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Abstract : The Self-trapping transition(STT) of the quasiparticle in the two-
dimensional square lattice is studied within the frame work of the discrete nonlinear
Schrodinger equation. The STT shows a strong dependence on the escape probability
of quasiparticle. Furthermore, near the STT the dynamics is mostly confined to a few
neighbors. Reasons are discussed.
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1 Introduction

The dynamics of quasiparticles such as electrons or excitons in solids are in
general influenced by lattice vibrations. Different methods are used to study
the effects of the lattice strongly interacting with the moving quasiparticle.
One recent approach in this field formulates this problem within the framework
of the discrete nonLinear Schrodinger equation(DNLSE) [1-4]. A widely used
form of the DNLSE in d-dimensional Bravais lattices is

idCy .
a (en+Xn | Cu | )Cn + za:czma (1)

where n=(n;,ns,ns, ......,nd)T and 1, = (01,02,05.......... + 1,.....04). The
summation over & in (1) considers only the nearest neighbors, although the
hopping between any two sites can be included. All hopping matrix elements
are taken Yo be same and the value has been set to unity without any loss of
generality. C,, is the probability amplitude of the nth site at a time t . €n and
Xn are respectively the site energy and the nonlinearity parameter associated

with nth site. © 1996 IACS
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To obtain the linear dependence of the site-energy on the on-site proba-
bility two assumptions are invoked, namely, (i) the motion of the quasiparticle
is coupled directly and linearly to the optical modes and (ii) the adiabatic
approximation can be used for the lattice dynamics. Certain interesting cases
of the above DNLSE have been solved analytically. The most important of
them is, of course, the nonlinear dimer. It can be used as a model for hopping
of protons to trapped oxygen-sites in metals like niobium. For the symmetric
nonlinear dimer, a self-trapping transition(STT) has been obtained for x = 4
[5]. By the STT we imply that the quasiparticle over a sufficiently long time
is preferentially found at one of the sites. The absorption of light energy by
photosynthetic units has also been modeled by asymmetric nonlinear dimer
[6].

] The dynamics of quasiparticles in nonlinear lattices has also been studied.
For example, a single nonlinear impurity in one to three dimensional Bravais
lattices is found to produce a STT of the quasiparticle. The sharpness in the
transition and the critical value of x are also shown to increase with increasing
the dimensionality(d) [7]. In another recent study one dimensional nonlinear
clusters embedded in a perfect one dimensional lattice are considered. This
system is found to exhibit a cluster-trapping transition and a STT. Propa-
gating soliton-like waves are also found in between these transitions in large
clusters [8]. In this paper we plan to study numerically the STT of quasi-
particles in the two dimensional square lattice with various arrangements of
nonlinear sites. Furthermore, the effect of the boundary condition is also ex-
amined.

2 Results and discussion

Fourth order Runge-Kutta method is used to compute the probability ampl-
tude. We use 10* time steps with a time interval 0.01. The conservation of
the probability is checked at every step to ensure the accuracy of the result.
To discern the STT we primarily examine the time average probability of the
initially excited site as a function of x. The time dependence of the probability
of the initial site is considered in some cases. Furthermore, the dependence
on x of the mean-square displacement(MSD) of the quasiparticle, and hence
its velocity is studied. The MSD of a particle placed initially at a site m in 2
d-dimensional Bravais lattice is

<Ar-mP>®=) la-mP Cam®) (2

and in a perfect linear lattices this quantity grows as t? with a speed of V2.
In nonlinear lattices, the MSD grows ballistically but .<_|2'_;,'ﬁ_> depends on



The Self Trapping Transition in the two dimensional system etc 749

the nonlinearity parameter [9]. Our results are presented below.

CASE I: We consider a 7 x 7 square lattice with three types of boundar
conditions, namely, (i) reflecting on both directions, (ii) semiperiodic (periodi)c'
in one of the directions) and (iii) fully periodic. A single nonlinear impurity
is introduced in the middle of the lattice which is also the site for the initjal
excitation. For the reflecting and semiperiodic boundary conditions, we ob-
tain the STT at x., ~ 6.82, where x., denotes the critical value of x’ In the
other case xor ~ 6.87. The transition in this system is characterized by a lot
of fluctuation in the time averaged probability of the initially occupied site
followed by a steep rise to the asymptotic value (cf Figl.).

0.8 Y T — " ,
0.7+ .
0.6 rj .
0.5F .
<P>
0.4 4
0.3 \\ -
0.2 =
0.1 ] | 1 1 1
6.6 6.8 7 7.2 7.4

X
Figl. The plot of time averaged probability of the initially occupied site as a function

of nonlinear parameter x. The lattice is a 7 x 7 square containing one nonlinear impu-
rity in the middle and initial excitation has been put in the middle site of the lattice.
The light solid curve corresponds to reflecting boundary condition(x.r ~ 6.82), Dot-
ted curve cirresponds to semiperiodic boundary condition(xcr ~ 6.82) and the heavy
solid curve corresponds to the full periodic boundary condition(xcr ~ 6.87).

