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Abstract : The surface interaction potential obtained from the knowledge of the nuclear 
densities and effective interactions is reviewed The corresponding ion-ion potential and its 
theoretical estimates with special reference to Folding potentials, proximity potentials are 
discussed. The comparison of Folded Yukawa interaction potential with other phenomenological 
potentials m the decrtption of Heavy ion elastic scattering is presented with reference to the 
standard woods-saxon form
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1. Introduction

The interaction between two nuclei is determined by using singly Yukawa-folded sharp, 
uniform distributions for the nucleon densities, and effective nucleon-nucleon forces in 
Yukawa forms. When these are all folded in, one obtains a result in closed from, which, 
when the centers o f the nuclei are not allowed to approach for more than the sum of their 
radii, is defined to be the surface interaction. Sometime ago Christensen and Winther [1] 
have proposed an empirical potential to be used for elastic ion-ion collisions. A similar 
potential could also be derived in the so-called proximity model [2], which is related to the 
liquid drop model. Both are exponential functions of surface separations of the colliding 
nuclei, and differ only in the mass dependences of their respective parameters [3]. Broglia 
and Winther [4] have tried to establish a basis for such potentials through a folding model, 
but due to the assymmetric representation of the nuclei in the folding, the results could vary 
up to 50% upon the exchange of the types of the representations.

Several models have been suggested for the calculation of the nuclear interaction 
potential. For example, Krappe and Nix [5] have proposed a model in which the interaction 
energy is calculated as the Yukawa interaction between two nuclear distributions with
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sharply defined surfaces and uniform interior. The Yukawa interaction is supposed to 
contain the combined effect of two diffuse matter distributions interacting via some short 
range interaction. This procedure leads to a simple analytic potential.

A different approach is represented by the proximity formula [2] which expresses 
the force between two gently curved leptodermous surfaces as a product of a geometrical 
factor proportional to the mean radius of curvature of the gap between the surfaces and a 
universal function equal to the interaction energy per unit area between two parallel 
surfaces. This latter approach is very general and has the advantage of being simple to use, 
once the problem involving the parallel surfaces has been solved.

In the present talk an analytical model is discussed which enables one to gain insight 
into the accuracy of some of the various approaches, including the two mentioned above. 
In the model studied, each of the two interacting objects has a diffuse surface which 
is generated by folding a Yukawa function into a generating sharp-surface distribution. 
The interaction energy is subsequently obtained on the basis of a two-body Yukawa 
interaction.
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Figure 1. Comparison of the Woods-Saxon, Hill-Ford and Folded-Yukawa potential forms.

This model can be considered a generalization of the Krappe-Nix [51 model. Hence 
it permits a test of the idea that the interaction can be represented as a single effective 
Yukawa interaction acting between sharp-surface distributions. Moreover, the model is 
sufficiently realistic to present a good test case for the proximity formula [2]. So far, such 
tests have only been carried out for the extreme cases of zero-diffuseness distributions (the 
Krappe-Nix model) or a zero-range interaction between diffuse surface [2],



2. The folded-Yukawa model

The interaction energy V  between two matter distributions p \  and p j  is given by

V  = -  r J J p jt f i  )y<f( (r |? ) c/V, (I)

where the notation
1 exp ( - r / a)

4na* r fa  ’

has been introduced. The strength of the interaction is governed by the constant C which is 
positive for an attractive interaction. The matter density distribution p, ( i = h 2) is obtained 
by folding a Yukawa function of some ranges, into a generating sharp distribution

P, ( r ,) = |  v, <r|: ) p, (/••,) c / \ 2 (3)

fhe starting point for the analytical treatment of this model is the observation 
that the interaction energy may be calculated as the interaction between the two sharp
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Figure 2. Comparison of the fits to elastic scattering angular distnbutions for 
160 + 63Cu at 42, 44 and 46 MeV(Lab).
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generating deputies arising Iron, a com pose low -tad, inlerac,ion-rv. This composite 
interaction is given as the folding product of the three entering Yukawa interactions.

(the symbol * denotes the folding).
The above observation implies that the formulated generalized folded-Yukawa 

model due to Krappe and Nix [5] in that it calculates the energy by folding some Kernel 
into generating sharp densities. The generalized model thus applies to all cases covered by 
the Krappe-Nix model. In particular, the modified surface-energy prescription suggested by 
Krappe and Nix [5] can be generalized by employing the composite kernal y rather than a

single Yukawa function.

Figure 3. Comparison of the fits to elastic scattering angular distributions for 10B + 25Mg 
at 87.4 MeV(Lab).

Adopting the above mentioned procedure it is possible to obtain an ion-ion intraction 
potential which is outlined as follows [7]. The folded-Yukawa parametrized form factor 
F(K, r) for the charge density p(r) as well as the interaction potential i<r) can be given as

p(r) = p0 F(K, R)

v (r) = v„ F (K, R) (5)

where p„ is the charge density at the centre and v„ is the corresponding strength of the 
potential.
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The function F (K, r) is obtained by folding a Yukawa function together with a step
function 9 ( R -  r

F{K,R) = K2 14n f d \ 0 ( R- r ' ) .  eXp(~ ^ ~ r  ̂ (6)
J \ r - r \

The above expression is evaluated by following the procedure outlined above by folding the 
Yukawa function to a step function defined as

( # # ) ( * ) - « * - ✓ ) . £  £  (7>

Figure 4. Comparison of the fits to elastic scattering angular distributions for 
I OB + 60Ni at 87.4 MeV(Ub).

