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Abstract : The microstnp resonator is analysed with fixed height and breadth tor different
length using fimite element method (FEM). The effect of length vanation on 110, 210, 111,211
mode frequencics is observed Further, by considering the straight patch resonator to be divided
nto two equal parts along its length, and by bending the second part through an angle 8, with
respect to the first part, the effect of such bending on the above mentioncd mode frequencies 1s
ohserved The effect of bending on the equivalent length ot the resonator 1s also studied tor these
modes
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1. Introduction

The resonant frequencies of open microstrip ring resonalors are determined by [1.2] The
nicrostrip resonator with equilateral triungular patch is studied by Wolf and Knoppik {31,
Helszam and David [4] and Kuester and Chang |5]). Helszain and David |4] have obtained
yansverse magnetic (TM) mode solutions from duality with transverse electric (TE) mode
wlutions with clectric boundaries, whercay Kticster and Chang |S} have obtained the
wquired solutions by geometrical theory. The triangular-and rectangular patch microstrip
1csonator is analysed by Kalamse and Patil [6,7] using finite clement method.

In this paper, we have analyscd the reclangular patch microsinp resonator with
ditferent length and the effect of bending of the half part of the patch, on diffcrent mode
trequency and on cquivalent length of the resonator, using FEM.

2, Statement of the problem

Consider the rectangular microstrip patch rcsonator bounded by six facgs B1, B2, B3, B4,
BS. B6, the cross section of which is shown in Figure 1(a). The two side §urfaces By and B,
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are magnetic walls. Similarly, front and back i.e. B; and B, are magnetic walls. The top and
the bottom surfaces are electric walls.

The electric field within the resonator will satisfy Maxwell's equations
Curl Curl E - K2E = 0, (1
graddiv E - V2E - K’E = 0. Q)
Since the medium is charge free, div E =0
V2E + K*E = 0. 3)

The electric ficld within the substrate has only Z component and magnetic field has X and Y
components. The tangential component of magnetic field at the edge is negligible.

dw grad E, + K’E, = 0. 4
The fields within the resonator corresponding to TM modes will be gencrated by the
cquation

VZE, + K’E, = 0, \ (5)
subjected to the boundary condition '

JE

_ = 0. 6)

on | B.B,,B,.B, (

. 0 7

BB, @

where E_1s 2 component of E, ddn represents normal derivatve

Y
//

(a) (b)

Figure 1. (a) Cross section of straight patch resonator. (b) Cross section of
bent patch resonator
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3. Variational formulation

489

To get the expression for the functional IT in variational formulation, multiply eq. (4) by

some weight function V* and integrate it over the domain of the resonator. Then

n=[ff V‘divgradEde+szjj V' E, dQ.
Q n

(8)

Using the vector identity S div 4 = div (SA) - (grad S). A for the first term, eq. (8)

becomes

= [[f div(vgrad,) de2 - J[[ @ v*). erad ) a2
fo] [o]
+k2 [[[ v EaQ

Applying Gauss Divergence theorem to the first term in eq. (9), we get

M= - j';[j (grad V*). (grad E,) dQ2 + k? j}[_[ V* E, d

+ ” V* grad E, .7 ds.
S

Using eq. (6), the last term in eq. (10) will vanish.
By substituting V* = E, and changing the sign, eq. (10) becomes

n= 5 - J"J;j (gradE, ) (gradE,)dQ2 ~ K % - J’}[j E,E,dQ,

1/2 is introduced since ITis bilinear functional.

The first variation 6I7 is given by
s =5- 5~ [[[vE)E)da -k [[[E.E0
L 2

For IT to be stationary, 8IT should be minimum.

4. Discretization

&)

(10)

Q)]

(12)

According to standard finite element method [8,9], the volume of resonator is divided into
hexahedral elements with 20 nodes. The mapping functions assumed for these elements are

quadratic in nature. The functional over an element is given by

me= 3, -4 - gy ilie) - - T e e o

cle
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where S; = J‘[‘—;x— >r + W W + R % dxdydz (14)
and T, = IF,.Fjdxdydz. (15)

Here, F, is the mapping function due to i-th node and integrations are over mesh element
surface.

The functional for the whole region 2 s given by
_ 1 T 1 2 T
n= -5 -{E}[SHE]} - 5 - kH{E} [TI{E,} (16)
The condition that variation of IT must be minimum i.e. zero, gives

[S]{Ez} _K(%[T]{E:} =0 (7

Eq. (17) is the matrix equation to be solved to get eigenvalues and eigenvectors.

5. Numerical calculations for bent m.w. resonator \
A rectangular microstrip patch of breadth 0.4 mm and height 0.318 mm is considered. The
length of the resonator is changed from 3 mm to 5.0 mm in the steps of 0.1 mm. For each

length, the cigenvalues and eigenvectors are calculated. Thesc cigen valtues are square of

Table 1. Variauon of frequency with length of the resonator tor different modes.

