Indian J. Phys. T1B (1), 59-67 (1997)

1JP B

- an international journal

On the bound states of the generalized inverse-power
potentials in N-dimensions

Siileyman Ozgelik and Mehmet Simsek

Department of Physics, Faculty of Arts and Science,
Gazi University, 06500 Ankara, Turkey

Received 26 April 1996, accepied 21 November 1996

Abstract : We have presented bound state solutions to the Schridinger equation for
general inverse-power potentials, V(r) = tl‘: l"\/— vV in N-dimensions. By using a simple
algebraic method, it is shown that bound states of these potentials exist when the parnmeters A,
satisfy cerain constraints
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1. Introduction

The problem of quantum inverse-power potentials has been the subject of many discussion .
for decades, both from an analytical and numerical points of view, because of its important
applications in molecular physics [1], atomic physics [2], solid-state physics [3] and
scattering theory [4]. Some special forms of the inverse-power potential describe
miermolecular short and long-range interactions [1], and also, the spin-orbit and spin-spin
interactions [S]. The induction energy for the interaction between a molecule with a
permanent dipole moment and a non-polar molecule can be described with inverse-power
potentials. The dipole-dipele dispersion energy for two molecules in their ground states i
therefore attractive and inversely proportional to the sixth pewer of the intermolecular
separation. Also, the dispersion energy arising from dipole-quadrupole interactions,
quadrupole-quadrupole interactions, etc., is in a more complete form if it includes the terms
of mversely proportional to higher power of the internuclear sepafation [1]. On the other
hand, the inverse-power potentials can be used for the short and long-range interactions
between two colliding particles [4]. Also, the various forms of the inverse-power potential
for the short-range repulsive energy have been adopted in order to study the crystalline
properties of alkali halides and other ionic solids [3].
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It should be noted that, nonrelativistic quantuim mechanics with local interactions
loses its general properties. Thercfore, there arc a number of cases where use of singular
potentials is of intercst. Recently, solutions 1o the Schrésdinger equation for particular cases
of inversc-power potentials have been studicd by several authors [5-8] in one- and three-
dimensions. In this paper we have extended the method [7.9] to use the solutions of the

radial Schrédinger equation for the general inverse-power singular potentials,

2L
Vir) = ZAVr"’. (1)
v=l

This potential can be reduced to well known potential by choosing appropriate A, and L
For example, for L = 4 it reduced to eighth-order inverse power potential (EPP). EPP
models to the induction energy for the interaction between a molecule with a permanent
dipole moment and a non-polar molecule, or the induction cnergy for identical ncutral
molecules, including terms of upto quadrupole-induced dipole interaction which is
proportional to r ¥ {1]. Also,.rh,(‘ crystal properties for ionic crystals have been calculated
using special types of EPP. Thus, the potential V(r) = % + A’L + 42- + i:} nas been used
1o calculate crystal properties of alkali halides and other ionic solids. where A and n arc
potential parameters, A, is the Madelung constant, Ag and Ay are van der Walls constants for
dipole-dipole and dipole-quadrupole interaction, respectively [3]. On the other hand, the
EPP can be used as the interaction potential in the scattering of charged particles by neutral
targets o1 1n collisions between neutral particles [4]. The long-range paits of the interaction
potential includes higher power of r, namely, :‘4 + % + i} + 4]

For L = 2, the eq. (1) turns to fourth-order inverse power potential (FIP) [6-8].
Viry = —:‘-} + ir‘.} + %‘» + i:l describes zeroth moment, dipole moment, dipole-dipole and
dipule-quadrupole interactions of two molecules [2]. For A; = 0, the FIP reduces to the
potential V(r) = %1 + %‘- + ?% which contains magnetic spin-spin and spin-orbil
interactions between two spin -{; particles [5]. For Ay = 0 and A, = 0, the FIP reduces to
the Kratzer [10], atomic Fues |11] or a Mie-type [12] potential of the form V(r) = % + 4
It can be used to invesligate the rotation-vibration spectrum of a diatomic molecule
(10.12]. Also, for A4 = 0, Ay = 0 and A, = 0, the potential in eq. (1) turns to the Coulomb

potential. -

2. Solutions in N-dimensional space
The radial Schrodinger wave cquation for a spherically-symmetric potential V(r) in ¥

dimensional space is

R | d? N-1d | I(I+N-1
2‘1]#*'77;4"( +r——)]R(7) = (E-V(r))R(’) (2)
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The transformation ¢(r) = rwfuk(r) reduces ¢q. (2) to the form

