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Abstract : We have presented bound state solutions to the Schrbdinger equation for 

general inverse-power potentials, V(r) s  ‘n ^-dimensions. By using a simple
algebraic method, it is shown that bound states of these potentials exist when the parameters A v 
satisfy certain constraints
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1. Introduction

The problem of quantum inverse-power potentials has been the subject of many discussion, 
Tor decades, both from an analytical and numerical points of view, because of its important 
applications in molecular physics [1], atomic physics [2], solid-state physics [3] and 
scattering theory [4]. Some special forms of the inverse-power potential describe 
iniermolecular short and long-range interactions [1], and also, the spin-orbit and spin-spin 
interactions [5]. The induction energy for the interaction between a molecule with a 
permanent dipole moment and a non-polar molecule can be described with inverse-power 
potentials. The dipole-dipole dispersion energy for two molecules in their ground states is 
therefore attractive and inversely proportional to the sixth power of the intermolecular 
separation. Also, the dispersion energy arising from dipole-quadrupole interactions, 
quadrupole-quadrupole interactions, etc., is in a more complete form if it includes the terms 
ot inversely proportional to higher power of the intemuclear separation [1]. On the other 
hand, the inverse-power potentials can be used for the short and long-range interactions 
between two colliding particles [4]. Also, the various forms of the inverse-power potential 
♦or the short-range repulsive energy have been adopted in order to study the crystalline 
properties of alkali halides apd other ionic solids 13],
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U should he noted that, nonrclativistic quantum mechanics with local interactions 
loses its general properties. Therefore, there arc a number of cases where use of singular 
potentials is of interest. Recently, solutions to the Schrodinger equation for particular cases 
of inverse-power potentials have been studied by several authors [5-8] in one- and three- 
dimensions. In this paper we have extended the method |7,9] to use the solutions of the 
radial Schrodinget equation for the general inverse-power singular potentials,

This potential can be reduced to well known potential by choosing appropriate A v and L  

For example, for L  = 4 it reduced to eighth-order inverse power potential (EPP). EPP 
models to the induction energy for the interaction between a molecule with a permanent 
dipole moment and a non-polar molecule, or the induction energy for identical neutral 
molecules, including terms of upto quadrupole-induced dipole interaction which is 
proportional to r H 11]. Also, the crystal properties for ionic crystals have been calculated 
using special types of EPP. Thus, the potential V ( r )  = A  + A  + + nas been usej

to calculate crystal properties of alkali halides and other ionic solids, where A  and n  are 
potential parameters, A  i is the Madclung constant, A6 and A8 are van der Walls constants for 
dipole-dipole and dipole-quadrupole interaction, respectively |3]. On the other hand, the 
EPP can be used as the interaction potential in the scattering of charged particles by neutral 
targets oi m collisions between neutral particles (4|. The long-range pails of the interaction 
potential includes higher power of r, namely, + , [4]

For L  = 2, the eq. (I) turns to fourth-order inverse power potential (FIP) [6-8|, 

V(r)  “ Tf + T t + T f  + T1- describes zeroth moment, dipole moment, dipole-dipole and 

dipole-quadrupole interactions of two molecules [2]. For A, = 0 , the FIP reduces to the 

potential V(r) = ^ - 4 ^ 4  4 ,  which contains magnetic spin-spin and spin-orbit 

interactions between two spin particles [5], For A 4 = 0 and Ay  -  0, the FIP reduces to 

the Kratzer f 1OJ, atomic Fucs 111 ] or a Mie-typc [12] potential of the form V( r)  = + -j-

It can be used to investigate the rotation-vibration spectrum of a diatomic molecule 

[10,12|. Also, lor A a = 0, A j = 0 and A 2 = 0, the potential in eq. (1) turns to the Coulomb 
potential.

