Equivalence of the first-order target-continuum distorted-wave and a simplified form of the second-order Faddeev-Watson approximations

Bablu Bhattacharice Bangabasi College School, 8/1, Santosh Mitra Square, Calcutta 700 012, India N C D ch Department of Theoretical Physics, Indian Association for the Cultivation of Science. Jadavpur, Calcutta-700 032, West Bengal, India and M J Roberts Centre for Cognitive and Computational Neuroscience, Department of Computing Science and Mathematics, Stuling University, Stuling FK9 4LA,UK

Received 13 January 1993

Abstract : The first order target-continuum distorted wave (TCDWI) approximation has been shown to be equivalent to a simplified form of the second order Faddeev Watson (FW2) approximation when the projectile-farget interaction is weak. The TCDWI is then compared with a peaking approximation to the FWI and FW2 total and differential cross sections for the formation of positronium by the impact of positrons on helium

Keywords : Charge transfer, ion atom Scattering, Fadeev Watson approach

PACS Nos. : 34 70 + c

1. Introduction

In the high energy ion-atom rearrangement collisions, many theoretical approaches are shown to be interconnected after some further approximations are made. Dube[1] established such connections among the strong potential Born (SPB) approximation [2], the impulse approximation $[3]$ (IA), the peaked impulse approximation [4] (PIA) and the continuum distorted wave (CDW) approximation [5]. Starting from the SPB approximation Briggs et al. $|b|$ were able to derive several simplifications such as IA, continuum intermediate state (CIS) approximation [7] and eikonal approximation [8]. Recently, Datta et al [9] established a connection between the first order boundary corrected Born [10] (B1B) and the Coulomb- β O(n | | | | (CB) approximations. All these efforts were made in order to bridge the gap among the well-known theoretical methods for ion-atom collisions. In the present investigation, we λ ball show the equivalence of the first order target continuum distorted wave (TCDW1)

© 1993 JACS

3 9 6 *Bahlu Bhattacharjee, N C Deh and M J Roberts*

approximation [12], [13] and a simplified form of the second order Faddeev-Watson (FW2) **approxim ation [14], [15] in which the projcclile-targel-nucicus and projcclile-clcciron interactions are considered weak and taken only uplo first order m the respective 7'-matrices. The interaction between the target-nucleus and the bound electron is considered to be the strongest and taken all orders into the corresponding T'-mairix through the two-hody Green's** functions. We first establish the equivalence of the two methods mathematically and then for a numerical check we apply these methods to positronium formation from atomic helium.

2. Equivalence of TCDW1 and FW2 approaches

Wc consider the charge transfer process

$$
1 + (2,3) \to (1,2) + 3 \tag{1}
$$

with arbitrary masses m_t and charges z_t . The reduced masses are defined by

$$
\mu_{\eta} = \frac{m_{\eta} m_{\eta}}{m_{\eta} + m_{\eta}}, \qquad \mu_{\eta} = \frac{m_{\eta} (m_{\eta} + m_{\chi})}{m_{\eta} + m_{\eta} + m_{\chi}},
$$

with the usual cyclic permutation of [1,2,3] and the mass ratios are given by

$$
\alpha = \frac{m_1}{m_2 + m_3}, \qquad \beta = \frac{m_1}{m_1 + m_2}
$$

We use the Jacobi space-coordinate r_i , r_{ik} with conjugate momenta q_i , q_{ik} in which r_i **IS the position coordinate of** *i* **relative to the centre of mass of** *j* **and** *k* **and** r_{ik} **is the position vector of** *j* relative to k . These notations are similar to that used by Macck and Shakeshaft $[16]$ for charge transfer processes. We denote by 17 > the mitral target bound state, which **corresponds to energy** ε and by IP> the final projectile bound state with energy ε _t If the **initial relative momentum is** $Q_i = \pi k_i = \mu_1 v_i$ **and the final relative momentum is** $Q_i = \pi k_i =$ μ_1 ^{ν} μ_2 ^{μ} α ^{*I*}**hen** the energy conservation gives

$$
\frac{Q_i^2}{2\mu_1} + \varepsilon_i = \frac{Q_i^2}{2\mu_3} + \varepsilon_i = E
$$

The FW2 transition operator for the process (1) is

$$
T_{1W2} = T_2 + V_3 + T_1 G_0^{\dagger} T_2 + T_1 G_0^{\dagger} T_3 + T_2 G_0^{\dagger} T_3. \tag{2}
$$