F2[ 32  (M—-1)\M-
- '—[% - +ﬁf"3’]¢m = (E-V(r)o(r) 3)

where M = N + 21. Choosing the following factorized form for ¢(r)

¢(r) = f(r) explg(r)] @)
and substituting it in cq. (3), one can obtain
¢"(r) = [g"(,-) + g’ (r)? + M’%] o(r). 5

Comparing e4. (3) and cq. (5) we obtain

(M-1)M-3)

f'(nN+2f(rg'tr)
4r2

\ Ui+ IG) (6)

-e=g"(n+g'(r)+

where /(r) = %ﬁ'—vm and € = %‘3’-1-:. Eq. (6) for fr) = constant is one of the forms of the

Riccati equation. Qur purpose is to find the fraction of right hand side of eq. (6)
corresponding to the potential and cenergy. Exponential part of wave function, g(r), and
other part f(r), which is a polynomial in r must ensure the normalizability of ¢ (r) (¢ (r >
wp— Oand ¢ (r - 0)-> 0].

Eq. (6) in N-dimensional space for the reduced radial wave function ¢ (r) has the
stiucture of the one-dimensional Schrodinger equation for a spherically symmetric potential
Viry To solve the transformed Schrodinger equation, eq. (6), for V(r) in eq. (1) we choose
Jt71in the nodal form,

fon) = f[ [r-—af")], n=12..fn =1 0

-1

and g(r) n the polynomial form as,

= 1-k
g(r) = ayr +Z “l‘i—k-ﬁ binr, ®)
A=

where g

values correspond to the nodes of the wave function ¢ (r) that are determined
by 1oots of fir). We can rewrite eq. (6) by substituting g(r) and £,¢) for ground and excitcd

slates respectively, as given below.

L
2a0b . b(b-1) a 2-j
Uc,,—£0=ag+—r°-+ = +J§=r—;-2ao+ -

L (L
+(fﬂ )
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. . . _
the first term of the right-hand side in cq. (9) is the equivalent energy (e = —a}), others
corresponding to the parametric inverse-power potential Uy, and

L .
2apb  b(b-1) a; 2b-j
Ueﬂ_gllza3+++—’—z—+§r—l2ao+ .
£

S (w aa TATE S
1k =z —_—
+; [; I'/—“-] X(zao+ r )(‘; r_a’{n)J
L n
2a,
+*25_’T(Z’ r-a) ] Z(r a"")(r a™y’ (19

For the first node, parametric potential and energy are obtained from eq. (10) forn = 1 as

L
2apb . b(b-1) a, 2b-j
I/”rf(r)—£'={‘g+To+T+;r_l 2EO+T

1=
. L1 (L= av
a,a; 2“1(
+Z (Z L ]+ (2‘4 —'T} an
= AVE
where €, = —af, 4 = band
L
2 aa™" =0 (12)

k=0

In general case, parametric potential can be written as

L-2 (L-2 2 n
+ 2 ( ,,+2][ a o ) 13
k= = 1<y

& = ~u(§-[fn =T ) (14

On comparing eq. (13) and eq. (1) we find the relations between the corresponding potential
paramelers and wave function coefficients (a,, a'("’) as

2 4 v=2 n -
;!% A, = Z aa, +a, (2n-v+l) + 22a} [Za,?"’ ! 'J

j=0 =0 =1
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v-2 n :
(" (-t
+2 [Za."’ o ] v=123..L (152)
m= 1Sy
WA =0-va,, + Z aa, ; v=L+L (15b)
j=v-L
L
WA = Yaa, ;. v=L+2Led ., 2L (15¢)
J=v-L !

