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Abstract : A brief overview of the sdg interacting boson model (sdg IBM) is given The 
two examples : (1) spectroscopic properties (spectra, B(E2)'s, B(EA)'s etc) of the rotor-y unstable 
transitional Os-Pt isotopes and (11) the analytical formulation of two nucleon transfer 
spectroscopic factors and sum-rule quantities are described in detail They demonstrate that 
sdg IBM can be employed for systematic description of spectroscopic properties of nuclei and 
that large number of analytical formulas, which facilitate rapid analysis of data and provide a 
clear insight into the underlying structures, can be derived using sdgIBM dynamical symmetries 
respectively
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1. Introduction

In the past few years considerable amount of experimental data on E4 matrix elements, 
strength distributions and other observables that involve hexadecupolc degree of freedom in 
nuclei has started accumulating and their theoretical understanding (using models or 
microscopic theories) is a challenging problem. This together with the microscopic theories 
of interacting boson model (IBM; which includes / = 0 (5-boson representing the pairing 
degree of freedom) and / = 2 (d-boson representing the quadrupole degree of freedom) 
bosorrs) and several other indirect signatures indicating that / = 4 (g-boson representing the 
hexadecupole degree of freedom) bosons should be included in IBM, lead to the 
development of the extended s d g  interacting boson model (s d g  IBM or simply gIBM). The 
sd g  IBM is the only plausible model that allows one to systematically analyze hexadecupole 
data and understand the role of hexadecupole degree of freedom in nuclei (Devi and Kota 
1992a).

Section 2 gives a brief overview of the various aspects of sdg IBM including data 
analysis. The two specific examples of sJ^IBM studies : (i) systematic analysis of

© 1996 IACS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IACS Institutional Repository

https://core.ac.uk/display/158962122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


92 Y D Devi and V K B Kota

spectroscopic properties of Pt-Os isotopes; (ii) the analytical formulation of two nucleon 
transfer spectroscopic factors and sum-rule quantities arc described in detail in Sections 3 
and 4 respectively. Finally Section 4 gives some concluding remarks.

2. sdg IBM

In order to explore, understand and apply the sdg interacting boson model which is ideally 
suited for the study of hcxadecupole properties of atomic nuclei, we carried out large 
number of studies by exploiting the dynamical symn.etries (analytical in nature) and their 
interpolations (numerical in nature) and it is established with good number ol examples that 
sdg IBM is a viable and powerful tool for systematically analyzing £4 properties of nuclei. 
These studies and the contributions by various other research groups, to the development of 
this model are reviewed recently (Devi and Kota 1992a, Kota and Devi 1993). A schematic 
outline of all these studies is given in Figure I. In this article no attempt is made to describe 
all the developments in sdg IBM as complete details are given emphasizing the sdg IBM 
analysis of hcxadecupole observables in (Devi and Kota 1992a) and dynamical symmetry 
aspects of the sdg IBM in (Kota and Devi 1993). In the following two sections two specific 
studies are described in some detail, one emphasizing the numerical aspects and the other 
emphasizing the analytical aspects of sdg IBM.

3. Spectroscopy of Pt-Os isotopes

Our purpose here is to show that a simple hamiltoman HSym fwith 6-8 free parameters) 
defined in terms of Casimir operators of gIBM dynamical symmetries and a truncated 
space with no more than g-bosons (the resulting hamiltonian matrix dimensions being 
-  100) describes the spectroscopic properties of a chain of isotopes. To this end we 
choose the rotor-y unstable transitional Pt=Os isotopes : ,t,xPt, ,96Pt ,94Pt and ,t;2Os. 
For these isotopes, recently the £4 matrix elements for the decay of the first few 4+levels 
to the ground state (GS) arc deduced from the inelastic scattering of polarized protons 
(p, p') (Todd Baker et al 1989; Sethi et al 1990, 1991). The failure of attempts to 
describe this data within sdlBM and .sr/IBM © 1 g models lead to the present study with 
two g-bosons.

