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Abstract : The thermosolutal instability of a composite plasma is studied to include the 
effects of coriolis force, the finiteness of ion Larmor radius and collisions between ionized and 
neutral particles in the presence of a uniform vertical magnetic field. It is found in the stationary 
convection case that the FLR (finite Larmor radius) and stable solute gradient have stabilizing 
effects. However, the mutual collisions between ionized and neutral particles have no effect on 
stationary convection.

Keywords : Thermosolutal instability, composite rotating plasma, finite Larmor radius 

PACS Nos. : 52.35.Py, 47.20.Bp,47.27.Te

1. Introduction

Finite Larmor Radius effect on plasma instabilities has been the subject of many 
investigations. Rosenbluth et al [1] and Roberts and Taylor [2] have studied the effect of 
finiteness of ion Larmor radius (FLR corrections) on plasma instabilities, showing up in the 
form of a magnetic viscosity in the fluid equations. Sharma [3] has studied the effect of 
finite Larmor radius and Hall effects on thermal instability of a rotating plasma. 
Chandrasekhar [4] has treated the theory of thermal instability of a fluid layer heated from 
below under varying assumptions. Veronis [5] has studied the thermohaline convection in 
a layer of fluid, heated from below and subjected to a stable salinity gradient. Nield [6] 
has considered the same problem, but a horizontal layer of a viscous fluid heated from 
below and salted from above. In such cases, the buoyancy forces can arise not only 
from density differences due to variations in temperature, but also from those due to 
variations in solute concentration.

The conditions under which convective motion is important in stellar atmospheres, 
require consideration of a fluid acted on by a solute gradient and free boundaries. The

© 1997IACS
71B(1)12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IACS Institutional Repository

https://core.ac.uk/display/158962391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


82 M Vasiu and A Marcu

problem of the onscl of thermal instability in the presence of solute gradient is of great 
importance because of its applications to astrophysics and atmospheric physics, especially 
in ionosphere and solar atmosphere 17).

The thermal instability of a composite plasma with finite electrical conductivity, in 
the absence as well as in the presence of Hall effect separately, has been studied by Sharma 
and Sharma 181. The thermal instability in the presence of Hall currents has been studied by 
Ciupta |9|, Sharma f10], Sharma and Sharma [111 and Vasiu and Beu [12]. Thermal 
instability of a compressible FLR, Hall plasma in porous medium has been studied by 
Sharma and Sunil [ 13,14]

The thermal instability of plasma subjected to a solute gradient and a uniform 
magnetic held including finite Larmor radius effect, has been studied by Sharma and 
Sharma 1151, Sharma et al f l6|, Gupta and Singh [17] and Sharma and Ram [181. In 
ihe stellar case, the physics is quite similar to Vcronis |5] Ihermohalinc configuration, in 
that the helium acts like salt in raising the density and in diffusing more slowly than the 
heal. The finite Larmor radius, rotation and collisional effects are likely to be important in 
these regions.

The present paper therefore, considers the thcrmosolutal instability of a composite, 
rotating plasma including simultaneously the FLR effect and collisions between ionized and 
neutral particles.

2. The problem formulation

Here we consider the thcrmosolutal instability of a composite incompressible plasma, in 
mtaiion with a umlorm angular velocity Q (0, 0, L2), subjected to a vertical maenctic field 
B (0, 0, lin) in the presence ol FLR We lollow Vasiu [191 and neglect Hall effect 
(A, << /(, where A,, r, arc the mean irec path of electrons and the Larmor radius, 
respectively).

