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Abstract : We numerically study the resonance states generated by the finite range 
truncated parabolic bam^r. In this case, the location of resonances in the vicinity of the barrier 
are approximately equispaced but deviation for this feature occurs for resonances farther away 
from the barrier top Using these results as a basis we empirically analyse the resonances in the 
,60  + ,60  and 24Mg + 24Mg systems within the broad framework of barrier region resonance 
model
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1. Introduction

The prominent intermediate width resonances observed in the energy dependence of cross 
section of heavy ion reactions is an interesting phenomena generated by heavy ion collision 
experiments. It is well known that these resonance structures are the characteristic features 
observed in several nucleus-nucleus collisions around the barrier region. The effective real 
nucleus-nucleus potential between two heavy ions is characterised by a Coulomb barrier 
region and a potential pocket which gets shallower and shallower as 1 increases. Within the 
framework of such a potential one may look for resonances originating from the pocket 
region. However, the resonance state can originate not only from the pocket region but also 
from the barrier top region provided absorption is not large iri the barrier region and the 
barrier is reasonably flat, /.e., in a typical real nucleus-nucleus effective potential, 
resonances can arise both from the pocket region and the barrier region.

Based on this concept and using the nature of resonance structures observed in the 
case of a short range repulsive Eckart potential barrier, in an earlier paper [1] we had 
described the analysis of resonant phenomena in ,2C ’ + ,2C and ,2C + ,60  systems using
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what was referred to as barrier region resonance model [BRRM]. In this paper, we extend 
BRRM for the description of resonances observed in loO + l60  and 24Mg + 24Mg systems.

This paper is organised in the following way. In section 2 we describe the nature of 
resonances observed in a truncated inverted harmonic oscillator barrier. Based on these 
results in section 3 the resonance structures in l60  + l60  and 24Mg + 24Mg systems are 
analysed using an empirical expression within the framework of BRRM. Section 4 contains 

discussions and conclusions.

2. Resonances generated by a truncated inverted harmonic oscillator barrier

The analytical formula used in the analysis of l2C + I2C and l2C + l60  systems [1] was 
based on the 5-matrix for the repulsive Eckart potential which gave (n+3/4)2 dependence on 
the resonance energies. However, an examination of available experimental data in the 
l60  + l60  system indicate [2-4] that resonance energies for a given partial wave are 
approximately equispaced. In view of this fact we investigate whether an inverted finite 
range parabolic barrier can generate in the vicinity of the barrier approximately equispaced 
resonances. In order to do this we studied the s-wave 5-matrix numerically, for the finite 
range inverted parabolic barrier given by

V(r) = Vn -  fir2 12, r < R
0  H ( 1 ) 

= 0 r * R ;  R = ( 2 V 0 / p ) ' n

In Table 1 we list several pole positions of .v-wave S matrix in complex k2 plane in the 
case of potential given by (1) for different values of /3. It is interesting to note that there are

Table 1. Resonance positions in the complex-k: plane in the case of cut off 
parabolic barrier represented by (1)

k2 (fnr2)

P = 0 1 fm 4 
V„ = 10 fm 2

P = 0.2 fm~4 
V0= 10 fm 2

P = 0.3 fm 4 
V()= 10 fm 2

11 30 -  0 6953i 12 14- U074i 12 6 7 - 1.389i

10 56 -  0.5597i 10.94 -  0.8407i 11.11 -  1.051 i

10.01 ~0.4472i 10.06 -  0.6299i 10.01 -0.7762i

9 448 -  0.55241 9.224 -  0.7794i 8.891 -  1.008i

8.673-0.6700i 7.994-0 99231 7.186- 1 306i

resonances both below and above the barrier and their spacings and widths indicate some 
approximate symmetry. It is also interesting to note that the two levels in the immediate 
vicinity of the barrier are approximately equispaced with respect to the resonance closest to 
the barrier. This linearity is gradually destroyed in the case of levels farther away both 
above and below the barrier.
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We know that in the case of harmonic well - U0 +mail r2!!  of depth t/0, the s-wave 
energy levels are given by the formula,