A simple hamiltonian HsYM interpolating sdgIBM dynamical symmetries and £2 and 
£4 transition operators interpolating the group generators are employed in the calculations. 
The H$yM is

h syn = £</",/ +  + ^ [H (S U s(Jr(3))\ +  a 2[ //(5 t/^ (5 ))]

+ « ,[ / /(5 (^ (6 ) ) ]  + a 4[//(0 Wl,(15))] + ors[W(Ow(6))] 

+ a 6[» ( < X 3 ) ) ] / /(M /^ (3 ) )  = -  2  Q 2 ( s ) . Q 2 ( s )
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In (1) {Q2(s)}, [G2, G4), {h2,h4} and [Z2, /4} are generators of .51^(3), SU<df,(5), 
SI-W 6) and 0 ^ (1 5 )  respectively (/2 is also a generator of Os/6 )) . The E l and E4 
transition operators are chosen keeping in mind that SUidt((3) and Osdx(15) symmetries 
are relevent for the nuclei in Os-Pt region. In terms of SUsdll(3) quadrupole generator $ ( s )  
and the 0,^(15) (or 0 SJ&)) quardrupole generator l 2 of eq. (1), the E l operator is 
TE1 — a [Qj,(s ) + f tp  ]• Similarly the E4 transition operator is chosen to be a linear 

combination on the Q^s c ,
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and the 0 ^ (1 5 )  rank-4 generator I* defined in (1), T hA = <*[/* + ^ ]. It should be

noted that although Q%sc is not a generator of any of the gIBM dynamical symmetries, it can 
be viewed as a close analogue of Q2(s) but of rank-4, as the factors multyplying the terms in 
the e L  are obtained by evaluating the matrix elements of a4/ 4 operator in the sdg harmonic 
oscillator basis and it is successfully used in earlier studies describing data relating to £4 
observables (Devi and Kota 1992b).

With the transition operators given in (2) and (3), B(E2) values,

B{E2 ; L, -> Lf) =
|< l ( \\t E7\\l , > f

(2Lf+ 1)

and the absolute £2 and £4 reduced matrix elements

M(EX ; L, -> L{) = |< Lf  ||7’£;i ||li ; A = 2, 4

are calculated and compared with data.

The boson number N  = 5, 6, 7 and 8 for 198Pt, 196Pt, ,94Pt and 192Os and based on 
occupation numbers one sees that one can safely use a truncated space ns > I, 2, 2 and 2 
respectively. The successful calculations for Sm isotopes (Devi and Kota 1992b) lead to the 
restriction ng < 2. With these truncations (the maximum hamiltonian matrix dimensions 
being 27, 27, 53 and 95 respectively) and with the parameters given in Table 1. The spectra

Table 1. Parameters employed in the sdglBM calculations

Nucleus
(Mev)

£S
(MeV)

<*1
(keV)

«2
(keV)

«3
(keV)

04
(keV)

«5
(keV) (keV)

a
(eb)

p s
(eb2)

n

198p, 0 49 0.75 1.35 0 1 98 28.3 -  53.4 16 0 03 10/3 0.09 -2 /3
l%p, 0 32 0.65 -  1.26 0 62.5 45 1 -  55 4 13 0 03 3 0 043 8/23

0.04 0.40 0.75 0 0 -  13.2 -23.7 15 0 052 0 0.27 0

,92Os 0.23 0,62 0.36 6.2 0 -2.2 -7 .2 10 0.12 - 3/2 0.0143 -10/3

for the above four nuclei are calculated (gIBM (2 g)) and they are compared with data and 
other sdg IBM calculations (sd x 1 g due to Sethi et a / (1991) and Todd Baker et al (1985) 
and gIBM (full), where there is no truncation of the space, is due to Kuyucak et al (1991) in 
Figures 2a-d. The experimental data for ,98Pt is due to Sethi et al (1990) and from NDS 
(1983a), for ,96Pt is due to Sethi etal (1991), Bolotin et a / (1981) and from NDS (1979), for
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l<MPt is due to Sethi cl al (1990) and from NDS (1989) and for ig2Os is from NDS (1983b). 
The numbers given in the parenthesis to the extreme left in Figures 2a-d are the g-boson
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Figure 2. Expenmemal and calculated (sdgIBM) spectra for Os-pt isotopes.
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of agreements extends to E l and £4 transition matrix elements; the results are given in 
Tables 2a~d and Table 3 respectively. Thus the consistently good description of spectra,

Table 2a. B(E2) values for ,98Pt.