2. Solutions in iV-dimensional space

The radial Schrodinger wave equation for a sphcrically-symmetric potential V ( r )  in N- 

dimensional space is

2 L

( 1)

(2)
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l/V-l)
The transformation 0(r) = R(r) reduces eq. (2) to the form

- § [ | r  -  l * r ' * ? - 3)] « r )  = (E-V(r)Wr,

where M = N + 21. Choosing the following factorized form for $ r)

<t>(r) = f ( r)  exp|g(r)]

jml substituting it in cq. (3), one can obtain

0"(r) g"(r) + g'(r)2 + f " ( r) + 2/ ' (  r)g'(r)
fU )

(3)

(4)

(5)

Comparing eq. (3) and cq. (5) we obtain 

(A f-l)(M -3 )U(r) + - 4 r2 - e  = g"(r) + g'{r)2 + r f r ) + 2 / V t e V )
f i r) (6 )

where / '(r i = ^-ViD  and e -  Eq. (6) for_/fr) = constant is one of the forms of the

Kieeali equation. Our purpose is to find the fraction of right hand side of eq. (6) 
corresponding to the potential and energy. Exponential part of wave function, #(r), and 
oilier part /(/*), which is a polynomial in r must ensure the normalizability of 0 (r) [0 (r —» 
<<•} —» 0 and 0 (r —> 0) —> 0].

Eq. (6) in /V-dimensional space for the reduced radial wave function 0 (r) has the 
Nilucturc of the one-dimensional Schrodinger equation for a spherically symmetric potential 
V(t ) To solve the transformed Schrodinger equation, eq. (6), for V( r)  in eq. (1) we choose 
/(/tin the nodal form,

n

/ „ ( 0  = n  ['■-“ C ] ' * = 2...... /o<0 = 1 (7)

and g{r) in the polynomial form as,

L i -/t
g(r) = a0r + ] ^  ~ l ^ T  + blnr'

where crj"' values correspond to the nodes of the wave function 0 (r) that are determined 
loots ol /(/ ). We can rewrite cq. (6) by substituting g(r) and f n(r) foi ground and excited 

Mates respectively, as given below.

(9)
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,hc first term ol the right-hand side in eq. (9) is the equivalent energy (£ = — aj). others 
corresponding to the parametric inverse-power potential Ue„, and

, 2a„b . b (b -l)  , V  ^ 2b~ J )
= « 2o + - r  + —p -  + l i 7T[2a«+  r )

1 2a f n 1 1 2
+ S  ~  l^f r-a\n\ + ( r-a^Mr-a}"*)'

 ̂ 2a, | I
k̂ 2 \ i=i ' ~i /

For the first node, parametric potential and energy are obtained from eq. (10) for n = 1 as

L
l a nt) h (h  -  11

Ueff(r) ~ £\

( 10)

*!(;§  £ ) ♦ £ ( § * £
where c, = -  Aq, al = b and

= 0.

(II)

( 12)

In general case, parametric polcnlial can be written as

j --2  V }
Z.-I ( L- 1

L- 2 (  L-

+ S  [S H

f -i ~ " "6 • ( £" p  )'

(13)

(14)

On comparing cq. (13) and eq. (I) we find the relations between the corresponding potential 
parameters and wave function coefficients (ak, a (,,)) as

2̂
h2 A« = X  “A -j  + ov.,(2 n -v  + l) + 2£ 0j X a i"y ' ‘

j=0 j=0 L ,=1
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v-2 ( /.
im=0 V '̂ 7

\
a W"‘a w - - i  _ v _ , 2 3... 1- (15a)

m a
k1 = 0 - v K - i

L
+ X V v - y -  v = L +  l;

j = v - L
(15b)

hi \ - iw ,
J -  v- L

r, v = L +  2, L +  3, .... 2L\ (15c)
where ci\ = b  (2 b  = 21 + N  -  1). N ote that for v  = 2 , \  (M -  1) (M -  3) is second contributor 

oi the param eter jjjr A2. T here are the relations betw een the wave function param eters a k 

ml a]n) (for the first three sets) as

i L (  ■ ^ L - 1 f  n )

