B  matrices as given in tables I I  and III, and using the expression 
(25) we get the following expressions for the induced bulk nuclear magnetisation 
a t the end of the acoustic pulse.

TABLE I I
The matrix, for spfo /  =  1, in a representation in which
is diagonal. The elements are < g |A |p > ,  and =  the sign 
of the angle d .̂

\  ^  
\ 1 0 - 1

1 exp(idi){l+cos 62)12 Sg62{i exp (iOi) sin 62) exp(i0i)(l—cos 62)12

0 Sg02{i sin ^2)/ cos 62 02{—i sin

- 1 oxp(i^i)(l—cos 62)12 oxp(-^i6i) sin 62)!\/2 exp(—40i )(1H-oo8 62)12

TABLE I I I
The matrix for spin /  =  1, in a representation in which
I f  is diagonal. The elements are < < l\B \p> , and 8 ^ ^  =  the sign 
of the angle

\  ^  , \ 0 - 1

1 exp(i0i) cos 3̂ 0 Sg ^3(4 exp(4^i) sin 0̂ )

0 0 1 0

— 1 Sg $ 2{ i exp(—4 1̂) sin â) 0 exp(—4^i) cos ^3



Case I. 6) =  6>0

1,2,..,N
_________ «ir» /J.
1 + 2  coshf
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=  yh ~  sin 9, ^  S„{02„) sin 202«
n

<My>av =  y» cos ^  X !  “ “
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(26)

Case II. CO =  2c0ft
ttv -- ^

< M y> a v  =  0

(27)

After the withdrawal of the pulse, the time-dependence of <Mjf>av and 
<J/y>„^will be given as usual by the Fourier transform of the steady NMR 
line shape.

Refering to (26), and from the definitions of as given in (2 1) and (13), we 
sec that

S Sg{9%) sin 2<?2„ =  S/S,{o.e<»>so*o(0)} sin c‘»’*o*o(0) | , ... (28)
where

® =  {f G'h sin 29)ta .
®*”*zo*o(0), for a standing wave pattern where end surfaces of the sample are 
at antinodes, may be written as

c‘“'W O ) =  2Jir^o sin
and hence we see from (28) that the main contribution to the summation will 
come from the two layers a t the ends of the sample, layers having a thickness 
“I" given by

Id =  ff/2 or I =  A/4.
As an example, for experiment a t lOmc/s, l'arlO~*cm. and an insignificantly 
small number of nuclei are taking effective part in contributing to < J lf ,> a 9 
and < M y> „.

10
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