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Abstract : The responses lo short duration pulses (of electric field, of additional 'particles', 
ek ) have been studied numerically lor metal-insulatoi composites before dielectric breakdown and 
the BTW (sand pile) model before the ciideal avalanches The study of the breakdown 
susceptibility (defined in the text) indicates universal behaviour near the catastrophic breakdown oi 
the self-organised culical points, and its study can locate these breakdown points very accurately 
We make a numerical study of the Laplace's equation of a dielectnc with rundom bond conductors 
below its peieolation threshold, and of the BTW model. We show that, if one applies weak pulses 
of appropriate external field ( e  electrical pulse in the case of dielectric bieakdow'n) and studies 
the breakdown susceptibility, one can locate accurately the bieakdown or disaster point, much 
befoie its occurrence, by extrapolating the inverse breakdown susceptibility to its vanishing point 
The growth of the susceptibility, coming from stress coirelations, in the Runidge-Knopoft model 
of earthquake is again shown to be exponential m time, as for pulse susceptibility in this model 
(J  P h y s  F r a n c e )  I, 5 153 (1995) Prediction of the earthquake point in time is also possible in 
the model from the study ol its inverse logarithm with straighthne extrapolation to its vanishing 
point
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Considerable progress has recently been made in the statistical study ol the breakdown 
strength of disordered solids 11]. These solids may be porous media, random composites, 
granular packings or layers in earth mantle; the relevant phenomena are fracture, dielectric 
bieakdown, avalanche or earthquake. Several simple models (at a semi-microscopic level) 
have been irftroduced for mechanical [2] and electrical [3] tailure ot such randomly disordered 
media; the media are represented by disordered lattices, failure is modelled by individual 
bonds breaking irreversibly. These theoretical results about the fracture or breakdown 
strength distribution have also been checked in several experiments [4]. Failure processes
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playing intrinsic roles in many systems of industrial importance and in many natural disasl,f 
phenomena, the above mentioned statistical studies establishing the nature of fracture-sircnpih 
distribution, its fluctuations and consequent power laws for the average strength of such 
solids [1], are of extreme importance. Although a significant amount of literature has been 
developed for these studies of failure strength distribution, not much has been done on thc 
dynamics of microscopic failures. Since the microscopic failures are irreversible and therefore 
require intermediate redistribution's of the forces, the equations for the dynamics of failure are 
intrinsically nonlinear and dissipative. The formulation and study of such equations are 

neccessary for thc search of any precursor effect of the macroscopic failure, specially if the 
macroscopic failure is at most a critical and not a fully chaotic phenomenon In fjome recent 
experiments [5J on the dynamics of thc cracks in thin glass plates with thermal stresses, the 
dynamics seems to undergo a sequence ol numerous but reproducible instabilities, nut 

sensitive to every detail of the fluctuations in initial conditions. Thc dynamics of fracture is 

thus observed to be mostly critical, on the verge of chaos but not quite chaotic [6|, the 

situation depends somewhat on the velocity of the crack tip. Similar is the case lor the 

dynamical (Burridgc-Knopoff [7] type) models of earthquake 181, where also one gels the 

Gutlcnberg-Richter type power law for the magnitude variation of thc density of quakes, thc 

failure distribution being critical.

These studies establish thc very nonlinear, yet nonchaotic, natufe of the dynamics ol 

breakdown and give the distribution of the breakdown strength or magnitudes. Recently, we 
have shown [9] that an appropriately defined pulse susceptibility can be studied for the 

Burridge-Knopoff model [7] of earthquake and by looking at the approach to divergence oi 
the susceptibility, before thc earthquake, we can predict the earthquake point in time in thc 

same model. Here, we apply thc same method of study of the growth oi the pulse or 

breakdown susceptibility in a metal-insulator composite dielectric (a dielectric with random 

conductors before the percolation threshold) to predict thc dielectric breakdown point of thc 

random sample. This is done numerically by solving the Laplace equation of a random 

nonpercolating network of conductors [10]. This investigation is also extended for predicting 
the self-organised critical (or breakdown) point in the Bak-Tang-Wiensenfcld (BTW) 
model [11].

We consider now a LxL spuare lattice [10], with L = 25 here. A fraction p of its sites 

are randomly occupied; they represent conducting sites. The (1-p) fraction of unoccupied 
sites represent the dielectric sites. For each configuration with average conductor 
concentration p(< pn p( representing the percolation threshold [12], with pt = 0.593 here), 
we first check whether or not there exists any percolating path through the conducting sites 
Percolation connections are taken here through the nearest-neighbour conductor sites. H no 
such path exists, giving thc macroscopic connection across the lattice, we apply a voltage
V across the sample in the horizontal direction, with all sites at the leftmost column at voltage
V = 0 and those at the rightmost column at voltage V = V. All the other sites are at first given 
a randon distribution ot potential. All the nearest neighbour conducting sites are then updated 
to the same (arithmetic mean) potential. This makes clusters pf conductors at diitereni
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voltages, separated by dielectrics. Tbe disoetised version of the Laplace equation is solved 
and S1te voltages are updated at each time iteration until the sum of the differences in the 
successive updates everywhere goes below a small value (10^ here). For breakdown, if any 
nearest neighbour dielectric bond gets a voltage difference of magnitude more than a fixed 
value vr (= 1.0 here), the bond is broken in the sense that both sites on its ends are changed 
to conductors.

It is clear that the average breakdown voltage for a fixed sample dimension l  
decreases with increasing disorder, that is conductor concentration p, until it vanishes at the 
percolation threshold pc [ 12]. For any particular initial concentration pa of random conductors, 
die sample dielectric has an average breakdown voltage Vb(pa), above which the sample starts 
conducting via the conductors (original and broken). Wc intend to predict the Vrfp0) value by 
looking at the response of the sample to electrical pulses much before its breakdown occurs.