+  I
^ T ( x f r,)l a \ n ) L k ~'

k = 0 l  i =  l J * = 0 , ' < j  J

(16a)

n > L-2 » ^
^ a (n,L‘ oJn|
.•*J J *=0 y

+
L - 1  {  n \

= o, (16b)

L  !
r  „■ L - 2 r  „  ^

t
y  o r j n ^ * l o r J #l^  *

J t - o  l J k=  0 j

t =0
/ rtl = 0 . (16c)

Hence, the unnorm alized wave functions are given by

<t>n(r) = f l  ( r - a iln))r(I'+A'-|>'2 exp a 0r + £ (17)

The index n denotes the num ber o f  nodes o f  the wave function in 0  < r  < «>. The eqs. (1 5 a -  

0 contain the relations betw een the potential param eters A v and wave function param eters 

ak «md a (ln). From  eqs. (1 5 a -c ) and eqs. (1 6 a -c ) it is possible to obtain the coefficients a k 

as a function o f  A v. H ence, fo r the  po ten tia l in eq. (1), the exac t energy  and the 

corresponding w ave functions in N -dim ensional space can be determ ine from  eq. (14) and 

tlci (17), respectively.

The general results obtained above can be sim plified for special cases o f  L :
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For L = 4, the potential in eq. ( I) reduces to EPP as

V(r) r8 p  rb r s r4 r 3 ( 18)

From eqs. (15a-c), relations between potential parameters and wave function coefficients 
can be obtained as (h = 2/i = 1)

4, = 2 a0(b + n)\

n 1
A2 = b(b + 2 n - \)  + 2aQ(a2 + '£ i a {ln)) + n ( n - \ ) - j ( M - \ ) ( M - 3 ) \

i=i
n n

A, = 2ana  ̂+ 2a2(b + n - \ )  + (2b + 2 n -2 )  £  a,(,,)+ 2a0 £  a p ; (19)
J=l 1=1

n /i
A4 = 2fl0a4+fl3(2^ + 2 n -3 ) + a^+2flQ ^ a /(n) + (2b + 2 n - 2 ) ^ a ilny 

+ 2a2 ^  a (n) + 2 ^  a.\n)a (}n)\
i=l k ;

A5 = 2a2a3+2a4(b -2 ); A6 = ri2 + 2a2a4; A7 = 2a3fl4; Ag = a 2.

Also, there are four constraint relations on the potential parameters as follows :

r - /, > p
A2 = n{n + 2l + N - 2 )  + 2n + 2, + N _ l 4 ̂ 6̂ 8 ~ ^7 

±4/ti
2 X  oJ-»

V 1=1

(20a)

A3 = ±
A. A, 4A„AR -  A72

—  ± - 6- 8 ,- ? (21 + N + 2 n -3 )
A%(21 + N + 2n -  \) 8A*

2A.
2/I + 2/+  /V- 1

n n
£  a ‘")3 + (21 + /V + 2n -  3) £  a,("1, (20h)

±2;4| V ^  ± —̂ 2— <21 + N + 2n 4) + ^ V ^ 2)2>14. 9/ 4. a/_  i 1   ̂ I——t +1\ + in  4) + >̂1 --I4 2n + 2/ + A/ - 1 ^  -  6 4 ^ “

+ 2

4 V « - ^ 7
n

V

4 / 4 8

2 .

i = l

- s '  *  V v « + » - » (20d)



The energy for any n and l is
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£  . __________ A?
(2n + 2l + N - l ) 2 (21a)

Also, one can write the energy expression in different forms in terms of other potential 
parameters from eqs. (19-20), for example

A1-n (n  + 2 l+ N -2 )

« ln)j
(21b)

In order to use last form of energy expressions, ajn) parameters must be found from eqs. 
( |6a-c) with above restrictions. Note that, there is no simple form of a (n) as seen in eqs.
(16). For the first excited state (n = l) this parameter can be obtained from

2A,
a \ir + (21 + N - l )  a}0’ ± 

A,

4A6A8-A 72

4A*
V<1)2

(2/ + yv + i)

±  a,0) ±  = ° ’

and corresponding wave function is

*.(r) = (r -a ! l))r,2'4A'-')/2 exp f-----^----- r± 4AA ; ^  I
1 '  ’ ' V [(2l + N + \) i A i  r

A,

(22)

± ' ±  + V^L 1
±4-yJ\ r2 3 r3

F;or L = 3, from cq. (1) we have

n r) = 4  + ^  + i f  + ^  + 4  + ^L.

