
liliJmn J. Phys. 67h  (5 ). 3 9 5 - 4 0 1  (1 9 9 3 )

E q u iv a le n c e  o f  t h e  f i r s t - o r d e r  t a r g e t - c o n t i n u u m  
d i s t o r t e d - w a v e  a n d  a  s im p l i f ie d  f o r m  o f  t h e  
s e c o n d - o r d e r  F a d d e e v - W a t s o n  a p p r o x i m a t i o n s

B;thlu Bhallacharjcc
Bangdbasi College School, K/l, Sarilosli Mura Square, Cak iitiu  7(X) 012, India

N C  Deb
nepiirtmctU of Theoretical Physics, Iruhari Association loi the C ultivation of Science,
Jadavpur, Calcutta 700 012, West Bengal.India 

anil

M J Roberts
C’enlre loi Copnitive and Coiiipiilatmnal Neumsucnce. IX'paiUncnl of Computing Science and 
Mathematics. Stilling Univeisiiy, Stilling F K ‘> IL A . l 'K

A'n rnciJ IJ  J iwuary  I W J

A b s tra c t : I he first ordei laigei-conimuum disioiled wave ( IC 'ItW l ) appioximation has 
been shown to be equivalent to a simplified lorm of the second oider Faddeev Watson (FW2) 
approximation when the projectile-Uiiget inieiaction is weak Ihe 'lC n W I is then compared with a 
peaking approximation to the FWI and fA\'2 total and diMeicntial cross sections lo i the lormation 
of positronium by the impact ol positrons on helium
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1. I n t r o d u c t i o n

In tlic htgh energy ion-atom rearrangement collisions, many theoretical approaches aic shown 
ii> be interconnected after some iuither approximations are made. DubctI | established such 
connections among the strong poicntial Born (SP B ) approximation 12], the impulse 
iipproximalmn 13| (lA),tbe peaked impulse approximalionl4| (P IA ) and the continuum 
clisiurted wave fC D W ) approximalion |5 |. Starling from the SPB approximation Briggs etui 

were able to derive several simplilicalions such as IA,continuurn intermediate stale (C IS ) 
^tpproxirnalion [7] and eikonal approximation |8 ]. Recently, Datta et al 19) established a 
sonneciion between the first order boundary corrected Born IIO] ( B IB )  and the Coulomb- 
l>̂ »in 11 11 (C B ) approximations A ll these efforts were made in order to bridge the gap among 
file well-known theoretical methods for ion-atom collisions, hi the present investigation, we 

ÎmII stiow the equivalence t>f the first oidef target continuum distorted wave (T C D W l)
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approximation [ 12), |13) and a sim plified form o f  the second order haddeev-W atson (FW2) 
approxim ation [14], [15] in which the projcclile-targel-nucicus and projcclile-clcciron  

interactions are considered weak and taken only uplo first order m the respective 7’-matrices. 

The interaction between the target-nucleus and the bound electron is considered to be the 

strongest and taken all orders into the corresponding T'-mairix through the two-hody Green's 

lunctions. W e first establish the equivalence o f the two methods mathematically and then for a 

numerical check we apply these inethtKls to posilroniurn fonnalion from atomic helium.

2. ^Equivalence of TCDWl and FW2 approaches

Wc consider the charge transfer process 

I + ( 2 ,3 ) - ^  ( 1 ,2 ) +  3

with arbitrary masses ///, and charges The reduced masses are defined by

(I)

m, ni_______
with the usual cyclic permutation o f  11,2,3) and the mass ratios are given by

/;/,  ̂ ///ia -
-f m fi =

///| 4

Wc use the Jacobi spacc-cocirdinate r,, wilh conjugale momenta g,, in which r, 

IS the posilion coordinate o f / relative to the centre ol mass o f / and k and is the posilioii 

vector of j  relative to k.  These notations are similar to that used by Macck and Shakeshafl | K>1 

for charge transfer processes. We denoie by 17 > the milial target bound slate, wdiicli 

corresponds to energy e] and by I7*> the final projectile bound slate with energy If the 

initial relative momentum is Q, = ~h k , = JU|V, and the final relative momentum is Qf  = 1ik j ~ 

fj^vI  Then the energy conservation gives

2 /'I
+ f  , = Qi

2̂ i^
+ i', -  E

The FW2 transition operator for the proLCss ( I ) is

7|yy-i “  12 4  +  r^G[)T2 4 I 2G^)I ( 2 )

