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Abstract : Effect of perturbations on plasma oscillations in degenerate electron gas in 
metals have been studied. By taking acurount of pertuibcd long range forces and the effect of short 
range interactions, it has been shown that there is a critical wave vector at which the plasma 
oscillations can be realized The effect of radius parameter r ,̂ plasma energy and interatomic 
distance on the dispersion characteristic's have been discussed The effect of perturbations 
decreases the critical wave vector for exciting the plasma oscillations. Our studies reveal that in 
beryllium both first order perturbed and relative first and second order perturbed dispersion curves 
are qualitatively similar to that of the unperturbed curve, while for aluminium these contributions 
are opposite
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The valence electrons in solids may oscillate collectively under certain conditions with a high 
eigen-frequency Wp— t̂he plasma frequency [1-111, and is denoted by the relation

2V/2
=

Anne

where n is the electron concentration and m is the effective mass of an electron. Such 
oscillations in electron gas of solids play very important role in the study of various properties
e.g. determining the frequency range of transparency and reflection coefficient of 
electromagnetic waves [5], diagnosing various features of bulk metal in the form of thin 
metallic films etc.
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For metals, if the ratio of phase velocity to the Fermi velocity of electron gas is not 
very large, then the electromagnetic waves of frequencies much higher than the electron- 
plasmon frequency are damped out 16]. At the limit of zero temperature, the response
function of electro^ gas in metals is purely real and natural oscillations are sustained, while at 
non-zero temperatures, the above mentioned velocity ratio decreases and perturbations are 
initiated. Due to the presence of such perturbations the total energy of the electron gas 
becomes a negative quantity and the frequency of plasma oscillations decreases. For higher 
values of the wave vector (A:), the phase velocity of electron gas oscillations is less than the 
net average electron gas velocities and the response function becomes complex. Under these 
perturbed conditions, for high k, the damping of natural oscillations is enhanced which 
results into complete cessation of oscillations at k = k̂ ., where kc is the critical wave vector. 
Thus the study of perturbation on plasma oscillations for degenerate electron gas plays a vital 
role in understanding the sharp cut-off of reflection and transmission coefficients and hence^n 
understanding the principle of filters.

In the present work, studies have been made for di.spersion characteristics of a 
degenerate electron gas in the presence of small amplitude perturbations. For such a gas, the 
unperturbed dispersion equation may be written as [2,7]

6
An?-

= w + — E —  
 ̂ 5 ^ m

+ Exchange term, ( 1 )

where is the minimum average energy of an electron, which may be approximated to 
Fermi energy for monovalent metal at a very low temperature.

If we include the bilinear and the exchange interaction between electrons which were 
not considered by Bohm and Pines [2], in eq. (1), then

2 2 ^ , 2  2 ^ k ^  r.
= VV,, + -* ^

f

mV J \

4 2 4 7)3 113)3̂
--- log—+ -------- + --------

5 P 5 6 60

3

(2)

where fgx the exchange interaction between the electrons and p = The results of eq. (2) 
may further be improved by including the Exchange effect [12] by a proper linearization of 
the interaction term, known as the generalized random phase approximation (GRPA) [IS­
IS]. For this, one may use the jellium model of the electrons in solids. Using this technique, 
Glezos [12] obtained the following dispersion relation :

6QQ ^  —  i\ -  0.068 r )
P 5 £ 2

(3)

where Q = wJE^, 12̂  = w^jE^,  Q = kjk^ and = '’o/^o which is a dimensionless 
parameter, tq being the average interelectronic distance and a^ is the first Bohr radius.



Using the firsi-order perturbation correction due to short range Coulomb interactions, 
the average energy per electron of the oscillating electron gas in metals may be written 
as [7],
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-  2.21 V3/J^ 0.916
Ry. (4)

The value of corresponding to minimum average energy of an electron may
be obtained by neglecting the last term in eq. (4) and taking its first derivative with respect to 
P equal to zero. In this way the value of P obtained is = 0,353 .

The plasma energy for the metal can be computed with the help of formula [8],

f Z a
£^(0) = ;rw,,= 28.8 1 —

1/2

(5)

where Z is the total number of electrons participating in plasma oscillations (valence 
electrons), a  is the specific gravity and W is the molecular weight. The dimensionless 
parameter r, may be expressed as [3]

r = ( 47.11
 ̂ V J (6)

where is the calculated plasma frequency as mentioned in eq. (5).

With the help of eqs.(2), (4) and (6) the effect of first order perturbation on the 
dispersion characteristics of plasma oscillations in several metals i.e. Be, Al, Mg, Li and Na 
have been studied (Figures 1-5).