Here, the plasma is confined in the form of infinite horizontal layer of thickness /„ 
and is acted upon by the vertically downward gravitational acceleration g (0,0 -g). This 
plasma layer has two incompressible components : an ionized one and a neutral one with 
densities p, and pn respectively. The collisional frequency between ionized and neutral 
particles is denoted by v(. and we have neglected the influence of rotational motion and 
viscosity on neutral plasma component. The effect ol FLR on ionized component requires 
that the pressure must be a tensoi quantity depending on ion gyration frequency, because of 
strong magnetic iicld action. Futherniorc, the effects of viscosity and finite electrical 
conductivity ot ionized component should also be considered. The plasma layer is healed 
Irom below and is subjected to a stable solute gradient. We have denoted the uniform
temperature and uniform solute gradient by 0 ( = I dT/dZ I ) and 0 ' ( = I dC/dz I )• In 
stationary state, the plasma layer verifies T = T0 -fiz and C = C0 P'z conditions and,P=Po 
11 + a  (T() - T) - a ' (C„ - C)] =pQ (1 + afiz -  a'p'z) where 7b, C0 and 7, C are the 
temperatures and concentrations at the bottom surface z = 0 and at any point between z = 0



The thermosolutal instability o f a composite rotating plasma etc 83

and z = /o,z-axis being taken as the vertical axis, p& is the density at z = 0; a, a ' represent 
ihe thermal coefficient of expansion and solvent coefficient of expansion, respectively.

3. Linearized perturbation equations

Wc make the assumption that both incompressible viscous ionized fluid and incompressible 
non viscous neutral gas behave like continuum fluids and that the neutral gas is not affected 
hy (he pressure gradient, gravitational acceleration, temperature gradient and stable solute
gradient.

On the basis of the foregoing remarks and following the linearized perturbation 
theory [4], the linearized hydromagnetic equations of the system are :

= - ^ 7  V(fiP) + v tA ( S v , )  + vt.(5vn — ) -  ( a 6 - a ’y ) g

+ 2 8v .x£2+  (V xS B) xB,  
P M  o

0 )

= - 7  -*» ,)• (2)

V •(&>,) = 0, (3)

V (<5vn) = 0, (4)

- X M  =  P * - (5)

- X’Ay =  P'w , (6)

-jfi($B) = V x (», xB) + vmA(SB), (7)

V■ (SB) = 0, (8)

where SV, (ur v„ w,)r Svn («„, vn, w„), SP% SB  (8BX, 8By, SBZ), 9, /denote the 
peilurhations in velocities v„ v„, stress tensor P, magnetic field B , temperature T, 
concentration C; whereas vn„ v„ v( are the thermal diffusivity, solute diffusivity,
electrical resistivity and kinematic viscosity of ionized component and ion-neutral 
collisional frequency respectively; E = pn/p ( ■

The change in the density S p caused by the perturbation din the temperature and /in  
the concentration is given by :

S p  = - p 0 ( a 9 -  a ' / ) -  (9)

We make the assumption that both ionized fluid and neutral gas behave like continuum 
fluids and for the neutral gas the influence of magnetic field is negligible.
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For the vertical magnetic field B (0,0, ô). the perturbations SP  in the stress tensor P 
have the components written below :

SPit = SP„ = S P -p ,v 0^  + J ) ,

SPI2 = SP2I = SPV = SPyx = »  + -  J ? ) .

SP2 1 = SP n  = SP + Piv0\ j g  + 4£). (10)

Sf*„ = <5P„ = = 5P -  2p,v0( J  +

5P„ = = -5P„ = SPn = SP+ 2p,v0{ %  + J ) .

= 5Pa = 5p

Here, 5P is the perturbation in scalar pressure, p,v0 = NlTl/4(Ol where to, is the ion gyration 
frequency, v0 is the ion gyroviscosity, N, is the number density and T, is the temperature of 
the ions.

The perturbation 5<p in terms of the normal modes has the form :

8<p(x,y,z) = (p*(z) exp \ikxX + ikyY + nt], ( 11)

where (p* is the amplitude, kx, kv are the wave numbers along x and y directions, k2 = k 2 + 
k 2 and n is the growth rate, which is a complex constant.

Eq. (2) using (II) yields

a M  = ( 12)

where £2n = n + v. / e.

Eq. (1) using ( 11-12) has the form :

a mSv, = - y V 8 P - ( a 9 - a ’y)g + 2  Svt x Q

P0p , (W xSB )* B (13)

where: Qm = n -  v,A,n = «(l + evr/(ne+ vc)).