Here V, denotes the interaction o f  the particle / and k with / spectating T, is liv 

corresponding transition operator which is given in terms of the two-body Green's opcratoi 

G / ( E)  by die Lippmann Schwinger equation

r,  = V, + y , G r ^  (E )  V, (3)

We shall now show how eq (2) gives rise naturally to the first order target continuum 

distorted wave approximation 112). Wc consider the case where the interactions lor the paiis
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1,2 V'l) and K3 ( i.e. V2) arc weak, hul that between the particle 2 and the target nucleus 

3 ( i.e. V”̂!) is strung. This would be the case lor smaller dellecUon angles U sing cq. (3) we 

can then replace 7 2  and by Vp and \ \  resj^cclivcly and retaining 7’j we have from eq (2)

7'nv2 -  (' +  (V , 4 VO +  v , ( ; , :v , . (4)

Taking the matrix clement o f (4) between the initial 1/ > and final 1/ > stales ol the entire 

system and introducing an olT-shell slate vcctor

have

(v/‘/ 'I = (/I (1 + 7’,GO’) = (/I (1 + V,gO'),

(71 7 ',w: |< ) -  ’ i + ' '0  I') + (71 V ,G ,VV , |/>.

( 5 )

(h)

The lirsl term on the tight hand side ol cq. (b) is similar m structure to the TCDW I 

appioximation with an undistorted initial state and the intcrnuclear potential \ ' t ignored. To 

^ce the relationship between the TCDW I and f'W2 approximations rmirc clearly, we have 

horn cq. (5)

k ; - ’) -  (I + f'',' V,) | / )

iiul the coriesponding position-space waverunction is

(r„r; , |v / ;  ’) = I  ( r , ,k )

I Icrc

(7)

(X)

IS (he olT-shell C oulom b waverunction, with incom ing wave boundaiy condition at energy 

I , given by

E, = E /̂i q\ ^  g +

iiul the momentum is given by

P \  = f r k i  = ag .

llic bars on the operators in eq. (8) denotes that they rcicr to their own centre-ol-m ass

liaiiics.

If the main contribution to the integral in (7) is assumed to com e Irom the region ol 

ali/ation q = o o f  the final bound slate wavefunclion {g \P )  then
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l’\ ~ I■l2̂  »•/ and fu
-1̂ 2̂

^ i't

Thus lor R >> /1, V̂ r,/| <-‘ncrgy shell. The on-shell limit of the oK
shell Coulomh wave funelion is not denned in the sirict mathematical sense [2|. However, by 
lakiii” account ol ihe long range Coulomb distortion in Us del'inition (8 ) [cl. rcl'crcnccs 17,18] 
we can obtain

Inn w/' ' ( r„ J  ^ {27t ) c\[)(-Try/2)r{l~ir)(’

I (  '7  • I - “  /  * " 2 ' ) '

if< I

where y A{/ \ jv^  so that etj (7) becomes

( r i . r ^ l v ' /  ') -  ( r , , I/)) ( 2 ;r/t)‘ cxp( • ;ry/ 2 ) T( 1 - ly)

f' '' |/■■| ( ry . \ ■ \ (‘̂1

Heie we ag*iin note that a sim ilar technujiie of ajipioxim ating the oK shell 
wa\el unction by its on-shell limit, has been used before by Briggs ct al |61 but starting Iroin 
the stiong |X)lential Born a[)pioximation ralhei than the I 'addeev-Watson approach Another 
nnpoitanl assumption in oui approach is llie leplacement td 7’ by V',, (/ ~ 2,3) in et| (2) In 
using ei|. (3). We also note that ee]. reduces to the position lepresenlation ol |/) uhen 
y -  0 when distoiUon is neglected.