wherc a; =b (2b =21 + N - 1). Note that for v=2, %(M- 1) (M - 3) is second contributor
"ol the parameter %‘;‘ A;. There are the relations between the wave function parameters a;
ane @™ (for the first three sets) as

Za. (Z“‘"’“] ) [ia.‘""a}"" ] =0, (16a)

k=0 \ 1<y

\

\

k=0

Ya [iaf"'“a)"’] Z [zawﬂ et ]

1#y k=0 <y
L-1 n
I K-l
+ 26 Yol e | = o, (16b)
k=0 \r#swl
L ". L-k 1 Lt 1
Z“k 2 4n)a(n)a(n) + 22 Z a"'" a‘"’ a""
k-0 #) k=0 \r#)#l

L-! ]
() (A= o) )| —
+ 2 (“Za,"’ o " a ] = 0. (16c)

=0 J2lem

Hence, the unnormalized wave functions are given by

L -k
9,(r) = l-[ (r-a™)raeN-12 exp [aor + Z alkr p ] a7
k=2 -

=1

The index n denotes the number of nodes of the wave function in 0 < r < oo, The eqgs. (15a—
¢) contain the relations between the potential parameters A, and wave function parameters
4 and o;". From eqgs. (15a—) and egs. (16a~c) it is possible to obtain the coefficients g
@ u function of A,. Hence, for the potential in eq. (1), the exact energy and the
corresponding wave functions in N-dimensional space can be determine from eq. (14) and
¢q (17), respectively.

The general results obtained above can be simplified for special cases of L :
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For L = 4, the potential in eq. (1) reduces to EPP as

A A A A A A
_ 8 7 6 S 4 3
V(r) = _’:i- + _r7 + —r6 + —rs + —r‘ + ’3 +

B>

Al
+ (g
r

From egs. (15a—), relations between potential parameters and wave function coefficient
can be obtained as (A =2u=1)

A, = 2ay(b+n);
> () 1
A, = b(b+2n—1)+2ay(a, + 3, &™) +n(n—1)-7(M-1XM -3);
i=l
n n )
A, = 2a4a,+2a,(b+n-1)+(2b+2n-2) Z a) +2a, z a™’; (9
i=l i=1
n | n
A, = 2a4a, +ay(2b+2n-3)+a} +2a, Za,("} +(2b+2n—-2)Za’("’:
(n) (n) ).
+2azza. +2Za, a’™;
1=l 1<)
Ag = 2a,a,+2a,(b-2); A, = al +2a,a,; A, = 2a,a,; Ay = al.

Also, there are four constraint rclations on the potential parameters as follows :

A 4A A, - A? 1 .
A, = n(n+2l+N-2) + | (S B ) Z a,("’ '
2n+2[+ N -1 :t4Aé 4
(20a)
AA 4
A=t \/_.(21+N 2n-1 AﬁAﬂ% 21+ N+2n-3)
vnh 8A]
(2; Z a(") + (2[+N+2n 3) Z a(ll) (20"’)
2n+2l+N-1
- ﬂAlm (4A6A8 Az)z
A= aanot & 2\/.A:(ZI+N+2n 4) + __6711,—_
S 24 "
(.") (n) 1 (n)
+2) av +(—_2"+2,+N_1); «

n 4 _ A2 L]
+ (U+N+2n-3) Y o # A4 - A - A Z a™ (2
= 4A; !

4AAA, - A
Ay = "A;T t A QI+N-5). @0
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The energy for any n and /is

A2

E = - — A
"’ @n+ 20+ N-1) @13

Also, one can write the energy expression in different forms in terms of other potential
parameters from egs. (19-20), for example

2
E, = - I6Aé’ A, -n(n+2l+N-2) .
4AgA, - AT £8A] 37 "

(21b)

In order to use last form of energy expressions, af"’ parameters must be found from eqs.
(16a—) with above restrictions. Note that, there is no simple form of a'™ as seen in egs.

