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Abstract : A bnef overview of the sdg interacting boson model (sdg IBM) is given The
two cxamples : (1) spectroscopic properties (spectra, B(£2)'s, B(E4)'s eic) ot the rotor-y unstable
transitional Os-Pt 1sotopes and (1) the analytical formulation of two nucleon transfer
spectroscopic factors and sum-rule quantities are described 1n detail They demonstrate that
sdg 1BM can be employed for systematic description of spectroscopic properties of nucler and
that large number of analytical formulas, which facihtate rapid analysis of data and provide a
clear insight into the underlying structures, can be denved using «dgIlBM dynamical symmetries
respectively
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1. Introduction

In the past few years considerable amount of experimental data on £4 matrix clements,
strength distributions and other observables that involve hexadecupole degree of freedom in
nuclei has started accumulating and their theoretical understanding (using models or
microscopic theories) is a challenging problem. This together with the microscopic theories
of interacting boson model (IBM; which includes [ = 0 (s-boson representing the pairing
degree of freedom) and / = 2 (d-boson representing the quadrupole degree of freedom)
bosors) and several other indirect signatures indicating that / = 4 (g-boson representing the
hexadecupole degree of freedom) bosons should be included in IBM., lead to the
development of the extended sdg interacting boson model (sdg IBM or simply gIBM). The
sdg IBM is the only plausible model that allows one to systematically analyze hexadecupole
data and understand the role of hexadecupole degree of freedom in nuclei (Devi and Kota
1992a).

Section 2 gives a brief overview of the various aspects of sdg IBM including data
analysis. The two specific examples of sdgIBM studies : (i) systematic analysis of
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spectroscopic properties of Pi-Os isotopes; (ii) the analyucal formulation of two nucleon
transfer spectroscopic factors and sum-rule quantities are described in detail in Scctions 3

and 4 respectively. Finally Section 4 gives some concluding remarks.

2. sdg IBM

In order to explore. understand and apply the sdg interacting boson model which is idcally
surted for the study of hexadecupole properties of atomic nuclei, we carried out large
number of studies by exploiting the dynamical symn.ctries (analytical in nature) and their
interpolations (numerical in nature) and it 1s established with good number of examples that
sdg TBM is a viable and powerful tool for systematically analyzing £4 propertics of nuclei.
These studies and the contributions by various other research groups, to the development of
this model are reviewed recently (Devi and Kota 1992a, Kota and Devi 1993). A schemiitic
outline of all these studies 1s given 1n Figure 1. In this article no attempt is made to describe
all the developments in sdg IBM as complete details are given emphasizing the sdg IBM
analysis of hexadecupole observables in (Devi and Kota 1992a) and dynamical symmetry
aspects of the sdg IBM in (Kota and Devi 1993). In the following two scctions two specific
studies are described 1n some detail, one emphasizing the numerical aspects and the other

emphasizing the analytical aspects of sdg TBM.

3. Spectroscopy of Pt-Os isotopes

Our purpose here is to show that a simple hamiltonian Hygyy, (with 6-8 frec parameters)
defined in terms of Casimir operators of gIBM dynamical symmetries and a truncated
space with no more than g-bosons (the resulting hamiltonian matrix dimenstons being
~ 100) describes the spectroscopic propertics of a chan of 1sotopes. To this end we
choose the rotor-y unstable transitional Pt=0s 1sotopes : 198y, 190pg 194pt and 1920s.
For these isotopes, recently the E4 matrix clements for the decay of the first few 4*levels
to the ground state (GS) are deduced from the nelastic scattering of polarized protons
(P, p°) (Todd Baker er al 1989; Setht et al 1990, 1991). The {alure of attempts o
describe this data within sdIBM and sdIBM @ | g models lead to the present study with
two g-bosons.