£  = -(/o +(2/i+3/2) hco (2)

indicating the spacing of 2hco between the adjacent levels. In this case the ground state 
energy is 3/2 hco above the bottom of the well. On the other hand the corresponding barrier 
resonances occur very close to the barrier top. We also found the spacing between the 
barrier top level and the next adjacent level on the either side is approximately (2)1/2 ftco. 
However due to the finite range harmonic barrier and the fact that resonant states do not 
decay exponentially, anharmonic terms significantly affect the levels away from barrier top. 
The non-linearity or anharmonicity becomes important even for n = 2 (assuming the level 
closest to the barrier top as n = 0) as is clear from Table 1. We also observe that sharpest 
resonance is practically on the top of the barrier.

Another interesting aspect which we noted is that Im k2 of two levels adjacent to 
the barrier top are approximately same indicating resonances of same width. In order to 
interpret this we calculated the transit time of a classical particle to slide down the truncated 
harmonic oscillator barrier in the classically allowed region for energy 
E = U0 ± A ; A < U0. We find that these two times are given by the same formula

( m / 2 ) ' 12 UoU2 R In Ukn + E '12 
[± (E  -  t/0)],/2

(3)
Further it may be noted that for a given R, r is  proportional to U0 indicating that for barrier 
region resonances, width will increase with barrier height, for a given range R. Similar 
results are obtained in the case of repulsive Eckart potential [1 ].

3. B arrier region resonance model for l60  + ,60  and 24Mg + 24Mg systems

Based on the discussion of Section 2 on the truncated inverted harmonic oscillator barrier 
and noting that in the case of ,60  + ,60  system the number of observed resonance states in 
the Coulomb barrier region is less than or equal to five we seek to analyze these resonances 
using the empirical expression,

E M  = VB(l) + (C0 + C,/2) (2)l/2n + e n 2 ; n = 0, +1, + 2  (4)

where VB (/) is the height of the barrier for the /-th partial wave, C0, C ( and £ are 
parameters. The height of the effective potential VB(l) for different / 's have been calculated 
using the global nucleus-nucleus potential [5]

V(r)  = -  50 (RiR2) / ( R l + R2) exp [(/?, + R2 -  r ) / a ] (5)

where R, = 1.233A tm -  0.978 A^i/3 fm (i = 1, 2) and a = 0.63 fm. along with centrifugal 
and Coulomb potentials. Cj/2 is the term which takes into account the fact that effective



barrier varies slowly with /. e accounts for the deviation from the linear dependence o f n in 
the neighbourhood of the barrier. Using this formula we have fitted the experimental data 
for l60  + ,60  and 24Mg + 24Mg systems. The resonance energies obtained using (4) are
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Table 2. The quantities r?*(l). VB( I) and typical set of E(n. I) corresponding to l60  + '*0 and 
24Mg + MMg systems The parameters used to compute E(n, 1) are listed in corresponding figure 
captions.

1 Rb(1> V„(l) E(n, 1) = V ^D  + fCo + C,!2) (2)1/2 n + e n2
System (fm) (MeV)

n = -2 -1
(MeV)

0 1 2

2 809 10.70 9 89 10.12 10.70 11.63 12.90

4 8.03 11.27 10.43 10.68 11.27 12.21 13.51

6 7.93 12.18 11.28 11.55 12.18 13.15 14.46

8 7.81 13.44 12.47 12 79 13.44 14.45 15.80

10 7 67 15.10 14.04 14.40 15.10 16.15 17.55

16o + ,6o 12 7.54 17.18 16.00 16.42 17.18 18.29 19 74

14 7.40 19.71 18.40 18.88 19.71 20.89 22.41

16 7.27 22.73 21.26 21.82 22.73 23.98 25.57

18 7.13 26.26 24.62 25.27 26.26 27.61 29.29
22 6.88 35.02 32.96 33.82 35.02 36.57 38.47
24 6.76 40.31 38.01 38.99 40.31 41.99 44.00

“ Mg + “ Mg 30 8.01 45.16 43.75 44.40 45.16 46.05 47.06
32 7.94 48,62 47.21 47.85 48.62 49.51 50.52

listed in Table 2. In Figures 1 and 2 we depict the results obtained for even / along with 
experim ental data. It is clear that the present approach gives quite a good fit to the 
experimental data, for 160  + I60  resonances.

