A new quantum number for qqq baryons

A. $\overline{\text { N }}$. Mitra ${ }^{*}$ and Anju Sharma
Nat Inst of Adv Studies, I I Sc Campus, Bangalurc 12. Inda

Abstract

A complex harmonic oscillator bans is proposed for a three-body system obeying S_{3}-symmerry, so as to generate an extraquantum number ($\mathrm{N}_{\mathbf{2}}$), over and above the (standard) total quantum number (N), for a more quantutative S_{3}-classffication of the vanous qqq states than is possible in the usual (real) representation Further, cerrann bilnears in their complex forms with definite \mathbf{S}_{3}-symmetry properties that can be constructed out of the linear h.o. operators (a, $\left.a^{\dagger}, a^{\circ}, a^{+\dagger}\right)$, satisfy several distuct SO $(2,1)$ algebras with spectra bounded from below. The 3 -body wave function is written down in the complex basis

Keywords Three-body system, \mathbf{S}_{3}-symmetry

PACS Nos 11.30.Fs, 02.20-a

Introduction

It is very well known that the quantum state of a three-body system in the real basis is specified by 1 NJLS ; $\lambda>$. Here λ characterizes the \mathbf{S}_{3}-symmetry status of the system in terms of 'symmetric' (s), 'antisymmetric' (a) and 'mixed-symmetric' (m), all of which are expressible in terms of two independent (Jacobi) variables (ξ_{i}, η_{i}) forming a [2, 1] representation of S_{3}-symmetry. However, a disadvanntage of this real representation is that the above S_{3}-symmetry charactrization (λ) is not quantitatively expressed in terms of some additional quantum numbers. This shortcoming is more acute in the case of relativistic three-body problem wherein a large number of S_{3}-symmetry breaking terms are present in the interaction hamiltonian than for the corresponding non-relativistic system. This can be taken care of by the use of a more promising approach, viz., the complex basis defined through

$$
\begin{equation*}
\sqrt{ } 2 z_{i}=\xi_{i}+i \eta_{i} ; \sqrt{ } 2 z_{i}^{*}=\xi_{i}-i \eta_{i} \tag{1}
\end{equation*}
$$

A new quantum number can be generated in a simple way, without going into any particular representation, through the quantity $\tan v=2 \xi \cdot \eta /\left(\xi^{2}-\eta^{2}\right)$ and the related operator - iv whose eigennfunctions are $\exp (i v \lambda)$ with eigenvalues $\lambda / 2$ where $\lambda=3 n-1$, $3 n, 3 n+1$ ($n=0,1,2$.) [1].

The Harmonic representation, on the other hand, offers a more specific information since the dynamics is controlled by the two number operatiors

$$
\begin{equation*}
N_{\xi}=a_{\xi_{i}}^{\dagger} a_{\xi_{i}} ; N_{\eta}=a_{\eta_{i}}^{\dagger} a_{\eta_{i}} \tag{2}
\end{equation*}
$$

where $\mathrm{a}, \mathrm{a}^{\dagger}$ are normalized ladder operators in ξ, η indices deffined in the standard manner. In this $(\vec{\xi}, \vec{\eta})$ basis, however, only the sum $N=N_{\xi}+N_{\eta}$ is diagonal while the difference $N_{\xi}-N_{\eta}$ is not. This shows that the real $(\vec{\xi}, \vec{\eta})$ basis does not provide an h.o. representation with good S_{3}-symmetry properties. A more promising structure, i.e. one more in conformity with S_{3}-symmetry would be obtained in terms of the following complex combinations,

$$
\begin{equation*}
\sqrt{2}\left(a_{1}, a_{i}^{*}\right)=a_{\xi_{i}} \pm i a_{r_{i}} ; \sqrt{2}\left(a_{i}{ }^{\dagger}, a_{i}^{* \dagger}=a_{\xi}^{\dagger} \mp i a_{\eta_{1}}^{\dagger}\right. \tag{3}
\end{equation*}
$$

satisfying the commutation relations

$$
\begin{equation*}
\left[a_{i}, a_{j}{ }^{\dagger}\right]=\left[a_{i}^{*}, a_{j}^{* \dagger}\right]=\delta_{i j} ;\left[a_{i}, a_{j}^{*}\right]=0 \tag{4}
\end{equation*}
$$