L, -> Lf B (E l \L ,- * L f ) te 2bl )

Expt(̂
(2 K)

.k/IBM*'1

A 0.204 ± 0.02 0.280 0 194
0 222 ±0.001

2 t-> 2 | 0.185 ±0.024 0 257 0 134
0 262 ± 0.038
0 255 ± 0 048

2: ( 3 ± l) x  KT4 10'3 10 4
0; - , 2; 0.191 ±0.051 0 061 0 017

0 179 ±0.048

4; - > 2; 0 27 ± 0.023 0 379 0 253
0 262 ± 0.028

2“*: 0.015 ±0.010 0 018 i tr 4
0 004 ± 0 003 u r 4 5 x 10"4

2; -* 0; (4 ± 3) x KT4 5 x 10-4 - 0

6 ; ^ 4 ; > 0.395 0 358 0.240

a) NDS (1990), Bolotin e/ n/ (1981)
b) Present calculation
c) Bolotin el al (1981)

Table 2b. B(E2) values for l%Pt

Lf -> Lf fl(E2 ,L ,—*L f) {e2b2)

Expt3̂ XIBM

(U*)a> <2*)b) (3*)c)

27 ° | 0.344 ±0.01 0.315 0 320 0.294

0.276

0.288 ±0.014

0.30

2 3 x 10-6 0.002 0 002 0 007

2J - 2; 0.35 ±0.031 0.391 0 177 0.283

0.26 ± 0.055

0.043 ± 0.032 0.443 0.437 0415

0.443 ±0.026
0.380 ±0.030

0.033 ±0.007 0.006 0.020 0.075

0.021 ±0.01
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Tabic 2b. (Cant'd.)

L, —* Lf B(E2 ; Lt Lf ) (e2b2)

Expta)

o * )a)

gJBM

(2f!)b> (3*)c)

°2 2+ 0.142 ± 0  077 0 448 0.299 0.177
4+ 0.003

0 0023 ± 0 0008
0.003 0.013 0.002

<  -> 2+ 0.177 ±0.035 
0.218 ±0.043

0.246 0.068 0.199

< 0 0 6 0.026 0.020
0 193 ±0.097 
0.218 ± 0  054 
0 180 ±0.090

0.20 0.084 0 14

6 | — 4 | 0.421 ± 0  116 
0.494 ± 0.370 
0 400 ± 0  110

0.50 0.359 0.450

a * Sethi et al ( 1991), Devi and Kota ( l992a) 
b> Present calculation 
c) Navratil and Dobes (1991)

Table 2c. B(E2) values for ,94Pt

L , ^ L t B(£2 ; L, —* L f)  (e2b2)

Expta) tfIBMb)
(2*)

/wiIBMc)

2* - > 0 | 0.374 ±0.016 
0 324 ± 0.003

0.341 0.357

0.47 ±0.03 
0.449 ± 0 022

0.478 0.496

6 | 4* 0.3210.08 
0 .4810  14

0.492 0.544

Z2 0.2810.12 
0 1810.06 
0 69 1 0  39

0.193 0.275

2+ ->0* Z2 U1 0.0014 1 0.0002 
0.0015 1 0.0002

0.009 3 x 10~5

~2 Z1 0.5810.07 
0.42310.015 
0.6010.07

0.295 0.517

4^ 4; 0.8710.43 0.130 0.276
4^ 2; 0.0110.005 0.007 0.004

a) Baktash et al (1978), Stelzer et al (1977)
b) Present calculation
c) Bijker et a / (1980)
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Table 2d. £2 matrix elements in 192Os.

Li —* L f 1 < jy  11 t -̂ 2 11 > 1 (#-/»)

