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Abstract : The thermosolutal instability of a posite pl is studied to include the
effects of coriolis force, the finiteness of ion Larmor radius and collisions between ionized and
| particles in the p of a uniform vertical magnetic field. It is found in the stationary

convection case that the FLR (finitc Larmor radius) and stable solute gradient have stabilizing
effects. However, the mutual collisions between ionized and neutral particles have no effect on
stationary convection.
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1. Introduction

Finite Larmor Radius effect on plasma instabilities has bcen the subject of many
investigations. Rosenbluth er al [1] and Roberts and Taylor [2] have studied the effect of
finiteness of ion Larmor radius (FLR corrections) on plasma instabilities, showing up in the
form of a magnetic viscosity in the fluid equations. Sharma [3] has studied the effect of
finite Larmor radius and Hall effects on thermal instability of a rotating plasma.
Chandrasekhar [4] has treated the theory of thermal instability of a fluid layer heated from
below under varying assumptions. Veronis [S] has studied the thermohaline convection in
a layer of fluid, heated from below and subjected to a stable salinity gradient. Nield [6)
has considered the same problem, but a horizontal layer of a viscous fluid heated from
below and salted from above. In such cases, the buoyancy forces can arise not only
from density differences due to variations in temperature, but also from those due to
variations in solute concentration.

The conditions under which convective motion is important in stellar atmospheres,
require consideration of a fluid acted on by a solute gradient and free boundaries. The
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problem of the onset of thermal instability in the presence of solute gradient is of great
importance because of its applications to astrophysics and atmospheric physics, especially
in ionosphere and solar atmosphere |7].

The thermal instability of a composite plasma with finite electrical conductivity, in
the absence as well as in the presence of Hall effect separately, has been studied by Sharma
and Sharma [8]. The thermal instability in the presence of Hall currents has been studied by
Gupta [9], Sharma [10], Sharma and Sharma [11] and Vasiu and Beu [12]. Thermal
mstability of a compressible FLR. Hall plasma in porous medium has been studied by
Sharma and Sunil [13,14]

The thermal instability of plasma subjected to a solute gradient and a uniform
magnctic hield including finite Larmor radius cffect, has been studied by Sharma and
Sharma |15]. Sharma et al [16). Gupta and Singh [17] and Sharma and Rani [18]. In
the stellar case, the physics 1s quite similar o Veronis 5] thermohaline configuration, in
that the helium acts hike salt in raising the density and in diffusing more slowly than the
heat. The hnite Larmor radius, rotation and collisional effects are likely to be important in

these regions.

The present paper therefore, considers the thermosolutal instability of a composite,
rotating plasma including simultaneously the FI.R effect and collisions between ionized and

neutral particles.

2. The problem formulation

Here we consider the thermosolutal instability of a composite incompressible plasma, in
rotation with a unilorm angular velocity £2 (0, 0, £2), subijected to a vertical magnetic field
B (0, 0. By) n the presence of FLR We follow Vasiu [19] and neglect Hall effect
(A, << 1y, where A, r; are the mcan free path of electrons and the Larmor radius,

respectively).

Here. the plasma is confined in the form of infinite horizontal layer of thickness /,
and 1s acted upon by the verucally downward gravitational acceleration g (0,0,-g). This
plasma layer has two incompressible components : an ionized one and a neutral one with
densities p, and p, respectively. The collisional frequency between jonized and neutral
particles is denoted by v, and we have neglected the influence of rotational motion and
Viscosity on neutral plasma component. The effect of FLR on ionized component requires
that the pressure must be a tensor quantity depending on ion gyration frequency, because of
strong magnetic ficld action. Futhermore, the effects of viscosity and finite electrical
conductivity o ionized component should also be considered. The plasma layer is heated
from below and 1s subjected 1o a stable solute gradient. We have denoted the uniform
temperature and uniform solute gradient by B ( =1 dT/dZ | ) and B’ ( = | dC/dz1).In
stationary state, the plasma layer verifies T = Ty —fz and C = Co - B'z conditions andP=Po
T+ a(Ty =T - & (Cy- O =py (1 + Pz - a’B’z) where Ty, Cy and T, C are the
lemperatures and concentrations at the bottom surface z = 0 and at any point between z = 0
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and z = lg.z-axis being taken as the vertical axis, py is the density at z=0; a,a’ represent
the thermal coefficient of expansion and solvent coefficient of expansion, respectively.
3. Linearized perturbation equations

We make the assumption that both incompressible viscous ionized fluid and incompressible
nonviscous neutral gas behave like continuum fluids and that the neutral gas is not affected
by the pressure gradient, gravitational acceleration, temperature gradient and stable solute
gradient.