In the new complex basis, the number operators

$$
\begin{equation*}
N_{c}=a_{i}{ }^{\dagger} a_{i} ; N_{c}^{*}=a_{i}^{* \dagger} a_{i} ; N_{m}=a_{i} a_{i}^{* \dagger} ; N_{m}^{*}=N_{m}^{\dagger}=a_{i}^{*} a_{i}^{\dagger} \tag{5}
\end{equation*}
$$

exhibit better symmetry properties manifested by the separate S_{3}-singlets

$$
\begin{equation*}
\mathbf{N}=\mathbf{N}_{\mathbf{c}}+\mathbf{N}_{\mathbf{c}}{ }^{*}=\mathbf{N}_{\xi}+\mathbf{N}_{\eta} ; \mathbf{N}_{\mathbf{a}}=\mathbf{N}_{\mathbf{c}}-\mathbf{N}_{\mathbf{c}}{ }^{*} \neq \mathbf{N}_{\xi}-\mathbf{N}_{\eta} \tag{6}
\end{equation*}
$$

N_{a} is thus a new quantum number having no counterpart in the $(\vec{\xi}, \vec{\eta})$ basis. Its eigenvalues, modulo 3, are a measure of departure of a given state with total quantum number \mathbf{N} from a fully symmetric (antisymmetric) state. [The situation is analogous to the diagonality of the charge operator for a scalar field when expressed in complex basis ($\varnothing, \varnothing^{*}$), but not in the real basis, while the energy remains diagonal in both.] Thus the charge for the complex scalar field seems to play a role analogous to N_{a} in the three-body problem when viewed in the complex h.o. basis, a feature which clearly brings out the superiority of the complex basis over the real one.

SO (2, 1) Algebras of Bilinear Operators

To consider the $\mathbf{S O}(2,1)$ algebras of two-step bilinear operators made out of the set (3), it is convenient to distinguish them in accordence with their S3-symmetry properties as follows
symmetric : $A=2 a_{i} a_{i}{ }^{*} ; A^{\dagger}=2 a_{i}{ }^{\dagger} a_{i}{ }^{* \dagger}$
mixed-symmetric :

$$
\begin{equation*}
C=a_{i} a_{i} ; C^{*}=a_{i}^{*} a_{i}^{*} ; C^{\dagger}=a_{i}{ }^{\dagger} a_{i}^{\dagger} ; C^{* \dagger}=a_{i}^{* \dagger} a_{i}^{* \dagger} \tag{8}
\end{equation*}
$$

We can identify three distinct sets of commuting SO $(2,1)$ algebras whose spectra are bounded from below. Of these, the \mathbf{S}_{3}-symmetric set $\left(A, A^{\dagger}, N+3\right)$ satisfy the commutation relations

$$
\begin{equation*}
[A, N]=2 A,\left[A^{\dagger}, N\right]=-2 A^{\dagger},\left[A, A^{\dagger}\right]=4(N+3) \tag{9}
\end{equation*}
$$

so that the three normalized components are

$$
\mathbf{Q}_{+}=\mathbf{A}^{\dagger} / 2 ; \mathbf{Q}_{-}=-\mathbf{A} / 2 ; \mathbf{Q}_{3}=(\mathbf{N}+3) / 2
$$

and the corresponding Casimir is

$$
\begin{equation*}
\mathbf{u}(\mathrm{u}+1)=-\left(\mathrm{AA}^{\dagger}+\mathrm{A}^{\dagger} \mathrm{A}\right) / 8+(\mathrm{N}+3)^{2} / 4 . \tag{10}
\end{equation*}
$$

Since this spectrum is bounded from below [2], the eigenvalues of Q_{3} are $-u+k, k=$ $0,1,2$. on the one hand, and $(\mathrm{N}+3) / 2$ on the other. Thus

$$
\begin{equation*}
u(u+1)=3 / 4(\text { even } N) ;+2(\text { odd } N) \tag{11}
\end{equation*}
$$

Similarly, for the mxed symmetric set $\mathrm{C}, \mathrm{C}^{\dagger}, \mathrm{N}_{\mathrm{c}}$ satisfying

$$
\begin{equation*}
\left[C, N_{c}\right]=2 C,\left[C^{\dagger}, N_{c}\right]=-2 C^{\dagger},\left[C, C^{\dagger}\right]=4\left(N_{c}+3 / 2\right), \tag{12}
\end{equation*}
$$

the corresponding Casimir is

$$
\begin{equation*}
u_{c}\left(u_{c}+1\right)=-\left(C^{\dagger}+C^{\dagger} C\right) / 8+\left(N_{c}+3 / 2\right)^{2} / 4 \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{c}\left(u_{c}+1\right)=-3 / 16\left(\text { even } N_{c}\right) ; 5 / 16\left(\text { odd } N_{c}\right) . \tag{14}
\end{equation*}
$$

