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Abstract : The responses to short duration pulses (of electric field. of additional “particles’,
et ) have been studied numencally for metal-insulator composites before dielectric breakdown and
the BTW (sand pile) model before the cntical avalanches The study of the breakdown
susceptubiliy (defined in the 1ext) indicates umversal behaviour near the catastrophic breakdown o
the self-orgamsed crtical ponts, and its study can locate these breakdown points very accurately
We make a numencal study of the Laplace's equation of a dielectiic with random bond conductors
below its percolation threshold, and of the BTW model. We show that. if one applies weak pulses
of appropnate external ficld (e g.. electrical pulse 1n the case of dielectric bieakdown) and studies
the breakdown susceptibihity, one can locate accurately the bicakdown or disaster point, much
betote its occurrence, by extrapolating the inverse breakdown susceptibility to its vanishing point
The growth of the susceptibility, conung from stress correlations, in the Buindge-Knopoft model
of earthquake 1s again shown to be exponential 1n ime, as for pulse suscepubihity 1n this model
(J Phys France)1,5 153 (1995) Prediction of the carthquake point 1 time 1s also possible 1n
the model from the study of its inverse logarithm with straightline extrapolation to its vamishing
point
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Considerable progress has recently been made in the statistical study of the breakdown
srength of disordered solids [1]. These solids may be porous media, random composites,
granular packings or layers in earth mantle; the relevant phenomena are fracture, dielectric
bieakdown, avalanche or carthquake. Several simple models (at a semi-microscopic level)
have been imroduced for mechanical [2] and electrical [3] failure of such randomly disordered
media; the media are represented by disordered lattices, failure is modelled by individual
bonds breaking irreversibly. These theoretical results about the fracture or breakdown
strength distribution have also been checked in several cxperiments |4]. Failure processes
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playing intrinsic roles in many systems

phenomena, the above mentioned statisti
distribution, its fluctuations and consequent power laws for the average strength of such

solids [1]., are of extreme importance. Although a significant amount of litcrature has heey,
developed for these studics of failure strength distribution, not much has been donc on the
dynamics of microscopic failures. Since the microscopic failures are irreversible and therefore
require intermediate redistributions of the forces, the cquations for the dynamics of failure are
intrinsically nonlinear and dissipative. The formulation and study of such equations ar
neccessary for the search of any precursor effect of the macroscopic failure, specially if the
macroscopic failure is at most a critical and not a fully chaotic phenomenon In yome recen
expeniments [5] on the dynamics of the cracks in thin glass plates with thermal stresses, (he
dynamics scems to undergo a sequence of numerous but reproducible 1nstabilities, not
sensitive to every detail of the fluctuations 1n 1mtial conditions. The dynamics of fracture i«
thus observed to be mostly critical, on the verge of chaos but not quite chaotic [6], the
situation depends somewhat on the velocity of the crack up. Similar is the case tor the
dynamical (Burridge-Knopott [7] type) models of earthquake [8], wherc also one gets the
Guttenberg-Richter type power law for the magnitude vanation of the density of quakes, the

of industrial importance and in many natyra] disasir
cal studies establishing the nature of fracture-sirengy,
Iy

failure distribution being critical.

These studics establish the very nonlincar, yet nonchaotic, natufe of the dynamics ol
breakdown and give the distribution of the brecakdown strength or magnitudes. Recently, we
have shown [9] that an appropriately defined pulse susceptibility can be studied for the
Burridge-Knopoff model (7] of earthquake and by looking at the approach to divergence ol
the susceptibility, before the earthquake, we can predict the earthquake point in time in the
same model. Here, we apply the same method of study of the growth of the pulse or
breakdown susceptibility in a metal-insulator composite dielectric (a dielectric with random
conductors before the percolation threshold) to predict the dielectric breakdown point of the
random sample. This is done numerically by solving the Laplace equation of a random
nonpercolating network of conductors [10). This investigation is also extended for predicting
the self-organised critical (or breakdown) point in the Bak-Tang-Wicnsenfeld (BTW)
model [11]. -

We consider now a LxL spuare lattice [10], with L = 25 here. A fraction p of its siics
are randomly occupied; they represent conducting sites. The (1-p) fraction of unoccupied
sites represent the diclectric sites. For each configuration with average conductor
concentration p (< p,, p, representing the percolation threshold [12], with p, = 0.593 herc).
we first check whether or not there exists any percolating path through the conducting sites
Percolation connections are taken here through the nearest-neighbour conductor sites. If no
such path exists, giving the macroscopic connection across the lattice, we apply a voltage
V across the sample in the horizontal direction, with all sites at the leftmost column at voltage
V =0 and those at the rightmost column at voltage V = V. All the other sites are at first given
a randon distribution of potential. All the nearest neighbour conducting sites are then updatcd
to the same (arithmetic mean) potential. This makes clusters of conductors at differcn!
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voltages, separated by dielectrics. The discretised version of the Laplace equation is solved
Vi

and site voltages are updated at each time iteration until the sum of the differences in the
successive updates everywhere goes below a small value (104 here). For breakdown. if any
nearcst neighbour dielectric bond gets a voltage difference of magnitude more than a fixed

value v, (= 1.0 here), the bond is broken in the sense that both sites on its ends are changed
(o conductors.