On the basis of the foregoing remarks and following the linearized perturbation
iheory [4]. the linearized hydromagnetic equations of the system are :

-g'-(&;,) = -pl'_ V(6P) + v,A(8v,) + v (bv, - v,) - (@8- 'y)g

+20v, X Q2 + (Vx8B) x B, )
J 1
E(ﬂvn) = -?V“(ﬁvn-ﬁv‘), )
V-(dv,) =0, 3)
V.(bv,) =0, 4)
d0 _
7 —er = BW. (5)
%Y _yar =P, ©
g;(am = V x (v, xB) + v, A(JB), @)
V. (6B) = 0, 8)

where 8V, (u, v, w,), 8v, (,, v,, w,), 6P, B (8B,, 6B, 6B,), 6, ydenote the
perturbations in velocities v, v,, stress tensor P, magnetic field B, temperature T,
concentration C; whercas ¥, X', V,, V, v, are the thermal diffusivity, solute diffusivity,
clectrical resistivity and kinematic viscosity of ionized component and ion-neutral
collisional frequency respectively; € = p, /p; -

The change in the density 8p caused by the perturbation 8in the temperature and ¥in
the concentration is given by :

p = -p,(af - a'y). ¢)]

We make the assumption that both ionized fluid and neutral gas behave like continuum
fluds and for the neutral gas the influence of magnetic field is negligible.
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For the vertical magnetic field B (0,0,By), the perturbations P in the stress tensor P
have the components written below :

6P|| = 6Pu = 5P—p,V0(% + %)'

u 3
5P, = 6Py = 8P, = 6P, = 8P+p‘.vo(a—: - T;f)
du , dv
B = 8y = 5P+p"v°(3 * XJ' (10)
By = P, = OF, = P, = 8P - 20y, (5 + %W.)
5P23 = 8Pu = EPW = 5Pz)_ = 6P+ ZP,VO(% + 3_:)'

OP,, = 0P, = &p

Here, 6P is the perturbation in scalar pressure, p;vy = N,T,/4®, where w is the ion gyration
frequency, v, is the ion gyroviscosity, N, is the number density and 7, is the temperature of
the ions.

The perturbation 8¢ in terms of the normal modes has the form :
Sp(x,y,2) = @*(z) exp [tk X + ik,Y + nt]. (1

where ¢ is the amplitude, k,, k, are thc wave numbers along x and y directions, k2 =k,2 +
k.2 and nis the growth rate, which is a complex constant.

Eq. (2) using (11) yields
2,80, = v u, 12)
where 2 = n+v /€.
Eq. (1) using (11-12) has the form :
Q bv = —pl—‘ VP - (ab-a'y)g + 26v, x Q
Hop

where: 2, = n' - vAn' = n(l+ev [(ne+v,)).

(Vx8B) x B (13)

Using (10) and applying the ‘curl' operator on (13) we can obtain its projection along
z-axus

0. = 2D? + k2 i
wl = [vo(2D? + )+2.Q]Dw+”0p' D¢, (14)

where D = d/dz, D? = d*/dz?, { = [curl &), &= [curl 6B),.
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Using (11) and V x (&v; x B) = BoDdv,, the projection along the z-axis of (7) can be reduced
w0 the following form :

0,88, = ByDw, (15)
where £2, = 1 + Vyk2.

Applying the ‘curl (curl)' operator on (13) and 'curl’' on (7) results their projections
along z-axis :

29 2 , (92 ?
- [vo(2D? +k2) + 2] D + %.; DASB,, (16)

Q.& = ByDC. an

Analyzing the disturbances in terms of normal modes, we assume that the perturbation
quantities are under the form :

{w.8.v.88,, ¢, E} = {W(2). ©(2). T'(2). K(2). Z(2), X(2)}-
exp [ier +iky+ nl]. (18)

where W, O, T, K, Z, X are the perturbation amplitudes.

It 1s convenient to discuss egs. (5), (6), (14-17) taking into account (18) and in
nondimensional variables. Choose the units of length [L] = Iy and of time [T] = (/;)*/v and
el 3=tz a=kly; 6= nlgPv; 0 =n'loPIv; py = VI py= VIV p3 =V[Y.
Introducing the following quantities :

BE BB o _NT. o Bk
R A A Y
By, 12 a'gl?
C = ‘\‘/I‘_U'§ G = _Vwi G = P%O_,az; 7 = —‘f,l'“z (19)
0 m
17 v
Gy = VUl G = NTly; NT =205 U = 3

and the operators
O0=D-a% O, =D-a*-c"; O =D?-a?-op;
0,=D"-a’-o0p,; O =D-a’-0py; O, = 2D +a?, (20)
the final form is :
0,0 = -C,W. Q@
o,r = -Gw, (22)