Identical results hold for starred counterpart ($\mathrm{C}^{*}, \mathrm{C}^{*} \dagger, \mathrm{~N}_{\mathrm{c}}{ }^{*}$).
Finally, the antisymmetric set $\left(N_{m}, N_{m}{ }^{\dagger}, N_{a}\right)$ satisfies a normal SO(3) algebra

$$
\begin{equation*}
\left[\mathrm{N}_{\mathrm{m}}, \mathrm{Na}\right]=2 \mathrm{~N}_{\mathrm{m}},\left[\mathrm{~N}_{\mathrm{m}}^{\dagger}, \mathrm{N}_{\mathrm{a}}\right]=-2 \mathrm{~N}_{\mathrm{m}}^{\dagger},\left[\mathrm{N}_{\mathrm{m}}, \mathrm{~N}_{\mathrm{a}}^{\dagger}\right]=-\mathrm{N}_{\mathrm{a}} \tag{15}
\end{equation*}
$$

with the Casimir

$$
\begin{equation*}
s(s+1)=\left(N_{m} N_{m}^{\dagger}+N_{m}^{\dagger} N_{m}\right) / 2+N_{a}^{2} / 4 \tag{16}
\end{equation*}
$$

so that spectra is bounded ffrom both below and above, just like (spin) angular momentum.

$$
\begin{equation*}
-\mathrm{s} \leq \mathrm{Na} \leq \mathrm{s} ; \mathrm{s}=\mathrm{N} / 2 \tag{17}
\end{equation*}
$$

Three-Quark Wave Function

As to the signatures of the new quantum number, N_{a}, (Sec. 1) consider a quark-level three-body problem, viz., the baryon which, after taking out the antisymmetric color part $\left(\varepsilon_{\alpha \beta \gamma} / \sqrt{ } 6\right.$), has a symmetric wave unction in orbital (ψ), spin (χ), isospin (\varnothing) degrees of freedom. In the same phase and normalization as eq.(1) for the complex quantity \mathbf{Z}_{i}, we denote $\left(\psi_{c} ; \psi_{c}{ }^{*}\right)$ and $\left(\psi_{\mathrm{s}} ; \psi_{\mathrm{a}}\right)$ as the respective doublet and singlet representations of S_{3} w.r.t. the permutation symmetry, and the same notation applies for the χ. \emptyset. In this notation, the various $\operatorname{SU}(6)$ states are expressed as

$$
\begin{align*}
& 156\rangle^{q}=\psi^{s} \chi^{s} \phi^{s} \quad ; \quad|56\rangle^{d}=\psi^{s}\left(\chi_{c} \phi_{c}^{*}+\chi_{c}^{*} \phi_{c}\right) / \sqrt{2} \tag{18}\\
& \left.170>^{q}=\chi^{s}\left(\psi_{c} \phi_{c}^{*}+\psi_{c}^{*} \phi_{c}\right) \sqrt{2} ; 170\right\rangle^{d}=\left(\psi_{c}^{*} \chi_{c}^{*} \phi_{c}^{*}+\psi_{c}^{*} \chi_{c}^{*} \phi_{c}^{*}\right) / \sqrt{2} \tag{19}\\
& 120>^{q}=\psi^{2} \chi^{s} \phi^{d} \quad ; \quad \mid 20>^{d}=\psi^{d}\left(\chi_{c} \phi_{c}^{*}-\chi_{c}^{*} \phi_{c}\right) \sqrt{2} \tag{20}
\end{align*}
$$

Applications to baryonic spectra are given elsewhere [3].
The authors felicitate Prof. Haridas Banerjee on his 60th Birthday

References

[1] A. N. Mitra, Phys. Rev. D28, 1745 (1983).
[2] A. N. Mitra, Anju Sharma and B. M. Sodermart, Pew-Body Syst. (1995) (in press)
[3] Anju Sharma et. al Phys. Rev. Dse, 454 (1994).