(16). For the first excited state (n = 1) this parameter can be obtained from

2A 4 ~ A2
S R A TR I L o Tk o
QI+N+1) 4"3

t 7% o’ £ 2,JA; = 0, 22

and corresponding wave function is

A 4AA - A |
= _alI) (214 N-1)/2 1 6 7
40 = (r-al")r e [(21+N+1)' 8Al 7
+ A7 L + _VA“ L (23)
4.JA; 1 3 7

For L = 3, from eq. (1) we have

A A A A
V(r)=ié+—:+—:+—]3+ézl+—l~ (29)
r r r r r r

In this case, relations between the parameters can be determined with egs. (16, 19-20) for
a3=0(Ag = A, =0). The wave functions are

9,(r) = H (r_a}n))r(ll-rﬂ—l)ll exp [(2 +A/:/+|)’

A 1, A 1
*Qi—;*Trz]- (@5)

with the consistency relations

A A d
A, = 2A+N-2) + ———L— S +2 ) ™| (26
2 = s U TP Ty (1}],46 ; O B

71B(1)-10
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124,,/A, A ~
A = WTN+I T + A 2I+N+2n-3)
Y . — y a™ + @l+N+2n-3) 2 a™,  (26b)
2n+2+N-1) & ™ - P
— A? 2A N & \
= N-4 5o a'm
A= * A Qa2 N-4 + T (2n+2l+N-lJ2,=l '

n . A n n
(ny? s (n) (n) o (n)
+2n+2A+N-3) Y 177204 +2) a"a  (26c)
1= 6 =l 1<y
The cnergics are of same form as in eq. (21) with restrictions in egs. (26a, b, c). Also,
parameters al‘ ™ can be found from egs. (16a—) for several values of n.

We note that, if the potentials in eq. (18) and eq. (24) do not consist of the Coulomb
term (i.e. A, =0u1 b =—n), the energy (€ = -«;) is determined in terms of other potential
parameters, from cq. (19). Also, the potential in eq. (24) for A, = A5 = 0 (or a3 = 0) reduces
to the FIP which can be obtained from eq. (1) for L = 2. In this case, there arc two
restrictions between potential paramelers : A; = iﬁ% (\/_AT + Z;’=l a,‘"’) +n(n+2l
+N-2)and A;=(2I+ N-3) \/I Thesc results are identical with the previous works [6-
8] 1n three-dimensional (N = 3) spaces. This potential for several values of A, trns to some
special potentials, i.e., for A} =0, the FIP can be reduced to the potential as given forc = -
—n in [7] in three dimensions. For Ay = A, = 0, one can obtain the potential ? + 4} that
includes only Coulombic interaction and interaction of an ion with a neutral atom or
polarization term of atom or molecule, where E, = a S, b=1,A=2a,(n+1)and 2gy
(A, + Zn, a™) +n(n+1)+3 (2 +N-1) Q21+ N-3) = 0. Moreover, onc can obtain
Kratzer and atomic Fues (or a Mie-type) potentials for L = 1 (i.e. A= As = Ag =A3=0in
¢q. (24) of ay =ay = 0) by the same way. For this potential, there is no constraint on the
potential parameters.

3. Conclusions

A large arca of mathematical physics is concerned with exact solutions of singular systems
from the viewpoint of quantum mechanics. We have given solutions to the Schrodinger
cquation (egs. (2)(6)) for general inverse-power potentials, eq. (1), in N-dimensions. We
take all the solutions i the form @(r) = fir) exp |g(r)], which suitably restricts fr) and g(r)
to incorporate the boundary conditions. The wave functions and encrgies of difterent forms
of the mverse-power potentials can be determined by using this algorithm for several values
of L. Our solutions have mvolved some restrictions between the potential parameters. The
number of restrictions on the 2L potential parameters are L except L = 1. We note that, the
solutions of general inverse-power potentials can be reduced to some molecular, atomic and
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spin systems. Thus, the difference between the present work and the previous works [6-9)
s that the previous works are the special solutions of the general solution derived in this
work. and its attempt to extend the class of quasiexactly solvable potentials from
polynomial towards essentially singular potentials.
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