A simple hamiltonian Hgyy interpolating sdglBM dynamical symmetries and £2 and
E4 transition operators interpolating the group generators are cmployed in the calculations.
The HSYM 1S
Hyw = €4y + €, + o [H(SU,, ()] + o[ H(SU,,, (5))]
+ a[H(SU,, (6))] + o[ H(0,,(15))] + a[H(0,,(6))]

+ ag[H(OBN] H(SU 4, (3)) = - = Q(s).0%(s)

Hlw
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7, - _\2 2 () 36
Qﬁ(s) =4 Tg(s*d+d’s)” - ll\/—;(d d)u + 7105
- z\/i?(g*g)f,; H(SU, () =- 4{G2.G* +G*.G*};

- 3 -2 6
G? = %((s’d+d*§)i - \fl—z(d*d)“ t o

J_
14

(d*é + g*&)z

(d7§+g"3)i

1 - \4 2 ~\4
(g g) G = —\/—g((s*g+g7s)u + -_;(d*d)“

55 ~\4 143 . _\4
ts 4 of —(g%g) ; H(SU_,, (6
+ W}98 (d g+g d)” + 980(g g)u (8U,4,(6))

= - 4{n2.n? + h*.nt};

K2 = 1/1’6( td+d's ),, + 7%.6—((1*21)2 - o (a2 +8'd)
V33, .
- e e'9),
hi = J_(s g+gt s ~ —\[‘ d"d” -y E(d*g-}-g*d)
143,
M ERCON

-~ 2
H(04,(15) = I* 4181 12 = (s'd+d'5) . 1} =
H(0,,(6)) = I°.I?

o - - e, )

(1)

In (1) {Q%s)}, 1G% G*), {h%, k%) and [I2, I*} are generators of SU,4y(3), SUy(5),
SUsye(6) and O,4,(15) respectively (/2 is also a generator of 0,(6)). The E2 and E4
transition operators are chosen keeping in mind that SU,4e(3) and Oyy,(15) symmetries
are relevent for the nuclei in Os—Pt region. In terms of SU,4(3) quadrupole generator Qﬁ (s)
and the 0.,(15) (or O (6)) quardrupole generator l2 of eq. (1), the E2 operator is
TE —a[Q2(5)+ﬂ12] Similarly the E4 transition operator is chosen to be a linear

combmauon on the Qosc-
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- - 195, -4 SV, 4
s = [(s*g+g*s): + (d*d)” - ———(d"g+g’d)”
37143 4
>3 (¢'2), )

and the O,,(15) rank-4 generator /% defined in (1), T** = C[IZ +nQ2, ”]. It should be

noted that although Q“‘m is not a generator of any of the gIBM dynamical symmetries, it can
he viewed as a close analogue of Q%(s) but of rank-4, as the factors multyplying the terms in
the Qf,sc are obtained by evaluating the matrix elements of #Y* operator in the sdg harmonic
oscillator basis and it is successfully used in earlier studics describing data relating to E4
observables (Devi and Kota 1992b).

With the transition operators given in (2) and (3), B(E2) values,

k< LTEL, >

B(E2;L—>L)=
(2L, +1)

and the absolute E2 and E4 reduced matrix elements

M(EA;L > L= |< L|r®|L,  iA=2.4

are calculated and compared with data.

The boson number N = 5, 6, 7 and 8 for 98P, 196P¢, 194Pt and '920Os and based on
occupation numbers one sees that one can safely usc a truncated space n, 2 1, 2, 2 and 2
respectively. The successful calculations for Sm isotopes (Devi and Kota 1992b) lead to the
restriction n, < 2. With these truncations (the maximum hamiltonian matrix dimensions
being 27, 27, 53 and 95 respectively) and with the parameters given in Table 1. The spectra

Table 1. Parameters employed in the sdgIBM calculations

Nucleus £, £g a) a ) a, as o « B < n
(Mev) (MeV) (keV) (keV) (keV) (keV) (keV) (keV) (eb) (eb®)

8pt 049 075 135 0 198 283 -534 16 003 10/3 009 -2/3

%pr 032 065 -126 0 625 451 -554 13 003 3 0043 823

%pT 004 040 075 0 0 -132 -237 15 0052 O 027 0

%205 023 062 036 62 0 -22 =172 10 0.12 -3/2 0.0143 -10/3

for the above four nuclei are calculated (gIBM (2 g)) and they are compared with data and
other sdg IBM calculations (sd X 1 g due to Sethi er al (1991) and Todd Baker er al (1985)

and gIBM (full), where there is no truncation of the space, is due to Kuyucak e al (1991) in
Figures 2a—d. The experimental data for %8Pt is due to Sethi er al (1990) and from NDS