Using (10) and applying the 'curl' operator on (13) we can obtain its projection along
z-axis :

a J  = [v0(2£P +*2) + 2 Q ]D w  + A -Z > £,

where D = d/dz, D1 = cPldz2, £ = [curl &J,, £ = [curl <5B]..

(14)
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Using (11) and V x (&, xB )=  BqDSvi, the projection along the z-axis of (7) can be reduced 
to the following form :

QmSBz = BqDw, (15)

where = n  + v mlc2.

Applying the 'curl (curl)' operator on (13) and 'curl' on (7) results their projections
along z-axis :

^  . .  ( d 2G d2&\ , ( d 2y 9*y\
+ ^ r j  -  0 * ^  + ^ r j

- [ t - 0(2£>2 + * 2) + 2 fl]D £  + -f2-D A6B„  (16)
PoPi

= BoD£. (17)

Analyzing the disturbances in terms of normal modes, we assume that the perturbation
quantities are under the form :

{" , 9. r. C. $} = {W'(z). 0(z). H z). K(z), Z(z), XU)}-

exp + ik}y + rtfj. (18)

where IV. <9, r, K, Z, X are the perturbation amplitudes.

It is convenient to discuss eqs. (5), (6), (14-17) taking into account (18) and in 
riondimensional variables. Choose the units of length [L] = /0 and of time [T\ = {lof/v and 
Id ;* = l()z\ a  = kla ; O = n(l0f / v  ; o ' = n ( l a? /V  ; p, = V /f r  p2 = v/vm; p3 = v / x ' ■ 

Introducing the following quantities :

c , . « L r  _ A 2 . r  _ V f. _ c, -  ^  , q  -  ,o , c 3 it cT
"

0 £ W v

,P II

°"
|^

l

C5 = M ; Q = -a2;5 V ’ 6 VfW C , -  ° ’f  °' (19)

C8 = V(7/0; C, = Vf/0; VT = 2Q & ; -JU =

■md ihc operators

O = £>2 -  a2; Og = D2 -  a2 -  o '; O, = D2 -  a2 -  Op,;

02 = D2 -  a2 -  Op2 ; 03 = D2 -  a2 -  op3; Oa = 2D2 + a2. (20)

Ihe final form is :

o ,©  = - c 0w, 

o3r  = - q w .

o ;z  = -[Cj + cao j d w -  c2d x .

(21)
(22)

(23)
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o2k  = - c5d w , (24)
o*aow  = c6e  -  c7r  + (c8ofl+ c9)DZ -  c ô d k , (25)

02X = -C,DZ. (26)

4. Dispersion equation

Eliminating 0  (z), r(z), K (.z), X (z) and Z (z) from eqs. (21-26) and introducing the
B l

Chandrasekhar number Q = C3C5 = — , the differential equation is :
“on

[(D 2 -  a 2 -  o * ) (£>2 -  a 2 -  op2) -  Q£>2] {(D2 -  a 2) (D 2 -  a 2 -  o p ,)

(D 2 - a 2 - o p , )  [(D 2 - a 2 - o ‘ ) (D 2 - a 2 - o p 2) -  Q£>2]

+ (D 2 - a 2 - c p 2) a 2 [R (D 2 - a 2 - o p , )  -  S (D 2 - a 2 -O p ,) ]J  

H'(z) = —1/[V + (2£>2 + a 2)]2 (D 2 -  a 2 -o p ,) (£ > 2 -  a 2 - o p , )

(D2 - a 2 - Op2)2 D2W(z) (27)

gaBl*
where /? = ------,s Rayleigh number,

XV

S = is the solute Rayleigh number,

V = 2Qlo ■------ . is a non-dimensional number.