Expt"^ tftBM

(2 g)h) (full)61

1.457 ±0.018 1.594 1.457

2 « 15 (72.044) 2 720 2.330

2 - 9 3 ( ^ ) 3 430 2.960

2 ^ 2 ; 1 #+0.030V 
1 224<-O.OI6> 1.112 1.231

2^ 0; 0.425(7y OH ) 0.405 0 289

2* -» 4* 0-35(7aO7) 0.574 0 203

°2 —*2* 0 . 0 6 6 ( ^ 1 ) 0 643 0 152

0* -» 2+ u2 ^  Z2 0  4 4 9 ( ^ ^ > 0 895 0 689

42 “̂ 4T 1 35<^.08> 1 074 1 327

4“*" . 2+ ^2 ^  ^2 1.637 ±0 .050 1.579 1.562

47 - 2T 0 .1 2 5 (3 8 1 $ ) 0.462 0.098

4;  - 6 7 040(72  fg) 0.797 0.298

6 7 ^ 6 7 ' 0.839 1.324

62 ~*4 l 2.09(7^ *7) 1.873 2.270

62 - 4T 0.067 ±  0.076 0.060 0.262

< - + < 1.19 ± 0 .22 0 792 0.583

4 7 -^ 3 7 1 O3(7o 36* 1.038 0.836

4 7 - 2 7 0-79(7 0 502 0 694

47 - 2T o -" 3 ( 3 : 0 % ) 0.428 0.153

a) Wu (1983) 
b* Present calculation
c) Lac and Kuyucak (1992)

Table 3. Select EA matrix elements in 194.!96.198pt an(j 192q s nucje ,

Nucleus £(4y )MeV L x —> L f £ (£ 4  ;£ , — £ /)  ( I0 "2e 2i>2)
Expta) #1BM

l98Pt 0.985 0 7 - 4 4 7 2.07± 0.09 2.16**
0.81 ±0.81

1.287 0 7 - 4 7 1.54 ±0.15 1.54**
. 0.04 l.SO6*

1.785 0 7  — 47 0.88 ±0.13 0.72**
2.82c*
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Table 3. (Cant'd)

Nucleus £(4^)MeV L, -> Lf F(FA ; L, Lf )(1(r 2e2b h

Expt^

l%Pt 0 877 o ; - » < 3.06 ± 0.25 3.50,,)
2 40 ± 0 50 3 40^
3 24 ± 2.5 2 50r)

1 293 2 47 ± 0.28 3 1W
2 0 ± 0 40 0 80^'

< 1 06 1 W )
1 537 o ;-» 4 j 0 45 ± 0 08 0 92h)
1 887 o; 4 0 ± 0 2 I W*'

4 4 ± 1 3 4Q0t/)
2 62r)

,t)4Pt 0 81) o ; - + 4| ".8 ±0  27 4.22fc)
3 65 ± 0 34 3 31‘ '
5 29 ± 3 7

1 229 °; 1.32 ± 0  16 l.79*>

1 72 ± 0  16 2 720
1 69 ± 0 78 ,

1 911 -> 4; 5 24 ± 0 32 4 42^*
7.8410 56 1,93‘ *

1Q2( \  0 58 4 00 4 7!/>)

3 84 ± 0 43
091 ° |  -*4* 1 39 I 02h)

1 35 ± 0 67
1 07 o ; ^ 4 ; 1.21 2.25* *

1 i7

a) Todd Baker e ta l(  1985, 1989), Sethi etal (1990, 19<$D 
^  Present Calculation 

Kuyucak et al (1991) 
d) Navratil and Dobes (1991)

E2 and L4 properties with a 2g-boson truncation establishes that the present truncation 
scheme is meaningful for Pt-Os isotopes.

4. Two nucleon transfer

Two nucleon transfer (TNT) cross sections and the corresponding spectroscopic factors (or 
strengths) are one of the most valuable observables in nuclear structure and they provide 
deeper insights into effects due to pairing degrees of freedom, single particle aspects etc. 
The IBM provides a natural frame work for a unified and analytical description of TNT 
strengths and cross sections. This analytical feature of IBM together with the rich 
dynamical symmetry structures in sdg IBM make TNT studies in sdg IBM an ideal probe to 
infer the structure of the excited rotational bands (two phonon quadrupole, one phonon
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hexadecupole vibrational, two quasi particle) and also about shapes and shape phase 
transitions.

In sdgIBM the TNT operators for / = 0, 2, 4 transfers, ignoring cut-off factors (Devi 
and Kota 1991) that depend on boson numbers, are

pi—0 
r + -  /7+0 s* pl=0 _

*7-o {
p 1: 2 = j]+2 d f p ‘=2 = r j - 2 d
pt=4 = *7+4 X II •u II n - 4 g

where (+) is for particle addition and (-) is for particle removal and rj’s are free parameters. 
Employing these operators analytical expressions for'TNT strengths

N±l-.L+) = (7?± /)2|(n ±1;Z + ||/>'±) (3)

in the SUS(Jf,(3) limit are reported by Devi and Kota (1991) and for the SUu/(3) x lg limit the 
results are reported here.