In the case of election cajUiiie by heavy ptirticles, -  1, / \  = //^ and using the nioie
physically ineainnglul Lo-oielinates ol Macek and Shakerhalt [ Ibj we have

r\ -K,, and 7 -

We now see that, apait Irom the momentum-space normali/ing factor (2nli) 
ec| (*-M IS pieusely the tmal state distorted wave used in the T C D W  approximation (c I 
a| (3) 111 lel 112|) We ihererore, Lonclude that a snn[nilied form ol the I ‘W2 approximation 
IS equivalent to the T C D W  1 approximation il the second term in the right-hand side nl C(.| (b) 
IS neglected This term, ( / 1 |/), is usually neglected m lon-atom coNision due tt> the
presence oflhe nucleus-nucleus interaction VS In the T C D W  I appo>ximation this (erin does 
not Lippear, noi in faU, does it appeal in the T C D W 2  approximation since higher order teiins 
in th'' latter aie accounted lor by a Cireen's operator with a connected Kernel (c.l. rel j I-I 
anti leleicnces theiein)

Kelurnmg to etj (2 )  again, an alternative approach is to elfcLl a peaking approximation  

dncctly to the /’- matrices The second order terms in (2) have been shown 119) to he 
behaved H regular ('oultmib / matrices, which are analogous to the regularized oll-'^hcH
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Coulomb wavcfunctions, are used. The peaking approximation then results in a factoring out 

o f R utherlord scattering am plitude which for certain terms can be interpreted as 

corresponding to classical Thomas double scattering mechanisms. W e shall refer to this 

approach as the second order Faddeev-W atson peaking approximation (FW PA2). A similar 

peaking approximation applied to the first two terms in cq. (2) yields FWl^AI. Thus for 

electron capture by heavy particles, the term 7 ' , G o ' d o m i n a t e s  at higher angles and 

accounts quite w ell lor the observed Thomas peak 119,20). For capture by positrons two 

terms are important, viz. and which can interfere constructively for odd

parity positronium states or destructively for even parity stales [21- 23) ,  although no 

experimental evidence is yet available to test these predictions.

3. Numerical results

Because the FW PA2 docs not take account ol the cl feet ol distant collisions, such as target 

distortion, it might not be expected to be reliable for total cross sections. In contrast the 

TCDW approximation treats the target distortion explicitly and the resulting total cross-section 

arc in good agreement with experiment for electron capture by heavy particles [12,24] and by 

positrons [25] as shown in Figure 1 in this calculation. By contrast, m the latter case, 

the FW PA2 fails badly at these energies, although for capture by high energy protons, o f the

E ( eV )

Ffgiire 1. Total cross sections for positroniuiii formation in e'*' + He .scattering as a function of 
mci|Jent e"*” energy Solid circles , measurement of Fromme et al [26|, open circle . FWPAl [2.1], 
open triangles . TCDWl [25] and stars . IAVPA2 results [2^  Solid, dashed and dotted lines are 
drawn through TCDW t, FWFA1 and FWPA2 results respectively to guide the eye All theoretical 
results are for IS -  KS capture

order o f several M eV , the total cross sections are not bad [19]. From Figure 1 we also note 

that ihe T C D W l and F W P A l total cross sections are in good agreem ent w ith the
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measurement of Fromme el al 126] at the higher energies. This is interesting since the FWPAl 
docs not account of the target distortion but includes the positron-target-core interaction 
explicitly via 7*2 while TCDWI accounts for target distortion but excludes positron-target-core 
inieraclion in (6). In Figure 2, we present differential cross sections in both the 
approximalions al 250 eV. In the forward angles the TCDWI (excluding c"̂  -  Hc"̂  interaction)

to  p
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Figure 2. IS - IS differential cross sections tor the same system at 250 eV 'Ihe symbols 
repa'sent the results in the same tlieones as described in Figuic 1 m

results are a factor of two large compared to FWPAl (including c/*" -  He"̂  interaction) results 
while in the backward direction they nearly match with each other. At this energy FWPA2 
results arc loo large throughout (he entire angular range.

4. Summary

We have established a relationship between the TCDWI and the FW2 approximations when 
the projectile-target interaction is ignored. We also demonstrate that the TCDWI (excluding 
e*̂ “ He'  ̂ interaction) total cross sections gives energy dependence similar to the FWPAl 
(including e^ -  He"̂  interaction) total cross sections.
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