We thus make an increase dV , over V, in the applied voltage across the sample and 
look lor number (n) of dielctric bond breaking locally as the voltage across any bond increases 
beyond vc = 1.0. This helps us to define the susceptibility Xd = ^  IS shown in Figure 1

Growth 0/  breakdown susceptibility in random composites etc

Figure 1. Variation of breakdown susceptibility = dnj dV with voltage 
V. The circles and the squares represent the data for composites with p  = 0.4 
and 0.3, respectively. The continuous lines are guides to the eye.

for two different concentrations p = 0.4 and 0.3, respectively (with averages over about 500 
initial configurations). The maximum of Xd 8*ves possible location of breakdown voltage. 
The peak occurs at the voltage V b = 11.0 for p  = 0.3 and V b = 8.0 for p = 0.4,.very near to 
those obtained from the direct breakdown measurement in this model (Vb = 14.13 forp  = 0.3 
•rod V„ = 9.65 for p  = 0-4, when conductors percolate through broken dielectric bonds). It 
tuay be noted that peak in Xd incr®35^  in height with system size L. Thus, an extrapolated 
Point where Xd vanishes gives the predicted location of the breakdown voltage.



208

Wc consider now the self-organised criticality (SOC) of the critical 'slope' BTW 
model 111], considered to be a generic SOC model for sandpile and earthquake. We consider 
a lattice sizc of 100 x 100. At each lattice point the 'slopes' of 'particles' arc randomly added 
in discrete integer addition and avalanches take place if the 'slope' Z, at any point i exceeds 
the value 3 (the cut-off value Z0 = 4 here). In such cases, the Z* g of the nearest neighbours 5 
of the site i gets one unit of 'slope' each and Z, becomes zero at t. The dynamics continues, 
until all the sites have Z < 4. The simulation studies give the value of the average critical 
'slope' Z, to he around 2.124 ( I 31 for such a model, beyond which the global avalanches 
lake place.

We have siudicd the effect of addition of a fixed number of particles (or Slopes') at 
any central point for a lime unit Si, when the system has got the average 'slope' Z(< 7 )̂ and 
die dynamics has slopped. Immediately after die particles are added, the local dynamics starts 
and it continues, for a time period A t (> St) We measure the ratio Rh =At/5t. Figure 2 shows
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Figure 2. The BTW  results Rp l/fW  vv /  Inset shows (he variation ol R  p  with respccl to /

die varation of Rp with 2. We find that Rp ~ (Zc -  where yp = 1/3 (see inset of Figuie 
2). One can thus clearly locate the self-organised critical point (or critical ’slope ) Zc by 
plotting Rp 1 with 2  and by locating its vanishing point, and this gives Zt = 2.16. This is 
very close to the previous straightforward numerical estimate Zc = 2.124 [ 13] in die model

In the Burridge-Knopolf model [7,81 of earthquake, a linear array of /V-blocks (earth 
crust areas) each coupled to its nearest neighbours by clastic springs and each connected to a 
rigid support at the top by elastic springs, is pul on a uniformly moving rough platform 
(tectonic plate). The rescaled equation of motion of any block can be written as

d~u

d r = /2(«/+|- 2 « ,+ « ,-i) ~ 11, ~ 0[2av + l a ^ d u jd t^ , (l)



where Uj denotes the displacem ent o f/'-th  block, v the platform velocity with nonlinear friction 

function 0Cv) =  s ig n ( y ) / ( l  + |y |). / and a  are constants depending on the spring constants. 

Wc have already show n [9] that the response to a pulse stress on any block grows with time
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Figure 3* The time variation of total elastic energy E j  of the Bumdge-Knopolf system 
The corresponding time variation of X  (obtained from stress correlation) is also shown

and the response (pulse susceptibility) %p grows with time t as Xp “ exP [const./(f^ -  t)] for 
f < tcn> where tc denote the onset time of the n-th earthquake.
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We show here that the growth of strain correlation in the same model [7] can be 
summed up to give a direct susceptibility x«) (with x  = 2>g(r), where g(r) = (AU0AUr) 
with d f /; |= / 2(«;+l -  2u; + Uj ,) -  uJdenoting the stress on the;-th  block in the model 
|7,8]). The behaviour of this susceptibility exactly matches with our previously studied 
results (or x P 19 J in that it also grows exponentially with time and diverges at the 'earthquake' 
points or times. By studying the susceptibility x  for system sizes in the range N  = 100 to N = 
1000, the finite height of the peak of x is observed to be a finite size effect. The Figure 3 
shows the numerical results for the same model (with 100 blocks and the same dynamical 
parameter values as used in [9]) for this x(0  variation with time 1 obtained from the stress 
correlations as discussed above and its varation with time has been compared with the time 
variation of the total elastic energy
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ol the entire system of blocks and springs. This again confirms that the growth of such
.susceptibilities can indeed give prior information about the point in time of the imminent

0

catastrophe.

Is summary, we find that one can define appropriate susceptibilities for systems 
having macroscopic breakdown properties. As the breakdown point approaches (for example 
by increasing the external voltage across random dielectrics, or with the increase of time as m 
the BTW model of sand-pile or in the Burridge-Knopoff model of earthquake), the 
appropriate correlations grow and the corresponding susceptibility tends to diverge at the 
disaster point. By investigating therefore the nature of such susceptibility and by locating the 
extrapolated point where its inverse vanishes, one can make predictions about the imminent 
breakdown point.
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