0,Z = -[C, + C,0,]DW - C,DX, 23)
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0,k = -C;DW, (24
0,0W = (0 - C,I + (G,0,+C,)DZ - C,0DK, @5)
0,X = -C,DZ. (26)

4. Dispersion equation

Eliminating @ (z), I' (z), K (2), X (2) and Z (z) from eqs. (21-26) and introducing the

Byl . L
Chandrasekhar number @ = C,C, = ﬁ. the differential equation is :
' m

((D?-a?-0")(D? - a? - op,) - QD*){(D? - a?)-(D? - a? - op))
{D? -a? - ap,)-[(D? - a* - *)-(D? -a? - op,) - QD?]
+(D? ~a? - 0p,)-a? -[R(D? - a? - 0p;) - S(D? - a - op,)}

W(z) = -UIV+(2D? +a?))? (D* -a? - 0p,)(D? - a2 - op,)

(D? -a? - 0p,)* D2W(2) 27
14
where R = 89y is the Rayleigh number,
X
Q7 l4
S = ﬂo— is the solute Rayleigh number, (28)
xv
.ng . . .
V= - is a non-dimensional number.
%
0

Eq. (27) is identical to that of Gupta and Singh [17] where the D? - a? - & operator has been
replaced by D? - a? - o* operator and

2
N nily . EV
= —. =n. —_—
o v n n[l+ *Vc] (29)

5. Particular cases
(i) In the absence of FLR (Vo = 0) and rotational motion (V= 0), eq. (27) reduces to :
[(D’-az—o‘).(Dl-az—opz)—QDZ]{(Dz-a2)~(D2—a2—op|)-
(Dl-az—O'p3)~[(Dz-a1-o‘).(Dz—a2-opz)—QDZ]
+(D*-a’ - 0p)-al[ R-(D*-a? - op,) - §-(D? ~a - op,)
W(z) =0, (30)

because UV? =T. Eq. (30) is identical to Sharma and Sharma (8] taking into account the
same operator modification.
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(i) In the absence of FLR (v = 0), and solute gradient (S = 0), eq. (27) becomes :
[D?-a? - op,] {(02 -a?)((D?-a? - 0*)-(D? - a? - op;) - QD]
+T(D? -a? - 0p, D2} W(z) = -R-a-[(D? -a? - 6°)-
(D?-a? - 0p,)- QD*|-(D* - a? - op,) W(2). 31

i) For a single plasma component (pure plasma) in the absence of ion-neutral
collisional frequency (v, = 0; 6" = @), eq. (31) has the form :

(D2 -a? - 0p) {(D? - a?) [(D? - a2 - 0) (D? - a - 0py) - QD]
+T-(D? -a? -opz)Dz}W(z) = -R-a? {[(D1 -a?-o0)

\ (DY -a? - op,) —QD2]~[D2—a2—op2]} W(2) (32)
which is identical with Chandrasekhar’s result (1961).

6. Discussion

I'he boundary conditions in the case in which both boundarics are free as well as perfect
conductors are :

W(z) = D*W(z) = DZ(z) = 0, O(z) = I'(z) = X(z2) = 0 (33)

a =0andz=1("=0,z" =) and 8B,. 6B,, OB, are continuous. The proper solution of
¢ 127) characterizing the lowest mode has the form :

W(z) = W;sin(mz), (34)
where W, is a constant.

Substituting (34) in (27) we obtain the characteristic equation :

R = (1+x)[(A+x+0)(1+x+b) (1+x+by) (14 x+by)]
b [x(1+x+b,)) 1+ x+b,)]

S x(b+x+b)(1+x+by)) + Q1+ x)(1+x+ b)) (1+x+b;)
* [x(1+ x+b,) (1+x+b,)]

. UV, -(2-x)P (1 +x+b) (1+x+b,)]
x[(1+x+0)(1+x+b)) + Q]

; (35)

. u? R s ) v
Where x="m R=og Si= 230 Q=3 Vi = o
- _ 0. - 9, _ o, - 9
o="7 b= 3 b= 3 b= 5
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In the casc of stationary convection (n =0 = n'=0"=6=0,b, =by=by=0), e
(35) has the form :
[V, -(2-x0))2(1+x)?

I+x
FIET T AR 36)

ko= —= [(1+0?+Q ]+ U

identical with Gupta and Singh’s | 17) results.

If the FLR corrections are not taken into account (v = 0), eq. (36) can be reduced (,

the form : )
' (1+x
R = l—-+x—x|(l+x)2+Q|]+T| M+S.. 37
where T, = UV, - (2-x)F = UVE -2UV,(2-x) + U2-x)?

aQus 40

niv? n2v?

v2 )
Vo (2-x) + V—g(Z—x)~;

24
10
2

is the Taylor number).