(28)

Eq. (27) is identical to that of Gupta and Singh [17] where the D2 - a2 -  o  operator has been 
replaced by D2 -  a1 -  cf operator and

(7 -  —— ; rt = n- 1 + _ e v ^ l
£» + Vc J (29)

Particular cases

(0 In the absence of FLR (v0 = 0) and rotational motion (V= 0), eq. (27) reduces to : 

[(D2 -  a2 -  a‘ ).(D2 -  a2 -a p 2) -  QD2]{(D2 - a 2)-(D2 -  a2 -  op,)-

(£>2 -  a2 -  o p ,) [(D2 -  a 2 -  a * ) • (D 2 -  a 2 -  op2) -  02>J ]

+ (D1 -  a2 -o p 2) a2[.R.(D2 -  a2 -  Op,) -  S-(D2 -  a 2 -  op,)]} 

W(z) = 0 . (30)

because UV2 = T Eq. (30) is identical to Shamia and Sharrna (8] taking into account the 
same operator modification.
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(ii) In the absence of FLR (v0 = 0), and solute gradient (S = 0), eq. (27) becomes :

[D2 -  a2 -o p ,]  |(D 2 - a 2)[(D 2 - a 2 -  a*)-(D2 ~ a2 -  ap2) -  (?^2]

+ T(D2 - a 2 -ai>2)2D2}W(z) = -  R a1 [(D2 ~ a 2 -  a*)

(D2 - a 2 - o p 2)-Q D 2] (D2 - a 2 -a i)2) W(z). (3 |)

(ui) For a single plasma component (pure plasma) in the absence of ion-neutral 
vollisional frequency (vr = 0; ( f  = <T), eq. (31) has the form :

(D2 -  a2 -  qp,) j (£>2 -  a2) [(D2 a2 -  a) (D2 -  a1 -  op2) -  QD2 ]2

+ T (D2 - a 2 -o p 2)D2}W(z) = -  R a2 {[(D2 - a 2 - o )

{T>2 -  a2 -o p 2) -  QD2\ \ D 2 -  a2 - o p 2]} W(z), (32)

which is identical with Chandrasekhar’s result (1961).

6. Discussion

flic boundary conditions in the case in which both boundaries are free as well as perfect
ouiductors are :

W(Z) = & W U ) = D7Az) = 0; 0(z) = r(z)  = XU) = 0 (33)

[■ ,ii = 0 and z = I U‘ = 0, :* = /0) and SBX, SBy. SB. are continuous. The proper solution of 
nj (27) characterizing the lowest mode has the form :

W(z) = W0sin(^), (34)

where W,, is a constant.

Substituting (34) in (27) we obtain the characteristic equation :

(1 + x) [(1 + x + a) (1 + x + b,) (1 + x + b2) (1 + x + by )1 
1 ~ [x(\ + x + b2) (\ + x + b2)]

where

S, x(l- + x + 6,) ( l+ x  + b2) + Q,(l + jc) (1 + x+ b{)(] + x + b}) 
+ [x(l + x + b2) (1 + jc + b}))

V[V, - ( 2 - a)]2 (l + jr + M ( l  + x + Z>,)]
a [(1 + x + a) (1 + a + b2) + Q, ]

= ITT’ R* = p i  5I = ^ T ; GI =  VI =

(35)

P " ; b\ = ^pr- b2 = fc3
pp3
rr2a  =
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In the ease of stationary convection (n = G = n -  ( f  -  G— 0; b\ - b 2=bi = 0), eq. 
(35) has the form :

l + jr .......... , -■ .. fV,-(2 -.t)]2« +-t)2
«, -  - i l l  J ; r  * S - (36)

identical with Gupta and Singh’s 117) results.

If the FLR corrections are not taken into account (v0 = 0), eq. (36) can be reduced to 
the form :

l v n  4- r 'l2
(37)

where T, = U[Vt -  (2 -x )\2 = UV2 -  2UVt(2 -x )  + t/(2 - jc)2

4I22/,? 4fl/2
S-v-0-C2-*)+ -S-CZ-jc)*;

J I 4 V 2 J I 2 V 2  u  '  '  V'1

4X22/„4
T, = —r ; (when v(. = 0; 7~ = ----r-2- is Ihe Taylor number).I u V1

If furthermore, wc do not consider the solute gradient (S = 0), we obtain the Chandrasekhar 
result [4J.

