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1. Introduction

The double-well potential for one-dimensional quantum system has been the subject of
mtensive study in the last two decades. The literature on this topic, voluminous as it is, has
recently been thoroughly referenced by several workers [1-10].

There is a large number of physical and chemical systems whose properties can
be studied (modelled) assuming that the potential function responsible for such properties
1s well represented by means of a function with two valleys and a barrier between
them.

Some of the problems to which the doublc-well potential model has been applied are
the interpretation of the infrared spectra of the NH; molecule, infrared and Raman spcctra
of hydrogen-bonded systems, inversion characteristics of isomers, structural phase
transitions, formation of noble-gas monolayers on a graphite substrate, macroscopic
quantum coherence in super conducting Joseohson devices, and so on [11,12]. In the theory
of these problems, the most important characteristics are related to the separation between
the two lowest-lying energy levels as it defines the tunnelling rate through the double-well
barrier.
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The fundamental system of interest to us here is the double-well potential described

by Schrodinger equation

SR | v(x; 22 A) P = E¥CR), m
where V(x:22,4) = -ZIx* + Ax*. ()

The potential V(x; Zf, 2.) consist of two potential wells separated by a barrier. If the
barricr were impenetrable to a particle, there would be energy levels corresponding to the
motion of the particle in one or other well, the same for both well. The fact that a passage
through the barrier is possiblc, results in splitting of each of these levels into two
neighbouring ones, corresponding to states in which the particle moves simultaneously in
both wells

The eigenvalue spectrum of the Schrodinger eq. (1) with the potential V(x; Z;’, ,l)
has the feature that the lower eigenvalues are closely bunched in one group if the values of
the Z? are sufficiently large. As Zf increascs, the magnitude of the splitting betu\aen the
even and odd energy levels decreases.

In the present work, we have carried out a detailed investigation of the energy
eigenvalues of double-well potential over a wide range of Zf and A values. We have
achieved our objective using the finite differcnce. The specific goal we sel before us 1s, (0
study the splitting between the even and odd energy levels over a widce range of Zf, A and
n,. It is worth noting here that the finite difference technique is used in this work in the
form of combination with a matrix diagonalization for numerical computations and
transformed the Schrédinger equation into an algebraic eigenvalue problem;

2. Formulation of the finite difference method

The theory of the finite diffecrence approach to find cigenvalues for the Schrodinge:
cquation with potential given by cq. (2) usually starts from the central difference operator,
which can be expressed as

& = e — D2 = 2qinh(hDJ2) 3)

from eq. (3), it is casy to get

5 2
hiD? = 4[sin‘n"[7:|:| , 4)
where sinh™! [-g—] = l'—g—:l[l - %[g] + 20
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Therefore, eq. (4) takes the following form

ot & & &0 a;sV 493514
2o s2_9 L0 O 070
h'D* = 6° - 13 + 55 = 360 * 3150 ~ 74772608 * 308281343
__2s58% 12258 ;
150994944 * 86973087744 ° (6)

where k is the considered step length and & applies on function ¥(x) as follows. Our results
show involving the fourth term in eq. (6). The accuracy improves by truncating (6) after the
fourth term, giving an overall accuracy of nineteen significant digits.

S¥(x) = ‘P(x+ %h) - ‘I’(x- %h) )
82¥(x) = ¥Y(x+h) - 2¥(x) + Y(x-h), (8)
S*¥(x) = W(x+2h) - 4[¥(x+h) + ¥(x-h)]
+6%(x) + ¥(x-2h), )
62¥(x) = Y(x+3h) — 6[¥(x+2h) + ¥(x-2h)]
+15[¥P(x+h) + ¥(x-h)] - 20%(x) + ¥(x-3h), (10)

88W(x) = W(x+4h) - 8[¥(x+3h) + ¥(x-3h)]
+28[W(x+2h) + W(x-2h)] - 56[ P(x+h) + ¥(x-h)]
+70¥W(x) + Y(x-4h). (an

Although the solutions of (1) are explicitly defined in (—oe, + o), it should be noted
that these solutions are either of even or odd parity ie. ¥(x) = * ¥(-x), so that
the determination of Y¥(x) can be restricted to the region (0, +eo). Furthermore, one
can suppose that the wavefunctions are restricted to obey the Dirichlet boundary
condition ¥(x) = 0 at some x value R. An acceptable R-value will be guessed
numerically.