1983a), for '96Pt is due to Sethi et al (1991), Bolotin er al (1981) and from NDS (1979), for

70A(1)-14
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4Pt is aue to Sethi et al (1990) and from NDS (1989) and for '920s is from NDS (1983b).
The numbers given in the parenthesis 10 the extreme left in Figures 2a—d are the g-boson
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Figure 2. Expenimental and calculated (sdgIBM) spectra for Os~pt 1sotopes.

oceupation numbers and from them one can infer the hexadecupole content in the
wavelfunctions. It is seen from the figures that the quality of agreements in the sdgIBM (2g)
calculations is much better than in sd x 1g and as good as gIBM (fulf) results. Tne quality
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of agreements extends to E2 and E4 transition matrix clements; the results are given in
Tables 2a~d and Table 3 respectively. Thus the consistently good description of spectra,

Table 2a. B(E2) values for 98py,

L>L B(E2; L, — Ly) (e2b%)
Expt@) £IBM®) sdIBM®©)
2g)
2] - 0] 0.204 + 0.02 0.280 0194
0222 +0.001
2127 0.185+0.024 0257 0134
0262+0.038
02550048
25 .0 B3x1)x10™ 103 104
0; 2] 0.191 £ 0.051 0061 0017
0179+ 0.048
4] -2 027£0.023 0379 0253
0262 +0.028
212 0.015%0.010 0018 o4
2, -2 0004 £ 0003 U sx 107
2 -0 (4+3)x 107 5% 1074 -0
6 -4, 20.395 0358 0.240

1

4 NDS (1990), Bolotin er al (1981)
b) present calculation
) Bolotin ef al (1981)

‘Table 2b. B(E2) values for 196 py

L,— L B(E2 . L,— Ly) (e*b)
Expt®) g1BM
_ ' (g 2 3e)°)
2; >0, 0.344£0.01 0.315 0320 0.294
0.276
0.288 +0.014
0.30
2, - 0] Ix 10 0.002 0002 0007
25 -2} 0.35+0.031 0.391 0177 0.283
0.26  0.055
47 -2 0.043 + 0.032 0.443 0.437 0415
0.443 £0.026
0380 £0.030
0; »2} 0.033 1 0.007 0.006 0.020 0.075

0.021£0.01
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Table 2b. (Cont'd.)
Lo 1Ly B(E2:L,> Lp) (e%?)
gpf“) gIBM
g® eV 3
0} =25 0.142 £ 0077 0448 0.299 0.177
45 27 0.003 0.003 0.013 0.002
00023 £ 0 0008
4t 52! 0.177 £ 0.035 0.246 0.068 0.199
0.218 £ 0.043
47 — 3 <006 0.026 0.020 .
47 4] 0193 £ 0.097 0.20 0.084 014
0.218 £ 0 054
0 180 0.090
6, > 4] 04210116 0.50 0.359 0.450
0.494 £ 0.370
0400+0110

a} Sethi er al (1991), Devi and Kota (1992a)
b} present calculation
¢) Navratil and Dobes (1991)

Table 2¢c. B(E2) values for 1%pt

Lo L B(E2; L, - Ly) (e2b?)
Expt® gIBMP) pnlBM®)
2g)
2] >0, 0.374 £ 0.016 0.341 0.357
0 324 0.003
47 -2 0.47+0.03 0478 0.496
0.449 + 0 022
6] o4/ 0.3210.08 0.492 0.544
04810 14
4; -2, 028%0.12 0.193 0.275
018+0.06
069039
2; 0] 0.0014 % 0.0002 0.009 3x1075
0.0015  0.0002
27 -2} 0.58 £0.07 0.295 0.517
0.42310.015
0.60 1 0.07
4; 47 0.87+£0.43 0.130 0.276
4; »2; 0.01 £0.005 0.007 0.004

) Baktash er al (1978), Stelzer et al (1977)
b) present calculation
<) Bijker et al (1980)
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Table 2d. E2 matrix elements in 1920,