The folding of two Yukawa functions-centered at different points is denoted by the symbol 
(*). e.g.,

y (JC . * y ( K  ,  f exP ( ~ ^ l |r i ~ r  |) exp<-#f2|r2 -  r'|) / 3 a

Y(Kl) n K 2 ) - i  f r - M  h-*l {d >

47i exp (-AT, |r, -  r '|) -ex p  (~K2 |r2 - r , |

K\ -  K?
(8)

lrl ~ r2|

The result of integration is a function of distance l n  -  rj 1 only. Equation above can 
therefore be written as Y (k\) *  Y (Kj)

= 4 7t/ ( k ,2 -  Kl) [Y(KO -  T(AT2)]
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The folding of Y with can also be evaluated explicitly. One finds

C , exp ( - t f l r - r 'l )  ,
Y(k) *  0 ( R )  = l e ( R- r ' ) .  — U -----L-------L d 3r

J V - n
= Altl k2.F(K,R)

r < K
with F(K,R) = kr

Reas h K R -(1IA:) sin h (KR) (exp -A r)/r for r> R
(9)

at*79?MeV(Lab^nS°n °f the ^  ‘° e,aS“C SCa,,enng an8u,ar distributions for 1 IB + 24Mg

for KR »  1 we find

F(KtR) = 1 -  1/2 exp ( - K ( R - r ) )  (10)
LR/2r. exp (-K  (r - R )

The function F (K, R\  is similar to fermi distribution [1 + exp ( r -  R) / a ] -> in the tail
region. The advantage of this parametrisation is that one may evaluate explicitly multiple 
folded integrals.

The fermi distribution

/ ( 0  = / o l l + exp(r-c)/a]"‘ ( I D
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may be approximately written as

f ( r )  = f 0F(K,R)  = f 0K2 / An\Y(K).  Y(R)] (12)

f ( r ) = f 0 F(K,R)

=/o A?/4tt Y(K) * Y (R) (13)

where a fairly good parametrization in the tail region is obtained by Akyuz and Winther [81 
for

K ~2I3 (\la + 1.2/c) and /? = 0.99c + 0.5a -0.1 + 0.2/r

using these approximations we have analysed the Heavy ion elastic scattering data and 
found that such approximation was not giving a better fit to the experimental data. Wc have

Figure 6. Comparison of the fits to elastic scattering angular distributions for 
1 IB + 25Mg at 79.6 MeV(Lab).

incorporated the procedure of obtaining the better fit to the experimental data by matching 
the folded Yukawa interaction potential with the woods-saxon potential at the strong 
absorption radius to obtain the relevant depth and other parameters involved in the analysis. 
The best fit data so obtained is listed in Table 1.

3. Remarks and conclusions

As expected in the case of single folded potentials the extimation of the real and imaginary 
strength in folded Yukawa interaction potential is almost double that of Woods-Saxon 
potential. The analysis is expected to improve by taking density distrubtions obtained for 
folded Yukawa in the double folded potential. Such analysis was undertaken in the case of
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Table 1. I OB + 24Mg Scattering at 87.4 MeV(Lab).

Potential V r(t a W rH aH x 2
form

W -S  100.00 1 000 0.674 20 30 1.200 0.892 10.10
F -Y  220 76 1.000 0 735 34 55 1.200 1.059 9.96

10B + 25Mg Scattering at 87.4 MeV(Lab)

Potential V ra a W rM aH x2
form

W -S  10000 1.000 0 694 2370 1.200 0.836 1342
F -Y  215.96 1.000 0.760 41.40 1.200 0.977 13.86

10B + 60Ni Scattering at 87.4 MeV(Lab)

Potential
form

V To a W a* jr

W -S 40.00 1.014 0 860 70.50 1.014 0 860 1.42
F -Y 79.66 1.014 0.960 141.62 1.014 0.960 2.22

_____________________ 1 IB + 24Mg Scattenng at 79.6 MeV(Lab)

Potential V R() a VV RH
form

W -S  100.00 0.962 0.721 71.30 0.958 0.814 10.13
F -Y  212 14 0.962 0797 “ 148.46 0.958 0.918 10.53

I IB + 25Mg Scattering at 79.6 MeV(Lab)
Potential
form

V a W *TX“

W -S 10000 1 000 0 693 37 00 1.100 0 799 5 52
F -Y 213.45 1 000 0 761 69 89 1 100 0910 5.54

1 IB +  27A1 Scattering at 79.6 MeV(Lab)
Potential V K,O a W flu. 'yx -
form

W -S 100.00 1.000 0.685 54.20 1.100 0.692 9.10
F -Y 208 77 1 000 0.754 103 70 1.100 0.772 9.32

1 IB + 59Co Scattering at 79 6 MeV(Lab)
Potential
form

V R„ a W *2

W -S
F -Y

40.00
63.00

1.135 
1 135

0.759
0.847

44.00
69.52

1.135
1.135

0.759
0.847

1.43
2.82

11B + 60Ni Scattering at 79.6 MeV(Lab)
Potential
form

V a w X2

W -S
F -Y

40.00
81.29

0.983
0.983

0.896
1.005

56.00
114.55

0.983
0.93

0.896
1.005

2.57
4.63
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Nucleon-Nucleus Scattering with the heavy ion probes. The effects of coupling between 
channels and the inclusion of quadrupole moment contributions are expected to improve the 
analysis in inelastic scattering when compared to the conventional Woods-Saxon analysis. 
The F-Y interaction model predictions will be more useful while dealing with the data 
where the large angle oscillations are prominent.
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