Here V_i , denotes the interaction of the particle j and k with i spectating T_i is the **corresponding transition operator which is given in terms of the two-body Green's opcratoi** G_i^+ (E) by the Lippmann-Schwinger equation

$$
T_i = V_i + V_i G_i^{(+)} (E) V_i
$$
\n(3)

We shall now show how eq (2) gives rise naturally to the first order target continuum distorted wave approximation 112). Wc consider the case where the interactions lor the paiis 1,2 (*i.e.* V_3) and 1,3 (*i.e.* V_2) are weak, but that between the particle 2 and the target nucleus $3(i.e. V_1)$ is strong. This would be the case for smaller dellection angles Using eq. (3) we can then replace T_2 and T_3 by V_2 and V_3 respectively and retaining T_1 we have from eq (2)

$$
T_{\text{FW2}} = (1 + T_1 G_0^*) (V_2 + V_3) + V_2 G_0^{\dagger} V_3. \tag{4}
$$

Taking the matrix element of (4) between the initial $|i\rangle$ and final $|j\rangle$ states of the entire **system and introducing an olT-shell slate vcctor**

$$
\left\langle \psi_f^{(+)} \right| = \left\langle f \right| \left(1 + T_1 G_0^{(+)} \right) = \left\langle f \right| \left(1 + V_1 G_1^{(+)} \right), \tag{5}
$$

have

$$
\langle f | T_{1W2} | i \rangle \approx \langle \psi_{t}^{(-)} | (V_{2} + V_{3}) | i \rangle + \langle f | V_{2} G_{0}^{(+)} V_{3} | i \rangle. \tag{6}
$$

The first term on the right hand side of eq. (6) is similar in structure to the TCDW1 **appioximation with an undistorted initial state and the intcrnuclear potential \'t ignored. To** see the relationship between the TCDW1 and FW2 approximations more clearly, we have **horn cq. (5)**

$$
\left| \psi_{j}^{(+)} \right\rangle = \left(1 + G_{j}^{(-)} V_{j} \right) \left| j \right\rangle
$$

and the corresponding position-space wavefunction is

$$
\langle r_1, r_{23} | \psi_f^{(-)} \rangle = e^{i \beta r_1 k_f} \int d \mathbf{q} e^{i \alpha r_2 q / \hbar} \langle r_{12} | \mathbf{q} \rangle
$$

$$
\langle \mathbf{q} | \mathbf{P} \rangle \times \psi_{P_1, E_1}^{(-)} (\mathbf{r}_{23}).
$$
 (7)

I Icrc

$$
\Psi_{P_1,L_1}^{(-)}\left(\mathbf{r}_2,\right) = \left\langle \mathbf{r}_2,\right| \left(1 + \overline{G}_1^{(-)} \overline{V}_1\right) \left| \mathbf{P}_1\right\rangle \tag{8}
$$

IS the off-shell Coulomb wavefunction, with incoming wave boundary condition at energy *I ,* **given by**

$$
E_1 = E - \frac{q_1^2}{2\mu_1}, \qquad q_1 = q + \beta \mu_1 \nu_f
$$

 ind the momentum \textbf{P}_4 is given by

$$
P_1 = h k_f = \mu_{23} v_f - \alpha q.
$$

The bars on the operators in eq. (8) denotes that they refer to their own centre-of-mass **liaiiics.**

If the main contribution to the integral in (7) is assumed to come from the region of α alization $q = o$ of the final bound state wavefunction $\langle q|P \rangle$ then

Bablu Bhattachariee. N C Deb and M J Roberts

$$
P_1 \sim \mu_{23} \nu_f
$$
 and $E_1 \sim \frac{P_1^{2^*}}{2\mu_{23}} = \epsilon_f$.

Thus for $E \gg |\varepsilon_t|$, $\psi_{PL}^{(-)}(\mathbf{r}_{23})$ is near its energy shell. The on-shell limit of the off shell Coulomb wave function is not defined in the strict mathematical sense [2]. However, by taking account of the long range Coulomb distortion in its definition (8) [cf. references 17,18] we can obtain

$$
P_1 \cdot \sqrt{2\mu_{21}E_1} \cdot \frac{\mu_{p_1}^{\ell}}{F_1} \cdot (r_{23}) = (2\pi)^{-3/2} \cdot \exp(-\pi \gamma/2) \cdot \Gamma(1 - i\gamma) e^{ik_1 r_{23}}
$$

$$
\lambda_1 F_1 \cdot (\gamma + 1) = ik_1 r_{23} \cdot ik_1 r_{23}.
$$

where $\gamma = Z_2 Z_3 / v_t$ so that eq. (7) becomes

$$
\langle r_1, r_{21} | \psi_f^{(-)} \rangle = \langle r_{12} | p \rangle (2 \pi h)^{-3/2} \exp(-\pi \gamma/2) \Gamma(1 - i \gamma)
$$

$$
\langle e^{-\frac{ik_1}{2}t_1} | F_1(-i \gamma + 1) - ik_1/2^2 - ik_1 - r_{23} \rangle \qquad (9)
$$