Li—> L I<JpITEZ 110, > ) (eb)
Expt® gIBM

QP (fulh®
2} =0} 1.457 £ 0.018 1.594 1.457
4 2 2.115 Coo38) 2720 2.330
6! >4t 293¢ 349 3430 2.960
25 »27 1.224(20.9%) 1112 1.231
2} -0} 0.425(*0 5%%) 0.405 0289
23 .47 0.35C34h 0.574 0203
05 -2} 0.066(*0012) 0643 0152
0} - 23 0449035 0895 0689
43 a7 13500 1074 1327
4; »2; " 1.637 £ 0.050 1.579 1.562
452} 0.125C 0 1) 0.462 0.098
4 -6 0.40C0 %) 0.797 0.298
6 =6 149¢*039 0.839 1.324
6; =43 2090013 1.873 2.270
6, 4] 0.067 £ 0.076 0.060 0.262
4l 4] 1.19£0.22 0792 0.583
4 53} 1.63C030) 1.038 0.836
4} -2} 0.79C0 1D 0 502 0694
4 -2 0.113C*0.084) 0.428 0.153

a) wu (1983)
b) Present calculation
©) Lac and Kuyucak (1992)

Table 3. Select 4 matnix clements in 194:196.198py an4 19205 nucles.

Nucleus E(4)MeV L, — Ly B(E4 . L,— Ly) (1072¢2p7)
Expt? gIBM
198py 0.985 0} — 4} 2.07+0.09 2.16”
0.81+0.81
1.287 0] —4; 1.54£0.15 1.547
. 0.04 1.309
1.785 o} — 4} 0.88£0.13 0.72»

2.829)
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Table 3. (Cont'd )

Nucleus E(4)MeV L= 1f R(E4 . L, — Ly) (1072e2b%)
Expt?) £IBM
196py 0877 0 4] 3.06 £0.25 3.507
240+ 050 3 40D
124+25 2507
1203 0 -4} 2474028 317
20%040 0 809
<196 1999
1537 07 > 43 045+ 008 092b
1 887 0] -4} 40%02 1 997
44%13 4 aph
2629
194py Rl 0 -4} “81027 4220
3651034 3319
529%37
1229 0] - 4; 1322016 1.79"
1724016 2729
169+078 ,
ot 0] — 43 5244032 4420
7.842056 1.93
19203, 058 0} -4} 400 4TI
3844043
ool 0} > 4; 139 1029
1352067
1o 0 — 4; 1.21 2.250
147

2 Todd Baker et al (1985, 1989), Sethi er al (1990, 199 1)
D) present Calculation

<) Kuyucak er al (1991)

9) Navraul and Dobes (1991)

E2 and t4 properties with a 2g-boson truncation establishes that the present truncation
scheme is meaningful for Pt—Os isotopes.

4. Two nucleon transfer

Two nucleon transfer (TNT) cross sections and the corresponding spectroscopic factors (or
strengths) are one of the most valuable observables in nuclear structure and they provide
deeper insights into cffects due to pairing degrees of freedom, single particle aspects efc.
The IBM provides a natural frame work for a unified and analytical description of TNT
strengths and cross sections. This analytical feature of IBM together with the rich
dynamical symmetry structures in sdg IBM make TNT studies in sdg IBM an ideal probe to
infer the structure of the excited rotational bands (two phonon quadrupole, one phonon
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hexadecupole vibrational, two quasi particle) and also about shapes and shape phase
transitions.

In sdgIBM the TNT operators for / = 0, 2, 4 transfers, ignoring cut-off factors (Dcvi
and Kota 1991) that depend on boson numbers, are

PO = pagst PI0 = megd
P = n+,d' PP n-,d
Pi=4 = 77+4g+ P£=4 77-4§

where (+) is for particle addition and (-) is for particle removal and 7’s are free parameters.
Employing these operators analytical expressions for TNT strengths

!
P(i)

2
SB(N:0gs —» N1 L) = (nil)ZKN:tl;L“; N;055>l 5, @
in the SU,4,(3) limit are reported by Devi and Kota (1991) and for the SU, (3) x 1g limit the
results are reported here.

