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ABSTRACT. The contribution of the bound double molecules to the socond virial
coefficiont B(T) has beon caloulated for the polar gases. The caloulation is valid for any ‘effoc-
tive’ relative orientation between tho dipoles of the two intoracting molecules and is an im-
provement over the one made previously by Barus, Chakraborti and Saran.

INTRODUCTION

Due to the presence of long-range, angle-dependent, dipole-dipole forces, it
is difficuit to represent the intermolecular potential between two polar molecules
in a suitable functional form. At present, the most commonly used potential
cnergy function, the Stockmayer potential can be represented as :

#r) = (ol —@InPl— & 0,0 ), S

g(6y, 05, §) = 2 cos 0, cos O,—sin 0, sin 0, cos ¢, e (2)

where g is the dipole moment, 0, and 0, are the angles of inclination of the axes
of the two dipoles to the line joining the centres of the molecules and ¢ is the azi-
muthal angle. When g— 0, ¢(r) is the commonly used Lennard-Jones (12 : 6)
potential (Hirschfelder, Curtiss and Bird 1954) for nonpolar molccules.

The classical statistical expression for the second virial coefficient can be
written as :

B(T) 1.\_7_ j'nj (1_.e—(’(r)/l:l),,.2d.rdQ . (3)
139
where
§ = [T Tsino, sin6, a8, d6,ds . @)
Q 0 0 o0

Stockmayer (1941) and Rowlinson (1949) evaluated B(T') for the polar gases from

egs. (1) and (3) by assuming equal probability for all the relative orintations
of the dipoles of the interacting molecules.
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Fortunately, physically more understandable and rigorous approach to the
prablem of calculating B(T') can be achieved by breaking up B(T) into three parts
(Stogryn and Hirschfelder 1959) :

B(T) = B(T)+By(T)+Bu(T), e (6)

where By(T), By(T) and By(T) are respectively, the contributions of the free,
bound and metastably bound double molccules to the second virial cocffi-
cient B(T).

B,(T) and B,(T) are related to the equilibrium constant for dimerization.
Recently Barua, Chakraborti and Saran (1965) have evaluated B,(T) mainly with
the purpose of calculating the percentage of dimers in polar gascs. In order to
simplify the caleulations, they have made certain approximations in evaluating
the integrals. However, to caleulate B(¥) accurately from cq. (5), all the parts

should be calculated precisely. In the present paper we have made a refined
calculation of By(7').

OUTLINE OF FORMULATION

Tt has been recently pointed out by Semenov (1966) that the classical mechanics
is not strictly valid in the range of states corresponding to bound particles where
the Schrodinger equation allows only a number of discrete energy levels. Follow-
ing his treatment the contribution of bound states to the second virial coefficient
may be written as :

By pouna = —2¥2NAY2Z,, .. (6)

where By, poung includes the contribution of stablec double molecules and

Zy=2X e~ EplkT = '2(2l-|—1) 2 e— Ena[kT, . (1)
P n

where E-, is the energy of the bound particles, n and [ are respectively the vibra-
tional and rotational quantum numbers.

It is well known that the methods of classical statistical mechanics are appli-
cable to the evaluation of the partitions function provided AKX << kT, where
AE is the energy difference between two neighbouring quantum states of a system.
The extensive study made by Stogryn and Hicschfelder (1959) and their evalua-
tion of the maximum number of vibrational levels lead us to conclude that for
heavy molecules (i.c. molecules excopt H,, He and Ne) and at not too low tempe-
ratures the difference between the classical and the quantum methods is insigni-
ficant. In the present paper we have followed the method of Hill (1955) applying
classical statistical mechanics for obtaining the partition function for the bound
double molecules.
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For spherically symmetric potontials :

By(T) = —NA%Q,[V, (8)

where N is Avogadro’s number, ¥ is the volume, A% = ST and Q,, is the

partition function for bound double molecules. Following Hill (1955)