The second order perturbation energies can be obtained by subtracting the contribution 
due to long range Coulomb interaction from the sum of the long and short range second order 
perturbation contributions of Coulombic interactions as given by Nozieres and Pines [9J and 
may be written as

AE = 0.0311 logr^ -  0.0003 -  0.096 Ry. (7)

On taking the sum of eqs. (4) and (7), we draw graphs (Figures 1-5) to show the 
relative contribution of the first- and second-order perturbation on the dispersion 
characteristics of plasma oscillations. With the help of these graphs, the effect of various 
parameters e.g. Fermi energy, r  ̂and plasma energy can be studied (Tables 1 and 2),

Critical wave vector:
The critical wave vector which limits the plasma excitations, is determined by the 
intersection of the disp>ersion function of eq. (2) and the following express on for the 
maximum energy to excite an individual electron

68A(6)-10
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(8)

where Hkf is the nioinentuin of an electron at the Fermi surface.

The plot in Figures 1 to 5 for metals Be. Al, Mg, Li and Na show the effect of first 
and second order perturbations over the unperturbed cases. One can see that the value of 
decreases as we go towards the first and the second order nerturbations respectively. Also.

FIG 2

FIG 3 FIG 6

Figures (1-5). Excitation Energy (£*) vs wave vector (/c) graphs for Be, Al, Mg, Li 
and Na respectively, representing

(a) Maximum energy to excite an individual electron (eq 8)
(b) Plasmon dispenion (unperturbed)
(c) Plasmon dispersion with first order perturbation
(d) Plasmon dispersion with second order perturbation.

the value of kc is higher for metals with lower The rate of decrease of critical wave vector 
for both the first and the second order perturbation increases as the plasma energy decreases 
or as the value of decreases (Tables 1 and 2).

At the higher value of the dispersion characteristics of Li, Na and Mg are divergent 
downwards in both the first- and second-order perturbations, while in case of Be, they



diverge upwards. For Al, these two perturbation graphs diverge in opposite direction (see the 
graphs). This abnormal behaviour has only been found in case of Al. This may be due to the 
fact that aluminium may behave as a superconductor under certain condition.

Table 1 . Effect of various parameters on plasmon energy.
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SI
No.

Element Total no of 
electrons 
participating 
in plasma 
oscillation

Nearest 
neighbour 
distance 
(in A) Radius

ruirameter
Plasmon Energy (eV)

Calculated 
(eq H)

Experimental 
Ref [10,11]

Be
AlMg
u
Na

2.22 

2.86 

3.20 
3 023 
3 659

1.88

2 07 
2.65 
3.25
3 93

18.45 
15 8 

10 89 
7.99 
5 92

19 1 
15,3 
106 
7 12 
5 71

Table 2. Relative contribution ol the first & second order perturbations

SI
no,

Element Unperturbed
> Pertuibed kf

Relative decrease 
of kf. (percent)

1 si order 2nd order 1 St order 2nd order

1 Be 1 223 1 0154 1 002 16 97 1..32
2 . Al 1.14 0 94 0.929 17.54 1.17
3 Mg 0 9784 0.8015 0 7803 18,08 2.64
4 b 0 8570 0 6949 0.6753 1891 2 82
5 Na 0 747 0 5905 0.577 20.96 2 26

Graphs have also been drawn in Figure 6 showing the variation of excitation energy 
vs wave vector, by using the eqs. (3) and (8) for Be for which experimental results 
exist [12]

From these graphs (unperturbed, first- and second-order), it can be concluded that the 
inclusion of effect of exchange interaction in the Be reduces the value of critical wave vector 
(it J  for exciting the plasmon oscillations. The value of the critical wave vector for Be have 
been found as 1.0096 A“‘, 0.9947 A“‘ and 0.9796 A"' for the unperturbed, first- and second- 
order perturbations respectively. These values are in excellent agreement with the work of 
other authors [ 16,17],

The values of the critical wave vectors obtained for Be in latter case may be applied to 
explain the minimum plasmon scattering angle, as experimentally observed by Suzuki and 
Tanokura [11] and Papademetriou et al [18] using incident CrK^  ̂ and CuK„^^ radiation for 
studying the inelastic scattering phenomenon in Be. In our present results the values for the 
critical wave vectors (using GRPA) are 1.0096 A 0.9947 A ' and 0.9796 A for
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unperturbed, first- and second-order perturbations respectively. Using the slow-fast
k.interaction effects of Langreth [ 19] as -  0.1, (where kp being the Fermi wave

Figure 6. Excitation energy ^  vs reduced wave vector Q = graphs for Be, 
lepiesentmg ^

(a) Limit of partide-hole spectrum [12] \
(b) Plasmon dispersion [ 12] (unperturbed)
(c) Plasmon dispersion with first-order perturbation
(d) Plasmon dispersion with second order perturbation, while asterisks stand for 

experimental values 1 12]

vector), the values of minimum critical angles have been calculated as 15.57°, 15.28° and 
14.9° for unperturbed, first- and second-order perturbations respectively which are close to 
10° and 16° as observed by Suzuki and Tanokura 111] and Papadcmctriou etal [18].

The propagation of electromagnetic waves and their optical properties are determined 
by the above mentioned features of electron gas oscillations. It appears that the precise 
measurements of optical proporties at various temperature and different fractions of impurities 
would help in diagnosing the electron gas in metals. The role played by the mode of 
preparation of thin films for various electron densities can be analysed by having such 
features of electron gas oscillations.
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