Here we again note that a similar technique of approximating the off-shell wavefunction by its on-shell limit, has been used before by Briggs *et al* [6] but starting from the strong potential Born approximation rather than the Faddeev–Watson approach. Another miportant assumption in our approach is the replacement of T, by V_i , $(i = 2,3)$ in eq. (2) by using eq. (3). We also note that eq. (9) reduces to the position representation of $|f\rangle$ when $\gamma = 0$ *i.e* when distortion is neglected.

In the case of electron capture by heavy particles, $Z_2 = -1$, $Z_3 = Z_{I_p}$ and using the more physically incaningful co-ordinates of Macek and Shakerhaft [16] we have

$$
\langle \mathbf{r}_{12} | \mathbf{p} \rangle = \langle \cdot \mathbf{r}_{p} | \mathbf{p} \rangle = \phi(\mathbf{r}_{p}), \mathbf{r}_{23} = \mathbf{r}_{1},
$$

$$
\mathbf{r}_{3} = -\mathbf{R}_{p} \quad \text{and} \quad \gamma = -Z_{1}/v_{1} = -V_{1}
$$

We now see that, apart from the momentum-space normalizing factor $(2\pi h)^{-3/2}$ eq. (9) is precisely the final state distorted wave used in the TCDW approximation (c4 eq. (3) in ref. $[12]$). We therefore, conclude that a simplified form of the FW2 approximation is equivalent to the TCDW1 approximation if the second term in the right-hand side of eq. (6) is neglected. This term, $\langle f | V_2 G_0 V_3 | t \rangle$, is usually neglected in ion-atom coffision due to the presence of the nucleus-nucleus interaction V_2 . In the TCDW1 approximation this term does not appear, not in fact, does it appear in the TCDW2 approximation since higher order terms in the latter are accounted for by a Green's operator with a connected Kernel (c.f. ref. $[12]$) and references therein)

Returning to eq. (2) again, an alternative approach is to effect a peaking approximation directly to the T -matrices. The second order terms in (2) have been shown [19] to be well behaved if regular Coulomb T matrices, which are analogous to the regularized off-shell

398

Coulomb wavcfunctions, are used. The peaking approximation then results in a factoring out of Rutherford scattering amplitude which for certain terms can be interpreted as corresponding to classical Thomas double scattering mechanisms. We shall refer to this approach as the second order Faddcev-Watson peaking approximation (FWPA2). A similar **peaking approximation applied to the first two terms in eq. (2) yields FWPA1. Thus for** electron capture by heavy particles, the term $T_1G_0^{(+)}T_3$ dominates at higher angles and **accounts quite w ell lor the observed Thomas peak 119,20). For capture by positrons two terms are important,** viz . $T_1G_0^{(+)}T_3$ and $T_2G_0^{(+)}T_3$ which can interfere constructively for odd **parity positronium states or destructively for even parity stales [21-23), although no experimental evidence is yet available to test these predictions.**

3. Numerical results

Because the FWPA2 does not take account of the effect of distant collisions, such as target **distortion, it might not be expected to be reliable for total cross sections. In contrast the TCDW approximation treats the target distortion explicitly and the resulting total cross-section arc in good agreement with experiment for electron capture by heavy particles [12,24] and by positrons [25] as shown in Figure 1 in this calculation. By contrast, m the latter case,** the FWPA2 fails badly at these energies, although for capture by high energy protons, of the

Figure 1. Total cross sections for positronium formation in e^+ + He scattering as a function of incident e^+ energy Solid circles , measurement of Fromme *et al* [26], open circle . FWPA1 [23], open triangles . TCDW1 [25] and stars . FWPA2 results [23] Solid, dashed and dotted lines are **drawn through TCDW t, FWFA1 and FWPA2 results respectively to guide the eye All theoretical** results are for $1S - 1S$ capture

order of several MeV, the total cross sections are not bad [19]. From Figure 1 we also note that the TCDW1 and FWPA1 total cross sections are in good agreement with the

measurement of Fromme et al [26] at the higher energies. This is interesting since the FWPA1 does not account of the target distortion but includes the positron-target-core interaction explicitly via T_2 while TCDW1 accounts for target distortion but excludes positron-target-core interaction V_2 in (6). In Figure 2, we present differential cross sections in both the approximations at 250 eV. In the forward angles the TCDW1 (excluding c^+ – He⁺ interaction)