It is clear that the average breakdown voltage for a fixed sample dimension L
decreases with increasing disorder, that is conductor concentration p, until it vanishes at the
percolation threshold p, [12]. For any particular initial concentration p, of random conductors,
the sample dielectric has an average breakdown voltage Vy(p,), above which the sample starts
conducting via the conductors (original and broken). We intend to predict the V(p,) value by
looking at the responsc of the sample to electrical pulses much before its breakdown occurs.

We thus make an increase dV, over V, in the applied voltage across the sample and
look for number (n) of dielctric bond breaking locally as the voltage across any bond increases
heyond ve = 1.0. This helps us to define the susceptibility y, = % It is shown in Figure 1
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Figure 1. Variation of breakdown suscepubility x, = dn/ dV with voltage
V. The arcles and the squares represent the data for composites with p = 0.4
and 0.3, respectively. The continuous lines are guides to the eye.

for two different concentrations p = 0.4 and 0.3, respectively (with averages over about 500
ital configurations). The maximum of ¥, gives the possible location of breakdown voltage.
The peak occurs at the voltage V',, =11.0for p=0.3 and V), =8.0 for p = 0.4,.very near ©
those obtained from the direct breakdown measurement in this model (V,, = 14.13 forp = 0.3
@d V, =9.65 for p = 0.4, when conductors percolate through broken dielectric bonds). It
may be noted that peak in %, increases in height with system size L. Thus, an extrapolated
Mint where xg vanishes gives the predicted Jocation of the breakdown voltage.
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We consider now the self-organised criticality (SOC) of the critical 'slope’ BTwW
model [11], considered to be a generic SOC model for sandpile and earthquake. We consier
a lattice size of 100 % 100. At cach lattice point the 'slopes’ of 'particles' are randomly added
n discrete integer addition and avalanches take place if the 'slope’ Z, at any point i exceeds
the value 3 (the cut-off valuc Z, = 4 here). In such cases, the Z,, s of the nearest neighbours §
of the stte 7 gets one unit of 'slope’ cach and Z, becomes zero at 1. The dynamics continues,
until all the sites have Z < 4. The simulatuon studies give the value of the average crcal
‘slope’ Z, to be around 2.124 [13] for such a model. beyond which the global avalanches
take place.

We have studicd the effect of addition of a fixed number of particles (or \slopcx’) at
any central point for a ime unit &. when the system has got the average ‘slope’ Z(x Z,) and
the dynamics has stopped. Immediately after the particles are added, the local dynamics staris
and it continues, for a time period At (> &) We mcasure the ratio R, =A% 8. Figure 2 shows
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Figure 2. The BTW results RI,"/V” vs Z Inset shows lh;.‘ variation ot R,, with respect 10 7

the varation of R, with Z. We find that R,~(Z - Z) ™, where Y = 1/3 (scc inset of Figuie
2). One can thus clearly locate the self-organised critical point (or critical 'slope’) Z, by
plotung R, '/ with Z and by locating its vanishing point, and this gives Z, = 2.16. This 18
very close to the previous straightforward numerical estimate Z, = 2.124 [13] in the model

In the Burndge-Knopoff model [7.8] of carthquake, a linear array of N-blocks (carth
crust areas) each coupled 10 1ts nearest neighbours by clastic springs and cach connected W@
rigid support at the top by elastic springs, 1s put on a uniformly moving rough platform
(tectonic plate). The rescaled equation of motion of any block can be written as
d u, N

-7 = 1"u,, —2ul+u/_l) -, - ¢[2av + 2a(fdul/dt)], a
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where u, denotes the displacement of j-th block, v the platform velocity with nonhnear friction
function (y) = sign(y)/(1 + |y|). I and o are constants depending on the spring constants
We have already shown [9] that the response to a pulse stress on any block grows with time
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Figure 3. The time vanation of total elastic energy Er of the Burndge-Knopolf system
The corresponding time variation of ¥ (obtained from stress correlation) 1s also shown

and the response (pulse susceptibility) x, grows with ime 7 as ¥, ~ exp [const./(t‘,’l - 1) for
f <t ,wherer, denote the onset time of the n-th earthquake.

69A(2)-3
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We show herc that the growth of strain correlation in the same model [7] can be
summed up to give a direct susceptibility x(t) (with x = 2rg(r), where g(r) = (AUOAU,)
with AU/(:lz(ulH ~2u, +u,,) - uj)dcnoting the stress on the j-th block in the mode]
[7.8]). The behaviour of this susceptibility exactly matches with our previously studied
results for x, [9] in that it also grows exponentially with time and diverges at the 'earthquake’'
points or times. By studying the susceptibility x for system sizes in the range N=100to N =
1000, the finite height of the peak of y is observed to be a finite size effect. The Figure 3
shows the numerical results for the same model (with 100 blocks and the same ldynamical
parameter values as used n [9]) for this x(f) variation with time f obtained from the stress
correlations as discussed above and its varation with time has been compared with the time
variation of the total clastic encrgy

2
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of the entire system of blocks and springs. This again confirms that the growth of such

susceptibihties can indeed give prior information about the point in time of the imminent
L d

catastrophe.

Is summary, we find that onc can dcfine appropriate susceptibilities for systems
having macroscopic breakdown properties. As the breakdown point approaches (for example
by increasing the external voltage across random diclectrics, or with the increase of time as in
the BTW modcl of sand-pile or in the Burridge-Knopoff model of earthquake), the
approprialc correlations grow and the corresponding susceptibility tends to diverge at the
disaster point. By investigating therefore the nature of such susceptibility and by locating the
extrapolated point where its inverse vanishes, one can make predictions about the imminent
brecakdown point.
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