Due to the availability of only limited data, in the analysis o f  24M g + 24M g we have 
treated Cq and Cj as a single parameter C since / values considered (/ = 30, 32) are very 
close. The reported values o f / are 34, 36. However these / values obtained from squared 
Legendre polynomial fits are larger than the grazing angular momentum by 4 -6 -ft [6].

4. Discussions and  conclusions

The present approach for the analysis of heavy ion resonance data comes within the general 
fram ew ork o f  potential scattering, that if the potential pocket is highly absorp tive 
resonances can be attributed to the barrier region. It may be noted that in the case o f 
I6°  + l6°  system study o f resonances has been carried out using different approaches like 
orbiting cluster model [7] and using shallow potentials [8-11], deep potentials [12] and 
potentials like M orse and anharmonic well- [4]. The orbiting cluster m odel essentially  
incorporates implicitly the spirit o f barrier region resonances in a sense that resonances for 
a  given / are in effect rotating clusters with separation approximately corresponding to the 
barrier. The calculations based on the effective shallow potential is som ewhat akin to the
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present approach. In the case o f potentials used in [4], the minima o f the effective potential 
in almost at the Coulomb barrier position. Hence, by construction these potentials used are 
such that they generate pocket resonance states in the vicinity o f the barrier.

A n a ly s is  o f  re so n a n c e s  in  h e a v y  io n  r e a c tio n s  e tc  67

n n —►

Figure 1. Plots of E(n, /) against the assumed 
values of n for the resonance data of the ,ftO + ,ftO 
system. The parameters used to compute E(n, /) are 
C„ = 0.5288 MeV, C, = 0.0009 MeV, and £ = 
0 1724 MeV.

Figure 2. Plots of E (n J)  against the assumed values 
of n for the resonance data of the 24Mg + 24Mg 
system. The parameters used to compute E{n. /) are 
C = 0.5835 MeV and e = 0.0618 MeV

The deep potential approach [12] is quite interesting. This potential also gives barrier 
position approxim ately equal to that obtained by using global nucleus-nucleus potential. 
However it gives a deeper pocket because o f the large values o f strength o f the attractive 
part o f the nuclear potential. In [12] the strength o f the imaginary part in the pocket is 2.5 
MeV. In the absense o f imaginary part such deep potential can be expected to generate very 
sharp resonances but their width will be drastically enhanced and will be of the order o f the
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imaginary part if  present. Even for such potentials i f  the barrier region is surface 

transparent, one can expect resonances close to the barrier to be narrower because 

imaginary part of the potential will affect them comparatively to a lesser extent. This point 

is illustrated using model calculations in [13]. These demonstrate the fact that in the case o f 

surface transparent potential (small imaginary part in the barrier region and large imaginary 

part in the pocket region) the barrier region resonances are more important than the pocket 
resonances.

In the case of l60  + l60  system the spacing between the levels is o f the order o f 0.6 

to ~ 1 M cV  [2-4] and hence one expects their widths to be in the KeV region. Hence even 

in the fits obtained using the deep potential the resonances are perhaps dominated by the 
barrier only.

The calculations on the repulsive Eckart potential [1] and the truncated harmonic 

barrier indicate that different resonance level spacing can be expected if  one uses different 

types o f potential barriers. This can be fruitfully exploited in constructing appropriate 
models for the description of resonances in heavy ion reactions.References
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