Figure 2. 1S - 1S differential cross sections for the same system at 250 eV. The symbols represent the results in the same theories as described in Figure 1

results are a factor of two large compared to FWPA1 (including c^+ – He⁺ interaction) results while in the backward direction they nearly match with each other. At this energy FWPA2 results are too large throughout the entire angular range.

4. Summary

We have established a relationship between the TCDW1 and the FW2 approximations when the projectile-target interaction is ignored. We also demonstrate that the TCDW1 (excluding e^+ – He⁺ interaction) total cross sections gives energy dependence similar to the FWPA1 (including $e^+ - He^+$ interaction) total cross sections.

Acknowledgment

NCD acknowledges the financial support by the Council of the Scientific and Industrial Research, Govt. of India, New Delhi.

References

- L J Dube 1984 J Phys B17 641 $[1]$
- J H Macek and S Alston 1982 Phys. Rev. A26 250 $[2]$
- **[3] T Pradhan 1957** *Phys. Rev.* **105 1250 , M R C McDowell 1961** *Proc Roy. Soc* **A264 277 . J S Briggs 1 9 7 7 /** *Phys.* **BIO 3075**
- **[**⁴ **] B H Bransden and I M Cheshire 1961** *Proc PIm. Soc.* **81 820**
- **|**⁵ **J D S F Crothcrs 1981 7** *Phy.s* **B14 1035 , D S F Crothers and J F McCann 1982** *PIm Lett.* **92A 170 .** Dz Belkic, R Gayet and A Salin 1979 *Phys Rep* . 279
- **[61 J S Briggs, J Macck and K Taulbjerg 1982** *Comm. At Mol Phv.s* **J2 I**
- **[71 Dz Belkic 1977** *J Phy.s.* **BIO 3491**
- **[8] J Eichler and FT Chan 1979 Phys. Rev. A20 104, FT Chan and J Eichler 1979 Phys. Rev. A20 1841**
- **[**⁹ **] S K Dalta, D S F Crothers and R McCarroll 1990** *J Phys* **B23 479**
- **[101 DPDewangan and J Eichler 19867** *Phys.* **B19 2939 , Dz Belkic, R Gayct, J Hanssen and A Salin 19«6** *J Phy.\.* **B19 2945 S Mukherjee, K Bhadra, N C Sil and D Basu 1978** *Phy.\ I ctf* **65A 285 , C Smha. S Mukherjee and N C Sil 1979** *J Phy.s.* **B12 1259 , C Smha, S Mukherjee and N C Sil 1979** *J PIm* **B12 139 |**
- ¹ **12] D S F Crothers and K M Dunsealh 1987** *J Phy.s* **B20 4115**
- **113] N C Deb 1988** *Phy.s Rev* **A38 1202**
- **114| J C Y Chen 1974** *Ca.se Studies in Atomic Physu* **.s' eds E W McDaniel and M R C McDowell (Am.stcrdam North-Holland) Vol.3 305**
- 115] C J Joachain 1983 *Quantum Collision Theory* (Ainsterdam North-Holland) ch 19
- **116| J H Macck and R Shakeshaft 1980** *Phys Rev* **A22 1441**
- **117] H Van Haeringen 1976** *J Math. Phys* **17 995**
- **118] M J Roberts 1985** *J Phys* **B18 L707**
- ¹¹⁹¹ **M J Robert-s 1987** *J Phys* **B20 55 1**
- **j20j** S Alston 1990 Phys. Rev. **A42** 331
- **|JI] R Shakeshaft and J M Wadehra 1980** *Phvs Rev* **A22 968**
- **122] N C Deb 1989** *J PIm* **B22 3755**
- **[21] M J Roberts 1989** *J Phys.* **B22 3315**
- **[24] K M Dunseath, D S F C^oihci'S and T Ishihara 1988** *J Phys* **B21 L46l**
- **[25| N C Deb. D S F Crothers and D Fromme 1990** *J Phys* **B23 L483**
- **|26| D Froiiinic, G Kru.se. W Raith and G Sinapius 1986** *Phys Rev Lett.* **57 3031**