In the SU ,4,(3) limit as shown in Figure 3, in addition to the usual ground, beta and
gamma bands generated by the SU(3) irreducible representations (irreps) (4N, 0)K” = 0,
(4N-4, 2)K™ = 0 and (4N-4, 2)K* = 2 respectively, there are two new features : (i) odd K
bands arising due to the irrep (4N-6, 3)K™ =1, 3 ; (ii) two types of 4* (also 0* and 2* bands)
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Figure 3. Analyucal expressions for TNT strengths in the SU y(3) limit.

arising from the two (4N-8, 4) irreps labeled @ = 0, 1. From the structure of the intrinsic
states shown in the inset to Figure 3, the a = 0 bands are two phonon in nature and the a =
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1 bands are one phonon hexadecupole in nature. The analytical expressions (functions of N
the boson number) given in Figure 3 allow the rapid analysis of data and makes transparent
the structure of rotational bands as the selection rule forbidding (indicated by dashed lines
in the figure) the excitation of two phonon bands. In fact the branching/selection rules
provided by these analytical expressions explain the observed TNT strengths in the
166Er (1, p) '68Er data; details of this data analysis are given ahead.

In the SU.(3) x 1 g limit the coupling of a g-boson to the core described by the
SU,£3) limit gives rise to K* =0, 1, 2, 3, 4 bands in addition to the ground, beta and gamma
bands generated by the (2N, 0) K™= 0, (2N-4, 2)K*™ = 0 and (2N-4, 2)K* = 2 irreps of
SU,3) limit respectively and the two phonon quadrupole bands arising due to (2N-8, 4)
irrep with K7=0, 2, 4. The analytical expressions for TNT strengths are shown in Figure 4.

INe 1] s‘i"
[ o j
(2N.0) X 19
f 1
(2N-6,4)
r 1
- . - - -
4 ﬁh‘.—’P‘o'_’F\‘o 4 7F
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Figure 4. Analytical expressions for TNT strengths in the SU,(3) x 1 g limit.

These results establish that TNT studies clearly determine the appropriateness of SUsq,(3)
limit and the SU,(3) x 1 g limit descriptions as in the example of !56Er(r, p) !$8Er data
described below;

@ The strength to IK”™ = 44* at 2.06 MeV is observed to be rather weak. In the
SU,4g(3) limit this level belongs to (4N—4, 4),_o which is two-phonon in nature
and the selection rule then explains the data. In the SU,(3) x 1 g limit this level
belongs to (2N-6, 4) irrep as shown in Figure 4 which then also explains the
selection rule.
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® In Su,(3) and SU,(3) x 1 g limits K* = 05, 0} and 2} cannot be excited. These
forbidden levels are observed experimentally. The strengths to 0, 0} (1.217
MeV), 05 (1.422 MeV) and 0; (1.833 MeV) are (100, 15, 10, 2.4) and (100, 8.4,
15.2, 0) in experiment and SU,,(3) limit respectively.

® The strength to /K™ = 2 2% is 6 times the strength to 2 2" in SU 4,(3) limit and the
data value is 5 ; 2 Z belongs to (4N-8, 4),-. In the SU,A3) X 1 g limit the value
of this ratio is zero.

e The 4; (1.737 MeV) level is strongly populated in experiments. In SU,yp(3) limit
this level belongs 4 3] and then single step excitation to this level is possible
which then explains the data. This is a forbidden transition in the SU,(3) x 1 g
limit.
Thus TNT studies in SU(3) x 1 g and SU,,(3) limits clearly establish that '58Er is a good
SU,44(3) nucleus.

In general going beyond dynamical symmetries TNT studies can still have analytical
formulation by considering the ratio R; (the advantage in dealing with this ratio is that it
makes it a good approximation to deal with spectroscopic factors in place of cross sections)
proposed by Grarrett er al (1990) which results in a sum-rule quantity in sdgIBM,

> Sy (M 05 - N1 07)

R = f2GS

* 55, (N2 05 = N£1; 0%)
& l+(N;ﬂg,ﬂf,yo’s*s!N;Bg,ﬂ;’,}’0> |

. = 2

|<N+l;ﬁg,ﬁg,}’olle;ﬁg,ﬁg,YO)\
0)2 , (p0)?
= _(EZ_)__]_‘;_(_‘Q)_ + O(1/N?) 4)

o = _NiBD.BR.Y°ls's|N:BY. BY. °)