Generally, the investigation of FLR, rotational motion and solute gradient effects is 
facilitated by the analytical study o\dR\!dU, dR\ldV\>dR{ldS\. It follows from (35) that

dR\ _ |V, — (2 — jc)]2 (1+ * + fr, )(1+.v + /?2)
~ jr|(l + jc + a ) ( l + A -  +  M  + a  ‘

d/?,
dv: = u

2 ^ 1J

2\VX -(2-jr)1(l+ jr + fr,)(1+jr + fr2) 
x\(\+x + a){\+ x + b2) + 0,1

d R { 1 +  X  +  />,

dSx I + x + bx
(38)

Our discussion is limited only for stationary convection (see eq. 36) where the modified 
Rayleigh number R, attains the minimum when dR^/dx = 0. We obtain :

x1+ 0 ^ '+a2x*+a?x*+a4x*+a5x2+a6x + a7 = 0, (39)

o, = 5.5+ 0.5,

a 2 = 12 + 2 ( Q } + U ) ,

a, = 12.5 + 6.5Q, -0.57", +l/(l + l.5Ql) + ̂ U f^, 

a4 = 5 + 6ei +Q2- 2 r i +0.5U(-12-4Ql ) + 2jU 7\(4 + Ql). 

as = -l.5  + 0.5C| (e i -2 )-3 7 ’l +0.5eir | +0.5t/(-23-3G l) + l21/W'r

where
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Figure 1. The critical Rayleigh number Rc for the onset of ordinary convection as a function of 
Q\ for various assigned values of T\ in Chandrasekhar model The curves are labelled by values 
of T | to which they refer and in the absence of FLR (U -  0) and thermosolutal effect (5j = 0).

Figure 2. The dependence on Qi for various values of Tj of the critical wave number Ac (in 
Chandrasekhar model) of disturbance at which instability first sets in as convection. It will be 
observed that a discontinuous change in Ac occurs when (for increasing Q \) the maner of 
instability changes from overstability to ordinary convection.

7ID(I)-13
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"  *J,c G“P<« *"<l Singl. i^ * |h .TlhlTprLnce ITflRW = “ S'*n' dvalues °r7l
( h c r m o s o l u i n l  i n f l u e n c e  (.V , -  0 )  * ° ° °  C ffe C  b u l  , n  l b e  ® b * * n c e  o f
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ah = *-.2[(l + G, )J + 7, ] -  81/ +

a, = -0.5(l + fi|M(I + C1)2+ r i + 4 t ; - 4 ^ ‘], (40)

with X, (i = 1*7) determined as a solution of eq. (39), the relation (36) will give the required 
critical Rayleigh number Rc (if R < Rc the system is stable and for R > Rc the system is
unstable).

It is easy to show that for stationary convection (a  = 0; <f = 0; a  = 0; fr, =b2 = 
= 0), the results are identical with the relations obtained by Gupta and Singh [17]

(eqs. 27-31).

The numerical result and comparatively graphic analysis for our model can be 
seen in Figures 1-5. It may be observed in Figure 5, by comparison with Figure 3, a 
special behaviour of a critical Rayleigh number Re as a function of Q\ for the same assigned
valued of T\.

aoo i

Figure 5. The critical Rayleigh number Rc as a function of Q\ for various 
assigned values of in our present model for stationary convection in the 
presence of FLR (U -  1000) and thermosolutal (5j = 10000) effects. It will be 
observed a stabilizing*influence of FLR and stable solute gradient on 
thermosolutal instability.

The positive value forr/Af ,/rfV|, where x = a2/*? > 2 for all values of V, (or V\ > 2 for 
all values of x) permits to conclude that for x > 2, the effect of rotation is always stabilizing



92 M Vasiu and A Marcu

(see Figure 6). Because dRxldV is always positive and dR\idSx = 1 according to Gupta and 
Singh [171, the FLR and stable solute gradient have stabilizing effects on the thermosolutal 
instability (see Figure 7).

x

Figure 6 . Variation qf dRi /  dVj for different x and several values of T\ ( 104, 
105. 106) and Q l = |()^
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Figure 7. Variation of dR| /  dU for different x and several values ofTi (104.
I05. I06)and (? i = I 0 5
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