If we replace D? from eq. (6) and using eqs. (7-11), the Schrédinger equation
tansforms into an algebraic eigenvalue problem of the form

[Cpn - GI] ¥(rh) = 0, (12)

where G is proportional to E and its value G = -5040 EK?, | is the unity matrix. The form
of matrix associated with eq. (12) can be expressed as
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Coo Con G2 Gs Goa Gos Ge Coa Con ) [ ¥(0) )
Co CGu G2 Gy Gy Cs CGg Gy G, || ¥
Co Gy Ga Gy Gy Gy Gy Gy G, || ¥2h)
Go Gy Go Gy Ge Gs Gg Gy G, || ¥Gh)
Cio Coy Go Gy Gy Cus Cio Cyq - Cyp || Y(4ah) _
Coo G5y Csy Gz Gsy Css Cyg Csq Gy, || W(SH)|
Coo Con Coa Gon Gos Gos Gos Con Con || ¥(6R)
G )\ F(nh)
The values of some coefficients are given below ‘I
Coo = ¥y -G, where 7, = - 5040[% — k? V(nh)], \\
\
Cy = 101268, Coo =2016, Co.3 =256, Coa=-18,
Cys=0, Coo=0, C\ 0= 8064, C,=u+7 -G,
1, = T1008, Cia=8064+128,  C, = I08FY, €, =128,
Crs=-9 Cro=0, Cyo=-1008, Car=Cpy
Coa=iy+% -G Uy =+9, Cy3 = 8064, ('14.: -1008,
Cio=128 Cro=- Cyo= 128, €y, = — 1008 9,
Cy) = 8064, Cia=7,-G, Cy4 = 8064, Cas = 1008,
Cr=128, Cyp=-9Y Cyy=0, Cap=-9,
Cyy = 128, Car=-1008, Cy1r = 8064, Cia=7-G.
Cys = 8064, Cap = 1008, Cor =128, Cap=-9,
Cao=0. Csp=0, Cs1=-9, Csy = 128,
Cor= -1008, Cs.4 = 8064, Css=1,-G. Cs.o = 8064,
Cs;7=-1008, Csg=128, Cs9=-9, ‘ Cs10=0,
Cspy =0,

It should be noted that the double sign (+), which appear in some coefficients above, which
mean, the states with even parity take (+) and states with odd parity take (-). Also it should
be mentioned that for even parity states the coefficients C,,, (1 2 1), become zero.
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To solve the algebraic eigenvalue problem for eq. (12), we first transform the matrix
Cmn 10 @ symmetric one. Due to the already special form of C,, , this can be done by means
of one similarity transformation. We then reduce this matrix to a tridiagonal form by
preliminary transformations. To calculate eigenvalues of this symmetric tridiagonal matrix,
we use the FO2BEF Subroutine of the NAG-Library [13]. To select out the correct energy

we require stability of our results with respect to the small variation of R at a given value of
step length h.

3. Results and discussion

The finite difference technique has been applied in this paper for a double-well potentials in
one dimensional system. Eigenvalues for different values of Z?, 1 and state numbers n,
are listed in the Tables 1 and 2.

Table 1. Ground- and first-excited state energies for a double-well potential
V(x, 2t A = 1), for different values of Z? E,',‘:'. (other) represents other values.

2? ny E, (present) ! (other)
o 0 1 060362090484182 1.0606209048*%
1 3.799673029801394 1.7997302980%
05 0 0.870017518371612 0 8700175183724
1 3.333779329887006 3333779329894
| 0 0657653005180715 0 6576530051914
1 2.834536202119304 2.834536202124
5 0 0.137785848188222 0.13778584818822255
i 1 713027897767675 1713027897767676°
4 0 —1710350450132638 -1 710350450132640%
1 -1.247922492066213 -1.247922492066215°
5 0 -3.410142761239829 -3 410142761239830°
1 -3.250675362289235 -3 2506753622892367
25 0 ~149.219456142190888 -1492194561421913°
1 -149.219456142190888 ~149.2194561421910%
50 0 -615.020090902757816 -615.0200909027576%
1 -615.020090902757816 -615 0200909027576°
100 0 —2845.867880342075294 ~2845 8678803420768
] ~2845.867880342075294 -2845.867880342076°
200 0 —9980 005002815982695 -9980 00500281598269567
1 -9980.0050028 1 5982695 -9980 0050028 1598269567