In the SUijgi3) limit as shown in Figure 3, in addition to the usual ground, beta and 
gamma bands generated by the SU(3) irreducible representations (irreps) (4^,0)^* = 0, 
(4/V-4, 2)Kn = 0 and (4M-4, 2)Kn = 2 respectively, there are two new features : (i) odd K 
bands arising due to the irrep (4AM), 3)Kn -  1, 3 ; (ii) two types of 4* (also 0+ and 2+ bands)

(N + l} S^’

Figure 3. Analytical expressions for TNT strengths in the SU vj^(3) limit.

arising from the two (4/V-8, 4) irreps labeled a  -  0, 1. From the structure of the intrinsic 
states shown in the inset to Figure 3, the a  = 0 bands are two phonon in nature and the a  —
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1 bands are one phonon hexadecupole in nature. The analytical expressions (functions of N 
the boson number) given in Figure 3 allow the rapid analysis of data and makes transparent 
the structure of rotational bands as the selection rule forbidding (indicated by dashed lines 
in the figure) the excitation of two phonon bands. In fact the branching/selection rules 
provided by these analytical expressions explain the observed TNT strengths in the 
l66Er (t, p) l68Er data; details of this data analysis are given ahead.

In the SU J3) x 1 g limit the coupling of a g-boson to the core described by the 
SUJ,3) limit gives rise to K* = 0, 1, 2, 3, 4 bands in addition to the ground, beta and gamma 
bands generated by the (2N, 0) Kn — 0, (2N—4, 2)Kn = 0 and (2N—4, 2)Ka — 2 irreps of 
SUui(3) limit respectively and the two phonon quadrupole bands arising due to (2N-8, 4) 
irrep with K*= 0, 2,4. The analytical expressions for TNT strengths are shown in Figure 4.

__________________ in* ii s';> ____________________

( 2 N . 0 )  X 1 fl

(2N —6 ,4 )

Figure 4. Analytical expressions for TNT strengths in the SUV̂3) x 1 g limit.

These results establish that TNT studies clearly determine the appropriateness of S U ^ i3) 
limit and the S U ^ i)  x 1 g limit descriptions as in the example of 166Er(f, p) 168Er data 
described below;

•  The strength to IKn = 44+ at 2.06 MeV is observed to be rather weak. In the 
SUsdgi?) limit this level belongs to (4N-4, 4 ) ^  which is two-phonon in nature 
and the selection rule then explains the data. In the SUsJ3) x 1 g limit this level 
belongs to (2N—6, 4) irrep as shown in Figure 4 which then also explains the 
selection rule.
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•  In Suscf  3) and SUS(f  3) x 1 g limits Kn = 0£, 04 and 2£ cannot be excited. These 
forbidden levels are observed experimentally. The strengths to Of, ()£ (1.217 
MeV), 0+ (1.422 MeV) and 04+( 1.833 MeV) are (100, 15, 10, 2.4) and (100, 8.4, 
15.2, 0) in experiment and SUsdf{(3) limit respectively.

•  The strength to IKK = 2 2£ is 6 times the strength to 2 2,+in SUsdfi(3) limit and the 
data value is 5 ; 2 2£ belongs to (4W-8, 4 ) ^ .  In the SUS(f  3) x l g limit the value 
of this ratio is zero.

•  The 4J (1.737 MeV) level is strongly populated in experiments. In SUsjR(3) limit 
this level belongs 4 3f and then single step excitation to this level is possible 
which then explains the data. This is a forbidden transition in the SVSif  3) x l g 
limit.

Thus TNT studies in SU sd(3) x 1 g and SUsdf!(3) limits clearly establish that ,68Er is a good 
SUsdfiO) nucleus.

