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1. Introduction

The double-well potential for one-dimensional quantum system has been the subject of 
intensive study in the last two decades. The literature on this topic, voluminous as it is, has 
recently been thoroughly referenced by several workers 11-10].

There is a large number of physical and chemical systems whose properties can 
be studied (modelled) assuming that the potential function responsible for such properties 
is well represented by means of a function with two valleys and a barrier between 
them.

Some of the problems to which the double-well potential model has been applied are 
ihe interpretation of the infrared spectra of the NH3 molecule, infrared and Raman spectra 
of hydrogen-bonded systems, inversion characteristics of isomers, structural phase 
transitions, formation of noble-gas monolayers on a graphite substrate, macroscopic 
quantum coherence in super conducting Joseohson devices, and so on 111,12]. In the theory 
of these problems, the most important characteristics are related to the separation between 
the two lowest-lying energy levels as it defines the tunnelling rate through the double-well 
barrier.

© 19961ACS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IACS Institutional Repository

https://core.ac.uk/display/158962232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


224 MRMWitwit

The fundamental system of interest to us here is the double-well potential described 
by Schrodinger equation

- d2%X) + V(x.;Z*. A)1P(Jr) = EIPW, (1)

where V ĵciZ^.A) = - Z 2.r2 +A x4. (2)

The potential V[x\ Z2, A) consist of two potential wells separated by a barrier. If the 
barrier were impenetrable to a particle, there would be energy levels corresponding to the 
motion of the particle in one or other well, the same for both well. The fact that a passage 
through the barrier is possible, results in splitting of each of these levels into two 
neighbouring ones, corresponding to states in which the particle moves simultaneously in 
both wells

The eigenvalue spectrum of the Schrodinger eq. (1) with the potential v (jc; Z 2, A) 
has the feature that the lower eigenvalues are closely bunched in one group if the vjalucs of 
the Z2 are sufficiently large. As Z2 increases, the magnitude of the splitting between the 
even and odd energy levels decreases. \

In the present work, we have carried out a detailed investigation of the energy 
eigenvalues of double-well potential over a wide range of Z2 and A values. We have 
achieved our objective using the finite difference. The specific goal we set before us is, to 
study the splitting between the even and odd energy levels over a wide range of Z 2, A and 
nk. It is worth noting here that the finite difference technique is used in this work in the 
form of combination with a matrix diagonalization for numerical computations and 
transformed the Schrodinger equation into an algebraic eigenvalue problem^

2. Formulation of the finite difference method

The theory of the finite difference approach to find eigenvalues for the Schrodingci 
equation with potential given by cq. (2) usually starts from the central difference operator, 
which can be expressed as

8 = ehPf2 __ e-hDfi = 2smh(/iD/2) (3)

from eq. (3), it is easy to get

where

(4)

( 5)
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Therefore, eq. (4) takes the following form

h2D 2 = 8 2 - £ •  i !  58 
12 + 90 “ 560 +

g'Q
3150

407512 493514
24772608 + 308281344

25516 122551®
150994944 + 86973087744 ’ (6)

where h is the considered step length and 8 applies on function f'OO as follows. Our results 
show involving the fourth term in eq. (6). The accuracy improves by truncating (6) after the 
fourth term, giving an overall accuracy of nineteen significant digits.

8 n x )  =  ¥^x + I -  ^ j r -  i h j ,  (7)

8 2 tE(x)  = *F(x +  h) -  2  *F(x) +  V ( x - h ) , (8)

8 4V (x )  = V (x  + 2h) -  4[ Y lx  + h) + ^ fx -A )]

+ 6'F(x) + 'F (x -2 h ),  (9)

8 2,F (x) = Y (x  + 3h) -  6[V (x + 2h) + 'T {x-2h )]

+ 15fY ix  + h) + 'F (x -h )]  -  2 0 Y (x)  + ^ { x - 3 h ) ,  (10)

5 8|P (*) = *r{x + 4h) _  8[»P(x + 3/i) + *P(jc -  3A)]

+ 28[ >F(x + 2h) + 'F (x-2h )] -  S G ^ x  + h) + -  A)]

+ 709'(x) + 'F (x -4 h ) .  (11)

Although the solutions of (1) are explicitly defined in ( - « ,  it should be noted
that these solutions are either of even or odd parity i.e. *F(x ) = ± iF ( - x ) t so that 
the determination of *F{x) can be restricted to the region (0, +°°). Furthermore, one 
can suppose that the wavefunctions are restricted to obey the Dirichlet boundary 
condition W x) = 0 at some x value R. An acceptable /?-value will be guessed 
numerically.