(v -1Bg.BL s viB2. B2 )
=0 in all cases G

The equilibrium coherent states lN;ﬁg B ,70/\ are determined for all the dynamical
symmetries of sdg IBM by Devi and Kota (1990). The analytical results in egs. (4, 5) are
used in analyzing the data (data is due to D.G.Burke; private communication) for the ratio R
in rare-earth nuclei and the results are showr in Figure 5. Due to particle-hole symmetry in
determining the boson number N, both the (¢, p) data shown in the Figure 5 correspond to R
= R,. The analysis clearly brings out the regions of applicability of sdg dynamical
symmetries (the ratio R is same for both S U,,(3) and SU(5) limits) and they are
consistant with the conclusions drawn from coherent state studies (Devi and Kota 1990).

T0A(1)-15
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Although the average trend in data is well cxplained by symmetry limits, there are peaks
observed (for cxample in the ncutron number 90 region) and they correspond to shape-
phase transitions. To describe the peaks a_hamiltonian interpolating shperical-deformed

YT TY Y T Y T YTy ST

1.6 t, (p.1) 1 1
(t.p) osdg( 5)
O Sm (sdgiBM)
1.2 +Nd ©VYb
~~ UuSm o Hf 6
n oGd oW SUsdg( )
R 0.8 o ® Dy 40s
" aEr v Pt
o SU,(3)
0.4 .
QB 1«/'
19l a—ge—gw
oo [P P ..__...,._.J_,//___a.__.k [V S S S Y
82 90 98 106 114 122

Neutron Number (Final Nucleus)

Figure 5. Expenmental data for the ratio R 1n rare-earth nucler and the
corresponding sdgIBM results

shapes is employed in a detailed sdgIBM numecrical calculations (Devi and Kota 1992b) and
the peak is well described by the calculations (big circles in Figure 5). Thus the analysis of
the ratio R gives information on the regions of relevance of sdgIBM dynamical symmetries

((i.e.) about shapes) and also about shape phase transitions.

5. Conclusions

The two specific examples : (i) the spectroscopy of a chain of isotopes (i.e.) the rotor-y
unstable transitional Pt-Os isotopes; (ii) the analytical formulation of two nucleon transfer
strength in SU,4,(3), SU,(3) X 1 g limits and the ratio R, demonstrate that sdgIBM is a
powertul and viable tool in analyzing collective spectroscopic properties of heavy nuclei. In
order to include the description of single particle aspects one has to extend sdgIBM to
include a few (1-4) quasi particle excitations and this project is in progress {Devi and
Kota 1993).
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Note added in proof :

In Figure 4 S(;)) (N:(2N.0) O > N+1; 2N -2,2) K, = 0%, L, = C7) shoulc be 2/3
but not (2/3) (1+1/N). The S} strenglhs shown in Figures 3, 4 satisly some important sum
rules. For example ZES(‘,S’(N; (MN.0) 05 5 N+1: (l,u, )KJL,) is (2 - 5K[,0) for
the ground and one phonon bands while it is zero for the two phonon bands; n = 4 for
SU,4, (3) and 2 for SU,; (3) x 1 g. Note that the sum rule is incependent of 7. Another sum

rule (called S(l,pl )) is

D SH (N (IN.0Y O > N+ 13 (A KL, ) = | < > I
KL,

X d(l,u,)/d( nN.0),

where the triple barred matrix element < lll 11l > is the SU(3) CFP defined in (Devi and
Kota 1991 1992a) and d(4,) is SU(3) dimension. We derived explicitly that S(l,y,) =
N(|+—) for (lfyf) = (4N + 4,0) and 3(1 + ) for (4N, 2) i lrrep in SU4, (3) case

Slmlldrly, in the SU, (3) x 1 g case S(lfy_,) takes values N( + ) and 3(1 - 2N)
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for 2N +2,0) and (2N - 2,2) irreps respectively. The expressions given in Figures 3, 4
satisfy both the above sum rules. The sum rules show that there is a onc (o one
correspondence between the low-lying irreps of SU, (3) and SU,; (3) X 1 g limits and one
difference between the two limits is in the nature of fragmentation of TNT strength. In data
analysis, the sum rules can be used Lo distinguish between the SU,, (3) and SU,; (3)x 1 ¢

descriptions.