As suggested by the referee, comparison with the results of other methods {4-7] has
been made in Tables 1 anrd 2. It is clear from Tables 1 and 2 that there is agreement between
our results and the results produced by other methods.
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In Table 1, we compare the results obtained by the present method with those
obtained by other methods [4-7]. The values of the energy are calculated over a wide range
of 0 € Z2 < 200 at A= 1, for the ground and first-excited state. As Z2 increases, the
magnitude of the splitting between the energy levels for ground and first-excited state

|Eo - EII dccreases.

In Table 2, we compare the results obtained by our method with those obtained by
using power serics method for two values of Z2 = 10, 100 and A = 0.5, 7.5. Generally
speaking, the agreement betwecn our values and those of power series is very good. Some

Table 2. Numerical values of some energy eigenvalues for the double-well potential

V(x, 22 )
Y/ ny Present inethod Power senes method
0 -45 5791974486965547 —45.57919744869655473%
1 —45.57919744868 18590 —45.57919744868185901 *
2 -36 9538380723252171 -36.953838072325217100
3 -36 953838067761893 1 ~36 953838067761893054 ‘\
4 -28.6830875222325604 -28.683087522232560427
5 -28 6830868969642709 -28.683036896964270919
10 05 12 -1.4089110509977329 -1 408911050997732942
13 -05217551377821886 -0 521755137782188664
16 89976916989575165 8.997691698957516472
17 125121782111944881 12.512178211194488149
18 16 2532388098463624 16.253238809846362366
19 20 1747735655636969 20 174773565563690984
0 -319 2671170279540906 =319 26711702795409060
1 -319 2671170279540906 =319 26711702795409060
2 -291.4454394228711989 -291.44543942287119896
3 ~291.4454394228711989 -291.44543942287119896
4 -264.1075745401302216 -264.10757454013022166
5 -264.1075745401302216 -264.10757454013022166
6 -237 2797814701336811 -237.279781470133681 11
7 -2372797814701336811 -23727978147013368111
8 -210.9923806353957530 -21099238063539575303
9 -210.9923806353957506 -2T0 99238063539575069
10 -185 2808776964343650 -185 28087769643436504
100 7.5 11 -185.2808776964341016 -185.28087769643410164
24 -27 00448522368 12682 27 00448522368126821
25 -26.9211476446426514 -26.92114764464265145
26 -100772932133725591 -10.07729321337255916
27 -8.9598963608357662 -8.95989636083576627

\

\
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Table 2. (Conr'd.)

22 2 n, Present method Power series method
28 2.7350408154161046 27350408 1541610463
29 8.1915969606041077 8.19159696060410771
30 17.4123343420860030 17 41233434208600301
31 26.2920453927462065 26.29204539274620650
32 36 0236079545425696 36.02360795454256961
33 46.1417178714088725 46.14171787140887259

fine points, however may be noted, as Z? increases, the encrgy levels for states of even and
odd parity become effectively degenerate i.e. E.,,, = Eyqq. The splitting increases rapidly as
one goes to higher levels.

To show the dependence of the results on the choice of the R value, we present in
Table 3 again for Zf = 10 and A =0.5, the results obtained with step length A = 1/20 but

Table 3. The dependence of the results on the choice of the R value

2 2 ny E, R h
—45357 148 594 361 401 06 4
-45579 197 233 453 902 44 5

10 05 1 -45579 197 448 681 859 0l 6 1120
~45.579 197 448 681 859 0l 7
-45579 197 448 681 859 Ol 8
45579 197 448 681 859 Ol 10

with six different R values, i.e. R=4,5, 6,7, 8 and 10. Our results in Table 3 do not change
anymore whenever R 2 5. Of course one should control for each parameters (Z2, 1) choice
the influence of the chosen R value on the results.
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