If wc replace D2 from eq. (6) and using eqs. (7-11), the Schrodinger equation 
Hans forms into an algebraic eigenvalue problem of the form

[C m.n ~ G \ ] n n h )  =  0 , ( 1 2 )

where G is proportional to E and its value G  = -5040 Eh2, 1 is the unity matrix. The form 
of matrix associated with eq. (12) can be expressed as
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'Co.o q .i Q,2 Q ,4 ^0.5 Q .6 Q ,7 - C o * ' ^ ( 0 )  "

C..o C,., 1̂.2 ^1.3 C,.4 C l.5 g ,.6 ^1.7 - C ln n h )

^2.0 C2., ^2,2 ^2,1 C2.4 ^2.6 ^2.7 - C l * ¥ ( 2 h )

^3,2 ^3.3 CM ^3.5 ^3,6 ^1.7 Y ^ h )

CYo ^4,1 ^4,2 C4.4 C4,S C4.6 Q .7 ■ A - H'(Ah)

^5.0 C5.1 C5.2 Cyy ^5,4 Cyt ^5.6 C$,1 - c s *

Q ,0 Cft.l Q,2 Q .4 ^6 .5 Q .6 C6,7 ■ Q, •F (6A )

V  ■ ■ - c m* , . W n h ) ,

The values ol some coefficients are given below

■̂o.u ~ Yi) -  G , where yn = - 5040 ^  -  h^V(nh)
]■ \

C (u = 101268, C’0,2 = 2016, C0.., = 256,
\

C„.4 = - I 8 ,

f  0 .S = 0, Q).ft = 0 , C, 0 = 8064, G|.i = V\ + 7i ~ G.

//, -  +1008, C, , = 8064+128, C, 4 = 1008+9, C|.4 = 128,

C’i.s = -9, C 1/1 = 0 , C2.o = -I008, Gii = C1.3’

c\ z  = & + 7, -0 , = + 9 , C2j3 = 8064, C24 = -1008,

C25 = 128, C2.e, = -9, C,.„=I28. = -1008+9,

II oc G.U = 7, -  G, C,,4 = 8064, C7 5 = -1008,

Cv ,= 128, G’ -4,7 = -9, G 1,8 = 0, C4.0 = -9,

C4, = 128. C4ii = -1008, C4|, = 8064, G4,4= u - g .

C’4,5 = 8064, C4,6 = -1008, C47 = 128, G4.8 = -9,

-P- O II O t \ „  = o. C,., = -9, C5 2 = 128,

Cs > = -1008, C, 4 = 8064, c w = r4- c . C,it) = 8064,

Csi7 = -1008, C58 = 128, Gs,9 = -9, Gs.io= Oi
CSM=:0.

It should be noted that the double sign (+), which appear in some coefficients above, which 
mean, the states with even parity take (+) and stales with odd parity take (-). Also it should 
be mentioned that for even parity states the coefficients Co,*, (n> 1), become zero.



To solve the algebraic eigenvalue problem for eq. (12), we first transform the matrix 
Cm,n 3 symmetric one. Due to the already special form of Cm tp this can be done by means 
of one similarity transformation. We then reduce this matrix to a tridiagonal form by 
preliminary transformations. To calculate eigenvalues of this symmetric tridiagonal matrix, 

we use the F02BEF Subroutine of the NAG-Library [13]. To select out the correct energy 
we require stability of our results with respect to the small variation of R at a given value of 
step length h,

3. Results and discussion

The finite difference technique has been applied in this paper for a double-well potentials in 
one dimensional system. Eigenvalues for different values of Z \, X and state numbers nx 
are listed in the Tables 1 and 2.
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Table l. Ground- and first-excited stale energies for a double-well potential 
V(jt, Z j, X = I), for different values of Zj E*r (other) represents other values.

