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Abstract ¢ The first order target-contnuum distorted wave ( TCDOW1 ) approaimation has
been shown to be equivalent to a simphified forin of the second order Faddeev Watson (FW2)
approximation when the projectile-farget inieraction s weak The TCDWI 18 then compared with a
peaking approximation to the FWIEHand FW?2 total and ditlerential cross scctions for the tormanon
of positronium by the impact o1 positrons on hehum
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[. Introduction

In the hugh energy ion-atom rearrangement collisions, many theoretical approaches e shown
io be nterconnected alter some further approximations are made. Dube| 1] established such
connections among the strong potential Born (SPB) approximation [2], the impulse
:l|!pmxi|nulmh [3] (IA),the peaked impulse approximation(4] (PIA) and the continubum
distorted wave (CDW) approximation [5]. Starting from the SPB approximation Briggs efal
{61 were able to denve several simplifications such as [A continuum intermediate state (CIS)
approximation |7] and eikonal approximation [8]. Recently, Datta et al |9] established a
connection between the first order boundary corrected Born [10] (B1B) and the Coulomb-
Bom | 11] (CB) approximations Al these efforts were made 1n order to bridge the gap among
the well-known theoretical methods for ion-atom collisions. In the present investigation, we

shall show the equivalence of the first ordef target continuum distorted wave (TCDW1)
© 1993 JACS
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approximation [12], [13] and a simplified form of the sccond order Faddcev-Watson (FW2)
approximation [14], [15] in which the projectile-target-nucleus and projectile-electron
interactions arc considered weak and taken only upto first order in the respective T-matrices.
The interaction between the target-nucleus and the bound clectron is considered to be the
strongest and taken all orders into the corresponding 7-matrix through the two-body Green's
tunctions. We first establish the equivalence of the two methods mathematically and then for a
numcrical check we apply these methods (o positronium formation from atomic helium.

2. Equivalence of TCDW1 and FW2 approaches
We consider the charge transfer process
1+23) > (1.2)+3 n

with arbitrary masses m, and charges z, The reduced masses are defined by

_omom, ~ n“:,(m/ + m‘) ,
Hy = m+m CT o+ ) f
. , m+nn +om

with the usual cyciic permutation of | 1,2.3] and the mass ratios are given by

m, m
aQ = —, =
my +ny ny 4+ n;

We use the Jacobi space-coordinate r,, ry with conjugate momenta g,. g, in which r,
18 the position coordinate of 1 relative to the centre of mass ol y and A and ry is the position
veetor of j relative to k. These notations are similar 1o that used by Macek and Shakeshalt [16]
for charge transfer processes. We denote by 17> the initial target bound state, which
corresponds to energy & and by 1P> the final projectile bound state with energy & I the
imual relative momentum is Q, = Tk, = pyv, and the final relative momentum is Q= 1k, =
Uy, Then the energy conservation gives

) ),
o L. Y

,: _— +"’ :.’;'
2, RITR

The FW2 transition operator for the process (1) 1s
Tiwy = Ty + Vi + TGyTy + T\GoTy + TaGy Ty (2)

Here V, denotes the interaction ol the particle y and k& with ¢ spectating 7,18 the

corresponding transition operator which is given in terms of the two-body Green's operator
G, (E)by the Lippmann--Schwinger equation _

T, =V, + VG (E)V, (3)

We shall now show how cq (2) gives rise naturally to the first order target continuum

distorted wave approximation | 12]. We Consider the case where the mteractions for the pairs
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1.2 (re. Vq) and 1.3 (i.e. V) are weak, but that between the particle 2 and the target nucleus

3cie. Vq) is strong. This would be the case for smaller deflection angles Using cq. (3) we

can then replace T and Ty by Vo and Vi respectively and retaining 7'y we have from eg (2)
. ot sty

Tewa = (1 + T1Gy ) (Vo + V) + VGV, @

Taking the matrix clement of (4) between the intial 17> and final If > states of the entire
system and introducing an off-shell state vector

(il = 10+ TGE) = (] (10 + viG). 5)

we have

FITvwe ) = (W] (Ve 4 V) 1)+ (FIVLG VL), )

The tirst term on the nght hand side of eq. (6) 1s similar in structure to the TCDW |
approximation with an undistorted inttial state and the internuclear potential Vs ignored. To
see the relationship between the TCOW I and FW2 approximations more clearly, we have
from eq. (§)

vi) = (a1

and the conresponding position-space wavefunction s

1fir, & 1rq/
("n-"),\ W(; )> = II‘[q" na/h (rirlg)
(7)
(qlP) x V’;-,l‘}:‘, (rs2)-
tHere
V’;’:.)[_, (r) = (ruf (l + (_7|H‘7|) [P) (8)

i the off-shell Coulomb wavelunction, with incoming wave boundary condition at encrgy

I, smiven by

2
E o= E - S, q =q + Buw,
<M
mid the momentum Py is given by
Py=lk =puxv,- 0gq.
The bars on the operators 1n eq. (8) denotes that they refer to their own centre-of-mass
frames.