Qup = 2.};%(:;; (X [—$)RT4m F (r)ir, )
where
3 _¢r
r {2 CTRT }
Firy==—ou — ..
3
r(3)
From eqs. (9) and (10) one gets :
. [‘( 3 _ 90 )
B(T) = —2nN [ roxp [—goypery| 2 M 1|, (10)
3
r ()

where I‘{% ',——i(Tr) }is incomplete gamma function and d is the value of r for
which ¢(r) = 0.
The potcntial encrgy function given by eq. (1) can be written as :

¢(r) = 4d(a]r)*—(o[r)—Alo[r)’], (11)

where
=~ 1
A L Usg (11a)
Let us define the following reduced quantities :
* = ple, r* =rlo, T* = kTe,
(12)

d* = djo, By* = Byby; by = .g-nNa"
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In terms of the reduced quantities eq. (10) becomes :
; {3 - )

B*(T*) = —3 );r*’ exp[—¢*/T*] 27 Tw dr* .. (138)
I'{32y

By applying certain mathematical transformations (Barua, Chakraborti and Saran
1965), we can obtain :

2 o TA4n)TE2) 1 % e emsmiae g
B*(T*) = @) 'E‘-) I Tm) ! J G* [ TH)m+3i2 dy* (14)

Substituting the value of ¢*(r*) from eq. (lf) and putting y = r*-%2, {he integral
in eq. (14) reduces to :

© 4 \me2¥
Lre—grmomenars — (3 ) ymaty—yeren gy, L (5)
* T* 0
where
y = d-9s,

Thus, finally we get :

_ 16 3 432 (1)l 1 \n+s2
== & e (2v ) %

’

i YAyt —yP]nt32 dy. ... (16)

TABLE I

A 0.00 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

¥ 1.000 1.043 1.077 1.106 1.129 1.151 1.170 1.188 1.204
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METHOD OF CALCULATION

The upper limit in the integral of eq. (16) is a function of 4 and can be cal-
culated for a fixed value of 4 (which corresponds to an ‘effective’ relative orienta-
tion of the interacting dipoles) from the equation ¢(y’) = 0. The values of ¥’
for the different values of A are given in Table I. Rccently Barua et al, (1965)
have evaluated the integral by putting an average value of ¥ within the bracket of
¢q. (15) so that for 4 = 0 each term in eq. (14) is equal to the corresponding term
in the expression for the Lennard-Jones (12 : 8) potential (Stogryn and Hirschfelder
1959). With this approximation they obteined :

7 a—g spntas = 4% n2nA4-2)! @ng-3)! 2n+1)
[Fa2—gnb]nterR (dnL5)! (mr1)] v (17)

As a further approximation, they had raken the upper limit of the integral as unity
so that the eq. (16) reduces to

2]

[ oree(—g¥THymesngrd = T poa(—gxTeymssn _ gps
d% 1
_ 2 ] HAFG.2—7.8) e 1
=2 [ #4th= ] i .. (18)

As the main purpose of Barua et al (1965) was to obtain the percentage of
dimers for polar gases nceded for the study of pressure dependence of transport
propertics, they were justified in making these approximations in order to simpli-
fy the calculations, However, as the main contribution to the total second virial
coefficient B(T), B,(T) must be cvaluated preciscly.

The summadtion in eq. (16) converges very rapidly for higher reduced tempera-
tures and lower values of A. Otherwise, the convergence is slow and a large
number of terms are needed in the series to obtain an accuracy of five significant
figures. The integral of each term in the scries of eq. (16) was divided into three
equal intervals and for each interval a nine-point Gaussian integration was done.
By*(T*) has been calculated for 7* | ranging from 0.4 to 10 and for the values
of A from 0 to 1.6 and are given in Table 2. We estimate the accuracy to be
generally of the order of 0.01% and this is indicated by the good agreement with
the results obtainod by Stogryn and Hirschfelder (1959) for the Lennard-
Jones (12:6) model(i.e. for 4 = 0).
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