Length fn GHz
- T 20 T
Modec Mode Mode . Mode
30 47 465 48.249 51.044 S1774
31 47 448 48 183 51029 SE712
32 47433 48.123 51015 51 657
i3 47 419 48.068 51002 51 606
34 47 407 48019 50990 51.559
35 47.395 47973 50979 S1517
36 47 384 47.931 50.969 51478
3.7 47.375 47 892 50960 51442
38 47.366 47 857 50.952 51409
39 47 357 47.824 50.952 51392
40 47 350 47.793 50.937 51394
41 47.343 47.765 50.930 51323
42 47.336 47.738 50.924 51.299
43 47.330 47714 50919 51.277

44 47.324 47.691 50913 51.254
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Table 1. (Cont'd.).
u::.:glh fin GHz
in
mm 110 210 111 211
Mode Mode Mode Mode
45 47.319 47670 50914 51.245
46 47.313 47 649 50.904 51.217
47 47.309 47.631 50.905 51.203
48 47.304 47618 51.034 51.482
49 47.300 47.597 50.891 51.167
50 47.296 47.581 50.888 51.152

the ratio of angular frequency and velocity in vacuum. The different modes of propagation
are identified using the field plots. The variation of frequencies with length of resonator is
given in Table 1 and shown graphically in Figure 2.
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Figure 2. Variation of frequency for different modes with length of Straight
patch resonator.

The straight patch resonator of size 4 mm x 0.4 mm x 0.318 mm is then divided. 1:
two parts along its length, with equal size. The second part is bent through an ang?e 6 wu]
respect to the first part, as shown in Figure 1(b). The variation of frequency u;:(h :xlng‘e
of bend for these different modes is given in Tables 2 and 3 and shown graphically in
Figure 3.

. " ) ‘b th
The frequencies for different modes in the bent posmon. are compared fwuh 't :l
corresponding mode frequencies for straight resonator and equivalent length of straig
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Table 2. Variation of frequency and cquivalent length with angle of bend for 110 and

210 modes.

Bending Mode 110 Mode 210

angle in - -

degree fin Equi. fin Equi.

GHz Length GHz Length
n mm n mm
75 47.350 398 47.793 4.00

15.0 47.350 398 47.793 4.00
25 47351 398 47.792 4.01
300 47352 3.96 47.792 4.01
375 41.353 395 47.791 401
450 47.355 3192 47.789 4.02
525 47.357 3.90 47.788 4.03
60.0 47.360 3.86 47785 404
615 47.368 183 47.779 404
75.0 47374 37 47173 | 405
82.5 47.381 3.70 47766 \ 4.06
90.0 47390 365 41.757 409
915 47.402 3.55 47743 a4

105.0 47.419 345 471726 418

125 47 443 3132 47 699 426

120.0 47.482 131 47 664 437

Table 3. Vanation of frequency and equivalent length with angle of bend for 111 and
211 modcs

Bending Mode 111 Mode 211

angle in —— - -
degree Jin Equi AL Equi

GH7, Length GHz Length

mnmm m mm
75 50938 400 51347 400
15.0 50941 3.96 51.338 405
225 50 946 388 51324 410
300 50.957 373 51.312 415
375 50963 367 51282 4217
450 50.975 153 S1254 4.40
525 50 990 340 51222 455
600 51000 313 - 51.188 472
675 51029 3.10 51.150 502
750 51047 2.99 S1 108 5.47
825 51.066 292 51070 5.93

900 S1020 247 51092 6.45
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patch resonator is obtained. The variation of such equivalent length with angle of bend 1s
given in Tables 2 and 3 and is shown graphically in Figure 4.
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Figure 3. Vanation of frequency for different
modes with bending angle

6. Conclusions
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Figure 4. Varation of equivalent length tor different
modes with bending angle

The bending of half part of the patch of microstrip resonator affects the values of the
liequency for different mode which is discussced below.

For 110 and 111 mode, the value of the frequency increases whereas that for 210 and
311 modes decreases slightly than the normal straight patch microstrip resonator.

. The effective length of the patch resonator appearing because of bending, undergocs
difterent changes for different modes. For modes 110 and 111, the effective length
decreases than the actual length, with increase in bending angle 6. The rate of decrease is

more for 111 mode than for 110 mode.

For modes 210 and 211, the effective length increases than the actual length, with
increase in bending angle 6. The rate of increase in cffective length, with 6, is more for 211

mode than for 210 mode.

These conclusions are useful in designing the microstrip resonator of particular
licquency. Instead of using the resonator of more length, the same effect can be obtained by

bending a small length resonator at its centre.
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