
Indian J. Phys. 70B (6), 487-494 (1996)

I JP B
— an international journal

Analysis of bent microstrip resonator using finite 
element method

Manasi Karkare, A S Chaudhari and P B Patil*
Deportment of Physics, Dr B A M University, Aurangabad 411 004,
Maharashtra, India

R e c e iv e d  16  A p r i l  1 9 9 6 , a c c e p te d  1 9  A u g u s t  1 9 9 6

Abstract : The microstrip resonator is analysed with fixed height and breadlh loi diffeient 
length using finite element method (FEM). The effect of length variation on MO, 210, 111,211 
mode frequencies is observed Further, by considering the straight patch resonator to be divided 
into two equal parts along its length, and by bending the second part through an angle 0, with 
respect to the first part, the effect of such bending on the above mentioned mode frequencies is 
observed The effect of bending on the equivalent length ot the resonator is also studied tor these 
modes
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1. Introduction
The resonant frequencies of open microstrip ring rcsonalors are determined by 11,2] the 
microstrip resonator with equilateral triangular patch is studied by Woll and Knoppik [3],
1 iels/atn and David [4] and Kuestcr and Chang 15]. Hcls/ain and David |4| have obtained 
iiunsverse magnetic (TM) inode solutions from duality with transveise electric ( lb) mode 
solutions with electric boundaries, whereas Kticslfcr and Chang |5) have obtained the 
.equircd solutions by geometrical theory. The Lriangular and rectangular patch microstrip 
u snnalor is analysed by Kalamsc and Patil [6,71 using finite clement method.

In this paper, we have analysed the rectangular patch miciostrip resonator with 
diiferent length and the effect of bending of the half part of the patch, on dtllcrcnl mode 
Ircqucncy and on equivalent length of the resonator, using PEM.

2. Statement of the problem
Consider the rectangular microstrip patch resonator bounded by six lac^s Bl, B2, B3, B4, 
B5, B6, ihe cross section of which is shown in Figure 1(a). The two side Surfaces 0, and B2
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are magnetic walls. Similarly, front and back i.e. B$ and £ 4 are magnetic walls. The top and 
the bottom surfaces are electric walls.

The electric field within the resonator will satisfy Maxwell's equations

Curl Curl E -  K 2E = 0, (1)

grad div E -  V2£  -  K 2E = 0. (2)

Since the medium is charge free, div E = 0.

V2£  + K2E = 0. (3)

The electric field within the substrate has only Z component and magnetic field has X and Y 
components. The tangential component of magnetic field at the edge is negligible.

div grad + K2Ey = 0. (4)

The fields within the resonator corresponding to TM modes will be generated by the 
equation

V2£  + Kl E, = 0, i (5)

subjected to the boundary condition 

c)n

E.

where E- is c component of E, dldn represents normal derivative

Br B2,Bv BA
=  0 . (6)

(7)

(a) (b)
Figure 1 . (a) Cross section of straight patch resonator, (b) Cross section of 
bent patch resonator
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3. Variational formulation

To get the expression for the functional /Tin variational formulation, multiply eq. (4) by 
some weight function V* and integrate it over the domain of the resonator. Then

n  = J J J  V  div grad Ez dQ  + K 2 J J J V* Ez dQ.
( 8)

n

Using the vector identity S div A = div (SA) -  (grad S). A for the first term, eq. (8) 
becomes

H  = J J j div (V* grad Ez) dQ -  J J J (grad V ). (grad Ez) d Qa:2 J J J v  e z da. (9)

Applying Gauss Divergence theorem to the first term in eq. (9), we get

n = -  III  (grad V*). (grad Ez) dQ + k2 JJJ V* Ez dQ
a  J a+ JJ V* gradEz .n ds. ( 10)

Using eq. (6), the last term in eq. (10) will vanish.

By substituting V* = £ , and changing the sign, eq. (10) becomes

n  =  ̂- JJJ (gradE.) (gradEz)dQ -  k2  ̂- JJJ E; EzdQ,  (11)
a  a

1/2 is introduced since /7is bilinear functional. 

The first variation 5/7 is given by

S n =  5 -  i -  JJJ (VEt H V E t )dQ  -  *2 J J J EzEzdQ 
L n

( 12)

For n  to be stationary, 5/7 should be minimum.

4. Discretization

According to standard finite element method [8,9], the volume of resonator is divided into 
hexahedral elements with 20 nodes. The mapping functions assumed for these elements are 
quadratic in nature. The functional over an element is given by

n- - S - j -{!?)>!{*;)• <13>
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where
f f  dF dF, dF, dF) dF, dF ,1

= J [ s r  "5T  + w  + ~dr 0 4 )

and T,J = J  FjFjdxdy dz. (15)

Here, F, is the mapping function due to i-th node and integrations are over mesh element 
surface.

The functional for the whole region f2is given by

n  = -  i  -  t e } r m { £ r} -  j  ci6>

The condition that variation of 77must be minimum i.e. zero, gives

[S]{Et } -  K$[T]{E,} = 0. (17)

Eq. (17) is the matrix equation to be solved to get eigenvalues and eigenvectors.

5. Numerical calculations for bent m.w. resonator ^

A rectangular microstrip patch of breadth 0.4 mm and height 0.318 mm is considered. The 
length of the resonator is changed from 3 mm to 5.0 mm in the steps of 0.1 mm. For each 
length, the eigenvalues and eigenvectors are calculated. These eigen values are square of

Tabic 1. Variation of frequency with length of the resonatoi for different modes.