However for a 100 x 100 square lattice we find a very sharp transition
at xor ~ 6.81 irrespective of the boundary conditions. A similar type of
transition at xor ~ 6.82(cf. Fig2.) is obtained from the self-expanding lattice
while previously reported result for this case ~ 6.72 (7).

The reported value of x.r(3.22) for the one dimensional self-expanding
lattice is also obtained by gradually reducing the hopping to zero in one of
the directions. The STT is also obtained at the feported value from a finite
square lattice(say, 100x100) using the same procedure. We further find .tha,t
Xer(W) ~ 3.224+3.6W,and 0 < W <1 defines the ratio of the hopgmg inte-
grals in two directions. Similarly, we get a straight line with different intercept

70A (6)-13
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and slope for the same lattice with same x at all sites. However, the time av-
eraged probability at the trap-site reaches slowly to the asymptotic value.
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Fig2. The plot of velocity of the particle as a function of x in a self-expanding square
lattice. The lattice contains nonlinearity(x) at the middle and the initial excitation
is applied there. At the critical value of nonlinearity parameter(x ~ 6.82) velocity
jumps from a high value to a low value , there by indicating the transition.
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CASE II: When a finite size linear cluster of nonlinear impurities is placed
in the middle of a 100x100 lattice and one of the end sites is initially occupied,
we obtain x., ~ 6.91. In the one dimensional lattice with the same initial
condition x., is ~ 4.2. However, no cluster trapping transition (8] is observed
in this case in sharp contrast to its behavior in the one dimensional lattice.
On the other hand, for a perfectly nonlinear trimer(all sites have same x) x.r
rises to ~ 6.98, if the particle is placed initially at the middle of the trimer.
No well defined STT is observed with this initial condition if the trimer is
embedded in the one dimensional lattice.

CASE III: If the middle site as well as its nearest neighbor sites are nonlin-
ear with same value of x in a 100 X 100 square lattice with the initial excitation
at the middle site, we obtain x. ~ 7.12. By extending the similar type non-
linearity to its next nearest neighbors, we obtain x, ~ 7.18 for the same
initial condition. For the fully nonlinear lattice with all sites having same x
we obtain x. ~ 7.17 for both the semiperiodic and fully periodic boundary
condition. Again the excitation is placed at the middle site initially. The self-
expanding lattice with the same initial condition yields x.r ~ 7.18 (cf. Fig3.).
This shows that the motion of the quasiparticle in the neighborhood of the
STT is mostly confined to the near neighbors of the initial site. We ascribe
this to the restriction in our model that the quasiparticle can directly tunnel
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only to the nearest neighbors,

arest neighbor sites of the lattice(yo ~ 7.12).
The solid curve in the extreme right corresponds to the system with same X at the
middle, nearest neighbors and next Dearest neighbor sites of the lattice(y,, ~ 7.17).
The dotted curve in the extreme right corresponds to the system where all gjteg are
nonlinear with game X(xer ~ 7.18).

sites, albeit decreases with the increase in the ratjo of their site energy differ-
ence (Ae¢) to the hopping strength (V), goes truely to zero iff thjs ratio | §¢ |
80es to infinity, Since, the coordination number(Z) of the Bravais lattice jp-
Creases with its dimensiona.lity, the escape Probability of the quasiparticle from
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increase with the increase in the nonlinear nearest neighbors. For a linear
cluster of nonlinear impurities with the initial excitation at the end site, the
initial site has one nonlinear nearest neighbor. This increases to two and four
respectively in a nonlinear trimer and in the square lattice with the nearest
neighbor nonlinearity with the initial excitation at the middle site. So, the
expected trend is observed.

The absence of a cluster-trapping transition in a finite size linear clusters
of nonlinear impurities in a square lattice is also due to the enhancement of
the escape probability. If we just keep the nearest neighbors and treat all
the perfect sites as a single site, the effective hopping to this site increases
by v/(Z — 1). This then implies that the escape probability through the per-
fect sites will increase atleast by this factor. This will affect the site-energy
difference. So, the x.. for this transition will shift towards the x., for the

STT.

3 Conclusion

Near the STT of the quasiparticle a few neighboring sites determine its dy-
namics. So, an accurate estimation of x., can be obtained from relatively
small samples. X, is also strongly influenced by the probability of escape of
the quasiparticle from the trap-site. A quantitative estimation of this aspect
is, however, desirable. This work is in progress.
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