(23)

(24)

In this case, relations between the parameters can be determined with eqs. (16, 19-20) for 
a4 = 0 (A s = A7 = 0). The wave functions are

»  = r(2/+AM>/2 exp r A ,
[(21 + N + l)

* 2 ? C

with the consistency relations

^ 5 _ 1  + J_

n{n + 21 + N — 2) +
2n + 2/ + N - l

(25)

, (26a)

7lB(l)-lo
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A .  =  ±  ( 2 / + W  +  2 I . - 3 )i "  2/ + N + 2n - 1 2 ^ \

^  -  ± f t a . . 2 i * » - A )  *  ^  I  <

+ (2ff+2/ + /V-3) £  a j"*2 ± £  a '" ’ + 2 £  a ,")aj'°  (26c)
"TiT VA> , = i ,<i

The energies are of same form os in eq. (21) with restrictions in eqs. (26a, b, c). Also, 
parameters a\n) can be found from eqs. (16a-c) for several values of n

We note that, if the potentials in eq. (18) and eq. (24) do not consist of the Coulomb 
term (i.e. A, = 0 ui b = -  n), the energy (e = n(2, ) is determined in terms of other potential
parameters, from cq. (19). Also, the potential in eq. (24) for = A$ = 0 (orflj = 0) reduces 
to the FIP which can be obiained from eq. (1) for L = 2. In this case, there arc two 
restrictions between potential parameters : A2 = fn+ii+N-i + (X[fn)) + n (n + 21
+ N -  2) and Ay = (2/ + N -  . These results are identical with the previous works [6-
8] in three-dimensional (N = 3) spaces. This potential for several values of A{ turns to some 
special potentials, i.e., for A\ = 0, the HIP can be reduced to the potential as given for c = -  * 
-n in (7] in three dimensions. For Ay = A2 = 0, one can obtain the potential “  + thatr r4
includes only Coulomhic interaction and interaction of an ion with a neutral atom or 
polarization term of atom or molecule, where En = a ^ b  = 1, Aj = 2oq ( n + 1) and 2oq 
(J a4 + Z"., a jn)) + n (n + 1) +£(2/ + N -  1) (2/ + N -  3) = 0. Moreover, one can obtain 
Kratzer and atomic Hues (or a Mie-type) potentials for L = 1 (i.e. = As = A4 = Ay = 0 in
eq. (24) of ay =a? = 0) by the same way. For this potential, there is no constraint on the 
potential parameters.

3. Conclusions

A large area of mathematical physics is concerned with exact solutions of singular systems 
Irom the viewpoint of quantum mechanics. We have given solutions to the Schrodinger 
equation (eqs. (2)-<6)) for general inverse-power potentials, eq. (1), in A/-dimensions. We 
take all the solutions in the form 0(r) =J(r) exp l#(r)], which suitably restricts fir) and g(r) 
to incorporate the boundary conditions. The wave functions and energies of different forms 
ol the mvci.se-powcr potentials can be determined by using this algorithm for several values 
ol Our solutions have involved some restrictions between the potential parameters. The 
number of restrictions on the 2L potential parameters are L except L = 1. We note that, the 
solutions of general inverse-power potentials can be reduced to some molecular, atomic and
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spin systems. Thus, the difference between the present work and the previous works [6-9] 
is that the previous works are the special solutions of the general solution derived in this 
work, and its attempt to extend the class of quasiexactly solvable potentials from 
polynomial towards essentially singular potentials.
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