A nx En( (present) E* 1 (other)

0 0

1

1 060362090484182 
3.799673029801394

1.0606209048* 
.3.7997302980*

0.5 0

1

0.870017518371612
3.333779329887006

0 870017518372* 
3 33377932989*

1 0

1

0 657653005180715 
2.834536202119304

0 6576.53005191* 
2.83453620212*

2 0

1

0.137785848188222 
1 713027897767675

0.1377858481882225s 
1 713027897767676s

4 0

1

-1 710350450132638 
-1.247922492066213

-1 710350450132640s 
-1.247922492066215s

5 0 -3.410142761239829 -3  410142761239830s
1 -3.250675362289235 -3  250675362289236s

25 0

1

-149.219456142190888
-149.219456142190888

-149 2194561421913* 
-149.2194561421910*

50 0

1

-615.020090902757816
-615.020090902757816

-615.0200909027576* 
-615 0200909027576*

100 0

1

-2845.867880342075294
-2845.867880342075294

-2845 867880.342076* 
-2845.867880342076*

200 0

1

-9980 005002815982695 
-9980.005002815982695

-9980 00500281598269567 
-9980 00500281598269567

As suggested by the referee, comparison with the results of other methods [4-7] has 
been made in Tables 1 and 2. It is clear from Tables 1 and 2 that there is agreement between 
our results and the results produced by other methods.
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In Table 1, we compare ihe results obtained by the present method with those 
obtained by other methods [4-7]. The values of the energy are calculated over a wide range 
of 0 ^ Z \ £ 200 at A= 1, for the ground and first-excited state. As Z \  increases, the 
magnitude of the splitting between the energy levels for ground and first-excited state
|£0 -  £, | decreases.

In Table 2, we compare the results obtained by our method with those obtained by 
using power series method for two values of Z\ = 10, 100 and A = 0.5, 7.5. Generally 
speaking, the agreement between our values and those of power series is very good. Some

Tabic 2. Numerical values of some energy eigenvalues for the double-well potential
vu , zj. A)

nx Present method Power senes method

0 -45 5791974486965547 -45.57919744869655473A

1 -45.5791974486818590 -45.57919744868185901A
2 -36 95.38380723252171 -36.953 8380723252171 Oo'

-36 9538380677618931 -36 953838067761893054

4 -28.6830875222325604 -28.683087522232560427

5 -28 6830868969642709 -28.683086896964270919

12 -1.4089110509977329 -1 408911050997732942

13 -0  5217551377821886 -0  521755137782188664

16 8 9976916989575165 8.9976916989575J6472

17 12 5121782111944881 12.512178211194488149

IK 16 2532388098463624 16.253238809^46362366

19 20 1747735655636969 20 174773565563696984

0 -319 2671170279540906 -319 26711702795409060

1 -319 2671170279540906 -319 26711702795409060
2 -291.4454394228711989 -291.44543942287119896

3 -291.4454394228711989 -291.44543942287119896

4 -264.1075745401302216 -264.10757454013022166

5 -264.1075745401302216 -264.10757454013022166

6 -237 2797814701336811 -237.27978147013368111

7 -237 2797814701336811 -237 27978147013368111

8 -210.9923806353957530 -210 99238063539575303

9 -210.9923806353957506 -2 TO 99238063539575069

10 -185 2808776964343650 -185 28087769643436504

II -185.2808776964341016 -185.28087769643410164

24 -27 0044852236812682 -27 00448522368126821

25 -26.9211476446426514 -26.92114764464265145

26 -10 0772932133725591 -10.07729321337255916

27 -8.9598963608357662 -8.95989636083576627

10 05

100 7.5
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Table 2. (Corn'd,)

Z \ A n , Present method Power scries method

28 2.7350408154161046 2.73504081541610463

29 8.1915969606041077 8.19159696060410771

30 17.4123343420860030 17 41233434208600301

31 26.2920453927462065 26.29204539274620650

32 36 0236079545425696 36.02360795454256961

33 46.1417178714088725 46.14171787140887259

fine points, however may be noted, as Z?x increases, the energy levels for states of even and 
odd parity become effectively degenerate i.e. Eeven = Eodd. The splitting increases rapidly as 
one goes to higher levels.

To show the dependence of the results on the choice of the R value, we present in 
Tabic 3 again for Z\ -  10 and A = 0.5, the results obtained with step length h = 1/20 but

Table 3. The dependence of the results on the choice of the R value

A nx R h

-45 357 148 594 361 401 06 4

-45 579 197 233 453 902 44 5

10 05 1 -45 579 197 448 681 859 01 6 1/20

-45.579 197 448 681 859 01 7

-45 579 197 448 681 859 01 8

-45.579 197 448 681 859 01 10

with six different R values, i.e. R = 4, 5, 6, 7, 8 and 10. Our results in Table 3 do not change 
anymore whenever R > 5. Of course one should control for each parameters (Z x, A) choice 
the influence of the chosen R value on the results.
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