If the main contribution to the integral n (7) is assumed to come {rom the region of
lcalization g = o of the final bound state wavefunction (g|P) then
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> —~ y . O - —— == v
r, v, and  f 3 = £y.
~Hay
’ . ) . ” . . .
Thus for £ >5>e, | wip,/ (ry2) is near is energy shell. The on-shell limit of the off
shell Coulomb wave function is not defined i the strict mathematical sense [2). However, by
taking account of the long range Coulomb distortion 1 1ts definition {8) [cl. references 17,18)

we can obtain

hm () I

ys

_ vy, ) ik
P2k T, (ryy) = Qm ) exp(-my/2) Il -1y) e

3

\Il-‘l( iy b =tk etk rn).
where ¥y - ZyZy/v, sothateq (7) becomes

(rorwl ) = Grdp) Qrm Y explmy/2) POy

,‘:'\ - \
<! oy sk =tk ) \ (9

Here we agam note that a smular techmgue of approximating the off shell
wincfunction by 1ts on=shell Tty has been used before by Briggs eral [6] but starting tron
the stong potential Born approximation rather than the Faddeev=Watson approach  Anothier
mpottant assumption m our approach s the replacement ol 7, by Vo (0= 23) in eq (2) by
using ¢q. (3). We also note that ¢q. (9) reduces to the position representation ol | /) when

y=0re when distortion s neglected.

In the case ol election capture by heavy particles, Z, = - 1, /= Z,' and using the more

physically mcaningful co-ordmates of Macek and Shakerhalt [16] we have
(rixlp) = < "/,|p) = d)(",.)-rgt =Ty,

r, = —RI, and vy = *'/,/",, = V.

We now see that, apart from the momentum-space normahzing factor (27h) X
e (9 s precsely the tmal state distorted wave used m the TCDW approximation (¢ |
e (el [12)) We therefore, conclude thata sunpiified form of the FW2 approximation
iy equivalent to the TCDW 1 approamation if the second term in the right-hand side of ¢ (0)
s neglected This e, (f ] VaGoVi [0 s osually neglected inion-atom cotlision due to the
presence of the nucleus-nucleus interaction Vs In the TCDW 1 approximation this term does
not appear, not n Lact, does it appear - the TCDW2 approaimation since higher order terms
m the Latter e accounted for by a Green's operator with a connected Kernel (c.f. ret [121
and references theremn)

Returnimg to eq (2) agam. an alternative approach is to elfect a peaking approximatior

ducetly to the 7=matrices The second order terms in (2) have been shown [19] to be well

. . . : arize shell
behaved 11 regular Coulomb /7 matrices, which are analogous 1o the regularized oll-she
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Coulomb wavefunctions, are used. The peaking approximation then results in a factoring out
of Rutherford scattering amplitude which for certain terms can be interpreted as
corresponding to classical Thomas double scatering mechanisms. We shall refer to this
approach as the second order Faddcev—Watson peaking approximation (FWPA2). A similar
peaking approximation applied to the first two terms in ¢q. (2) yiclds FWPAL. Thus for
electron capture by heavy particles, the term 7,64 T, domnates at higher angles and
accounts quite well for the observed Thomas peak [19,20]. For capture by positrons two
terms are important, viz. 7,Go"'Ty and T2G{' T, which can interfere constructively for odd
parity positronium states or destructively for even panty states [21-23], although no
experimental evidence is yet available to test these predictions.

3. Numerical results

Because the FWPA2 doces not take account of the effect of distant collisions. such as target
distortion, it might not be expected to be rehiable for total cross sections. In contrast the
TCDW approximation treats the target distortion explicitly and the resulting total cross-section
are 1n good agreement with experiment for clectron capture by heavy particles [12,24] and by
positrons [25] as shown in Figure | in this calculation. By contrast, in the latter case,

the FWPA? fails badly at these energies, although for capture by high energy protons, of the

06— —T— —=T " —I1— T[T v T
® fromme et al
- 0 FWPA1
*H A TCDOW1
04— { *x FWPA2 —
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Figure 1. Total cross sections for positronium formation in e* + He scattering as a function of
meigdent ¥ energy Sohd circles , measurement of Fromme er al [26], open circle , FWPAT [23],
open triangles . TCDW 1 [25] and stars . FWPA2 results [23] Sohd, dashed ond dotied lines are
drawn through TCDW |, FWPA | and FWPA2 results respecuvely to guide the eye All theoretical
results are for 1S - 1S capture

order of scveral MeV, the total cross sections are not bad [19]. From Figure | we also note
that the TCDW1 and FWPAL1 total cross sections are in good agreement with the
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measurcment of Fromme et al [26] at the higher energies. This is interesting since the FWPA |
docs not account of the target distortion but includes the positron-target-core interaction
explicitly via 7, while TCDW 1 accounts for target distortion but excludes positron-target-core
interaction V, in (6). In Figure 2, we present differential cross sections in both the
approximations at 250 eV. In the forward angles the TCDW 1 (excluding ¢* — He* interaction)

10 T T T T T T 1 T T 1
»*
*
1 o: FWPA 1
a TCDW 1
0" * : FWPA 2
o
v 10
¢ N
© |
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Figure 2. 1S - 1S differenuial cross sections tor the same system at 250 eV The symbols

represent the results in the same theones as descrnibed in Figuie |
[ 4

results arc a factor of two large compared to FWPAT (including ¢* -~ He* interaction) results
while in the backward direction they nearly match with cach other. At this cnergy FWPA2
results are too large throughout the entire angular range.

4. Summary

We have established a relationship between the TCDW1 and the FW2 approximations when
the projectile—target interaction is ignored. We also demonstrate that the TCDW1 (excluding
¢* - He* interaction) total cross scctions gives energy dependence similar to the FWPAI

(including ¢* — He* interaction) total cross scctions.
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