In general going beyond dynamical symmetries TNT studies can still have analytical 
formulation by considering the ratio R± (the advantage in dealing with this ratio is that it 
makes it a good approximation to deal with spectroscopic factors in place of cross sections) 
proposed by Grarrelt et al (1990) which results in a sum-rule quantity in sdgIBM,

X  5(/=0) o;)
* t =

_  f*GS

C o ) (^' ®GS ®cs)

R

R

\ + (N-,p02,P°4 ,Y 0 \s\s\N-,p02, ^ , f }  

|(/V + f  |s+|/V;02o,04o, y°)|2

N
+ 0(1 / N 2)

(N;pll3lY0\s's\N-,PWlr0) 
|(yv -  i;/32°,/J4°, y ° r°)|2

= 0 in all cases

(4)

(5)

The equilibrium coherent states |/V;/J2,/J4 , Y°) are determined for all the dynamical 
symmetries of sdg IBM by Devi and Kota (1990). The analytical results in eqs. (4, 5) are 
used in analyzing the data (data is due to D.G.Burke; private communication) for the ratio R 
in rare-earth nuclei and the results are shown in Figure 5. Due to particle-hole symmetry in 
determining the boson number N, both the (t, p ) data shown in the Figure 5 correspond to R 
= /?+. The analysis clearly brings out the regions of applicability of sdg dynamical 
symmetries (the ratio R is same for both S UxdgO) and SUsdg(.5) limits) and they are 
consistant with the conclusions drawn from coherent state studies (Devi and Kota 1990).

70A(1)-15
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Although the average trend in data is well explained by symmetry limits, there are peaks 
observed (for example in the neutron number 90 region) and they correspond to shape- 
phase transitions. To describe the peaks a hamiltonian interpolating shperical-deformed

T— "T t  — I-------T— r-------1--------r r------r ~ T  f

N eu tron  N u m b e r  (F in a l N u c le u s )

Figure 5. Experimental data for the ratio R m rare-earth nuclei and the 
corresponding sdgIBM results

shapes is employed in a detailed .vdglBM numerical calculations (Devi and Kota 1992b) and 
the peak is well described by the calculations (big circles in Figure 5). Thus the analysis of 
the ratio R gives information on the regions of relevance of dynamical symmetries
((i.e.) about shapes) and also about shape phase transitions.

5. Conclusions

The two specific examples : (i) the spectroscopy of a chain of isotopes (i.e.) the rotor-y 
unstable transitional Pt-Os isotopes; (ii) the analytical formulation of two nucleon transfer 
strength in SUS(if,(3), SUsij(3) x 1 g limits and the ratio /?, demonstrate that sd^IBM is a 
powerful and viable tool in analyzing collective spectroscopic properties of heavy nuclei. In 
order to include the description of single particle aspects one has to extend .sdgIBM to 
include a few (1-4) quasi particle excitations and this project is in progress (Devi and 
Kota 1993).
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Note add ed  in p r o o f :

In Figure 4 S [^  (N;(2N,n)  <)+s -» N + 1; (2 N - 2 , 2 ) K f = ()+, Lf = Q* ) should be 2/3 

but not (2/3) (\ + \/N). The S f  strengths shown in Figures 3, 4 satisfy some important sum 

rules. For example E S {(X{N;  (riN.Q) 0^ . N + 1; (A f/J f )Kf Lf } is (2 -  SK/, 0) for 

the ground and one phonon bands while it is zero for the two phonon bands; tj = 4 for 

SUuJ(, (3) and 2 for S\Jsci (3) x 1 g. Note that the sum rule is independent of rj. Another sum 

rule (called S( XfjUj)) is

£  SIX (N ' W . 0 )  0 £ s -> N  + l; a f» f )Kf L t ) = I <  > l"
K,.L,

x d { Xfn f )/d(r]N,Q),

where the triple barred matrix element <  III III >  is the SU(3) CFP defined in (Devi and 

Kota 1991, 1992a) and d(A^) is SU(3) dimension. We derived explicitly that S(A ^t^) = 

+ for {Xf n f ) = {AN + 4,0) and 3(1 + ^ - )  for (4N, 2) irrep in SU*,, (3) case. 

Similarly, in the SUi{/(3) x 1 g case S{Xf jxf ) takes values N{\  + -^) and 3(1 -  - jL )
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for (2N  + 2,0) and ( 2 N  -  2,2) irrcps respectively. The expressions given in Figures 3, 4 

satisfy both the above sum rules. The sum rules show that there is a one to one 

correspondence between the low-lying irreps of S U ^ , (3) and SUirf (3) x  I g  limits and one 

difference between the two limits is in the nature of fragmentation o f T N T  strength. In data 

analysis, the sum rules can be used to distinguish between the SUAt/A, (3) and SU«/ (3) x 1 g  

descriptions.