Length
in

mm 110
Mode

/ in GHz

210
Mode

111
Mode

211
Mode

3.0 47 465 48.249 51.044 51 774

3 1 47 448 48 183 51 029 51 712

3 2 47 433 48.123 51 015 51 657

3.3 47 419 48.068 51 002 51 606

3.4 47 407 48 019 50 990 51.559

3.5 47.395 47 973 50 979 51 517

3.6 47 384 47.931 50.969 51 478

3.7 47.375 47 892 50 960 51 442

3 8 47.366 47 857 50.952 51 409

3 9 47 357 47.824 50.952 51 392

40 47 350 47.793 -50.937 51 394

4 1 47.343 47.765 50.930 51 321

4.2 47.336 47.738 50.924 51.299

4.3 47.330 47.714 50.919 51.277

4 4 47.324 47.691 50.913 51.254
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Table 1. (C on t'd).

Length
in

mm

f  in GHz

110
Mode

210
Mode

111
Mode

211
Mode

4.5 47.319 .47.670 50.914 51.245

4.6 47.313 47 649 50.904 51.217

4.7 47.309 47.631 50.905 51.203

4.8 47.304 47.618 51.034 51.482

4.9 47.300 47.597 50.891 51.167

5.0 47.2% 47.581 50.888 51.152

the ratio of angular frequency and velocity in vacuum. The different modes of propagation 
are identified using the field plots. The variation of frequencies with length of resonator is

given in Table 1 and shown graphically in Figure 2.
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Figure 2. Variation of frequency for different inodes with length oHtraight 
patch resonator.

The straight patch resonator of sire 4 mm x 0.4 mm x 0.318 -  »  then “
tw o  parts  along its length, with equal siae. The second part is benl to u g h  an 
respec, to the first pah, as shown in Figure 1(h). The variation of freqnenc, wnhutfe  
of bend for these different modes is given in Tables 2 and 3 an s own grap

Figure 3.
The frequencies for different modes in the bent position are compare,** 

conesponding mode ftequencies for straight resonator and equivalent length of smug
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Table 2. Variation of frequency and equivalent length with angle of bend for 110 and
210 modes.

Bending 
angle in 
degree

Mode 110 Mode 210

/ in
GHz

Equi. 
Length 
in mm

/in
GHz

Equi. 
Length 
in mm

7 5 47.350 3.98 47.793 4.00

15.0 47.350 3.98 47.793 4.00

22 5 47 351 3.98 47.792 4.01

30.0 47.352 3.96 47.792 4.01

37 5 47.353 3.95 47.791 4.01

45 0 47.355 3 92 47.789 4.02

52 5 47.357 3.90 47.788 4.03

60.0 47.360 3.86 47.785 4.04

67.5 47.368 3.83 47.779 4.04

75.0 47 374 3.77 47 773 j 4.05

82.5 47.381 3.70 47 766 \ 4.06

90.0 47 390 3.65 47.757 \ 409

97.5 47.402 3.55 47 743 4.14

105.0 47.419 3.45 47 726 4 18

112.5 47 443 3 32 47 699 4 26

120.0 47.482 3.31 47 664 4 37

Table 3. Vanation of frequency and equivalent length with angle of bend for I I I and 
2 11 modes

Bending 
angle in 
degree

7 5 

15.0 

22 5 

30 0 

37 5 

45 0 

52 5 

60 0 

67 5 

75 0 

82 5

Mode 111 Mode 211

]  m 
G il/

Equi 
Length 
in mm

/in
GHz

Equi 
length 
in mm

50 938 400 51 347 4 00

50 941 3.96 51.338 4 05

50 946 3 88 51 324 4 10

50.957 3 73 51.312 4 15

50 963 3 67 51 282 4.27

50.975 3 53 51 254 4.40

50 990 3 40 51 222 4 55

51 009 3 33 51.188 4 72

51 029 .3.10 51.150 5 02

51 047 2.99 51 108 5.47

51.066 2.92 51 070 5.93

SI 020 2.87 51 092 6.4590 0
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patch resonator is obtained. The variation of such equivalent length with angle of bend is 
given in Tables 2 and 3 and is shown graphically in Figure 4.

f in 
QHz

40

4--H--► '
210

- +- -i—*—i—

110

7.0
Bending angle In degree

1 \ ' 
112.0

0.9

21 y
/

210

9.0
+- + 4~

110

111

+
90

Bending angle In degree

Figure 3. Variation of frequency for different 
modes with bending angle

Figure 4. Variation of equivalent length lor different 
inodes with bending angle

6. Conclusions
The bending of half part of the patch of microstrip resonator affects the values of the 
liequency for different mode which is discussed below.

Por 110 and 111 mode, the value of the frequency increases whereas that for 210 and 
211 modes decreases slightly than the normal straight patch microstrip resonator.

■ The effective length of the patch resonator appearing because of bending, undergoes 
Oiltercni changes for different modes. For modes 110 and III,  the cflectivc length 
decreases than the actual length, with increase in bending angle ft. The rate ol decrease is 
more tor 111 mode than tor 110 mode.

For modes 210 and 211, the effective length increases than the actual length, with 
increase in bending angle ft. The rale of increase in effective length, with ft is more lor 211 

mode than for 210 mode.
These conclusions are useful in designing the microstrip resonator of particular 

licqucncy. Instead of using the resonator of more length, the same ellcct can be obtained by 
bending a small length resonator at its centre.
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