T
T, = F; (when v, =0. T =

If furthermore, we do not consider the solute gradient (S = 0), we obtain the Chandrasekhar
result [4].

Generally, the investigation of FLR, rotational motion and solute gradient effects s
facilitated by the analytical study of dR,/dU, dR\/dV\,dR,/dS,. It follows from (35) that

dR, [V, -Q2-x)P (+x+b)(1+x+b))

dU x[(1+x+0)(1+x+by) + Q)

dr, U2|V|-(2-X)](|+X+bl)(l+x+b2)
dv, - x|(|+x+6)(|+x+b2)+QI] '
dR, 1+x+b

— . (38)
ds, l+x+b,

Our discussion is limited only for stationary conveclion (sce eq. 36) where the modificd
Rayleigh number R, attains the minimum when dR,/dx = 0. We obtain :

T +ax®+a,x’ +axt +a,x +agx’ +agx+a, = 0, 39
where a, = 55+0.5,

a, = 12+2(Q, +U),

a = 12.5+6.50, ~0.5T, + U(1+1.50,)+ {UT,,

o
]

y = 5460, +0F 2T, +0.5U(-12 - 40,) +2,[UT, (4+Q,).

= -15+0.50,(Q, ~2)-3T, +0.50,T, +0.50(-23-3Q,) +12{UT;-

»
|
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Figure 1. The critical Rayleigh number R,. for the onset of ordinary convection as a function of
Q, for various assigned values of Ty 1n Chandrasekhar model The curves are labelled by values
of T to which they refer and in the absence of FLR (U = 0) and thermosolutal effect (S} = 0).
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Figure 2. The dependence on Q) for various values of 7} of the critical wave number A. (in
Chandrasekhar model) of disturbance at which instability first sets in as convection. It will be
observed that a discontinuous change in A, occurs when (for increasing Q)) the maner of
instability changes from overstability to ordinary convection.
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Figure 3. The cnncal Raylesgh number R, as a function of @ | for various assigned values of T
w the Gupta and Singh model, m the presence of FLR (U = 1000) effect but in the absence of
thermosolutal influence (5;,=0)
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glgn:re 4. The dependence on Q) (for various values of T'1) of the critical Wave number A, in
upta ?nd Singh model, of the disturbance o which instability firse sets in as ordinary
convection 1n the presence of FLR effect (I = 1000) and in the absence of thermosolutal

influen = i ilizing j
,',.duadc: y(.:':,L R.0) It will be observed a stabilizing influence on discontinuous change in A,
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h.il(lﬂz.)2 +T,1-8U +8,/UT,

a, =
a, = —0.51+0)(1+Q)? +T, +4U - 4,JUT, ], (40)

with X, (i = 1,7) determined as a solution of eq. (39), the relation (36) will give the required
cnitical Rayleigh number R, (if R < R, the system is stable and for R > R, the system is
un%lable).

It is casy to show that for stationary convection (0=0;, 6" =0; 6=0; b, =b, =
by = 0), the results are identical with the relations obtained by Gupta and Singh [17]
(egs. 27-31).

The numerical result and comparatively graphic analysis for our model can be
«ecn in Figures 1-5. It may be observed in Figure 5, by comparision with Figure 3, a
special behaviour of a critical Rayleigh number R, as a function of Q) for the same assigned
values of T;.
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..Og( Rc )
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550 ]
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450 F v T Y T Y Y R T YO T ) FTEN T EEY UYL v Ty
1.00 200 .H&‘ ‘Aﬂ o500
Loq(Q)

Figure 5. The critical Rayleigh number R, as a function of Q| for various
assigned values of T) in owr present model for stationary convection in the
presence of FLR (U = 1000) and thermosolutal (S = 10000) effects. It will be
observed a stabilizing. influence of FLR and stable solute gradient on
thermosolutal instability.

The positive value for dR /d¥,, where x = a%/% > 2 for all values of V, (or V, > 2 for
all values of x) permits to conclude that for x > 2, the effect of rotation is always stabilizing
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(sce Figure 6). Because dR)/dU is always positive and dR,/dS, = 1 according to Gupta and
Singh [17], the FLR and stable solute gradient have stabilizing effects on the thermosolutal

instability (see Figure 7).

10 T P
//
7.25 =
E; 4.5 f —
-1 | 'rr‘:L- 1
1.754 t e =
L,k'—‘l'/‘ '——’"‘""
N T _14-
N I O T T s A A
0 2 2 3 8 10

Figure 6. Vanation qf dR, / dV, for different x and several values of T) (104,
105, 10% and @, = 105

.27 — — 71~

I I
0.2054———+—— - . R

4
Figure 7. Vanation of dR / dU for different x and several values of T} (10°.
105, 10% and @, = 10°
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