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Abstract: Metal-Insulator transition n disordered (non-interacting) systems is briefly

v
reviewed. With pecial emphasis to low-dunensions, the transitions 1n other nou-random
(quasi-penodic and inhomogeneous) systems are also discussed. Inhomogeneous systems tend
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1.1 Introduction

In this short review, we will be concemed only with non-interacting electrons and the effects
on the fermionic ('spinless’) transport properties of the broken translational symmetry of the
lattice either due to disorder (randomness) or Incommensuration or inhomogeneity of some
property. Because of the limited space, I will introduce the essential concepts without much
detals. The bibliography will also be representative rather than exhaustve. Since quite a few
excellent reviews!Z already exists for higher dimensions, I will confine myself mainly to
one-dimensional systems, while making occasional excursions mnto two or three
dunensions. This confinement to lower dimensions is not just a purely academuc exercise

any more because of the tremendous advancement in technology (see, e.g., ref. 3) in making
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very low (even almost zero-dimensional) dimensional systems. It must also be remembered

that many interesting physics still remans to be explored even in 1D as the sequel wl
hopefully demonstrate. The choice of topics even in this limited sense was partly dictated by
the type of papers contnbuted for the Workshop, and partly tinted by my own prejudice (as
happens with almost any author) regarding which topics are of current interest.

2.1 Periodic Systems

In this case the eigenstates are Bloch states, and transport is ballistic since the mean frec
path (mfp) for elastic scattering is infintely large n this case. Since there is no scattermg,
(four-probe) resistance is zero and the transport is superdiffusive in the sense that the mean
squared displacement (MSD) ~ t, where t is the elapsed time. This situation 1s routinely
realized nowadays in nanostructures® which are ultra-clean, nano-sized (~ 10® m) systems
where mfp is of the order of 50 um, which is about four times that in a good metal The
interesting thing that happens in these systems is that as a function of the gate-voltage, the
number of channels in the (electronuc) flow path increases and the (two-probe) conductance
in units of its quantum (e2/h) jumps in unuts of two (for electrons of two spin varieties). By
confining the gate voltage (or boundaries, etc.), one may further confine these systems to
less than one dimensions, i.e., essentially to Quantum Dots (zero-dimensional systems)

There is particular interest in T-shaped structures for possible use in future transistors.

2.2 Impure Systems: Random Disorder

In this case, electrons scatter from the impurites every so often. The scatterings are stll
elastic (since we donot consider any phonons etc. at T = 0), and hence the elastic mfp (¢,) <
@owith the result that the resistance > 0. The question is: Can the electron still diffuse (note
that diffusion, ie., MSD ~ t, here implies a metal)? Boltzmann transport theory (which
considers electrons as classical particles) says, "Yes". But Anderson? for the first time had
said, "Not necessarily”, and introduced the idea of a critical disorder above which the
electrons cannot diffuse anymore through the system (MSD < g for all t however large, i.€.
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the system becomes localized (an insulator). The underlying reason is now known to be the
quantum interference of electron waves and the process of coherent backscattering.

To understand how quantumn transport r/ 1
is more restrictive than its classical counterpart,

P~ 2 Q

we consider two paths 1 and 2 for the electron

wave from point P to Q, as shown in Fig.1(a). If ‘F 1

the amphtudes and phases are A, and ¢, for (3 (o.)

path 1 and A, and ¢, for path . respectively Er»

when they amve at Q, then the combined P

probability of findmg the electron at Q is- R@J
A+ AP = A R+ AR+ 2|A | 1A,] cos (¢, - 0;) Es ' i(L)

where the last term 1s the interference term. Now if one looks at the probability of the
clectron coming back to the same pomt P as in Fig. 1(b), then for the same loop there could
be two paths one along the so-called forward path and another along its exact "time-
reversed” path. They interfere constructively and the retum probability p = 4 |AP instead of
2 AP as obtained classically (Boltzmann) where one sums over probabilities staright away.
Now at T = 0, the inelastic mean free path, ¢ ¢ (e, length upto which the electron does not
does not scatter off phonons etc. and lose phase coherence) is infinite. Thus the
backscattering is due to the sum of forward and its time-reversed Feynman path (as
considered above) for all possible sized loops (upto infinity). In reality/ experiment, there is
always a finite temperature (i.e., phonons with finite a ¢, ) and the loops with sizes greater
than ¢ ¢ cannot contribute. Thus phonons normally tend to reduce the localization effects,
1e, increase the conductance in a disordered system at a low temperature! In any case, it is
clear that localization implies long-range phase coherence. In one dimension, (almost) all
states are exponentially localized® and this has been rigorously proved®. The 'average'
fesistance may be shown to increase” with system-size as <R(L)> = 1/2 [exp(2yL) - 1],
where y! = & is the 'localization length'. Clearly this is non-Ohmic behaviour since
Tesistance does not increase linearly with length. Indeed, it was shown’ that the resistance is
not a self-averaging quantity but the logarithm of the resistance is. Further, this
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demonstrates exponential localizaton m 1D. We know that in a classically disordered
(percolative) system, metal-insulator transition is possible in 2D at a percolation threshold,
i.e., at a certain volume fraction of conductors in an insulating host. But consistent with the
fact that quantum interference makes transport more difficult, the scaling theory of
localization® predicts that all states are localized even in 2D. It is only above 2D that there is
a finite non-trivial value of a critical disorder (W_). For a disorder, 0 < W < W , there is 4
mobility edge E, separating the spectrum into metallic and insulating regions. For W >W |
a metallic state is not possible at all (all states in the spectrum are localized). Typik:a]ly one
works with site-diagonal disorder, i e, disorder i the site-energy or potental. The ;‘folklon-'
is that there are no qualitative changes in the above statements in the presence of off-
diagonal (hopping term; related to the overlap between nearby site states) disorder.

2.2.1. Topological Disorder: In this case, the disorder is due to the absence of
even an underlying lattice, 1.e., one has an amorphous or fluid system. There is no ngorous
theorem 1n this case even in 1D, but it seems that 'all’ states are localized’ in 1D. [t may be
noted that since distance between nearby sites vanes here, sometimes this may be treated a¢
a lattice case with random hopping terms. There 1s a qualitatively different result for this
model with fixed site energy but random nearest-neighbour hopping. The state at the band-
centre (E = 0) 1s ‘sublocalized’ ® (weaker than cxponential but stronger than power-law
localization) mn the sense that 1t asymptotically decays as exp(-yL'2) ford = 1 and 2.

2.2.2. Transport in a random fractal medium: Applying the ideas of random
walks on fractals, and domg functional integrahon on random Feynman paths it was
theoretically found as well as experimentally observed recently (in a carbon-black-polymer
composite) that electrons are 'superiocalized’ 1° (i.e., stronger than exponential localization)
in the sense that the wave function asymptotically decays as exp(-yL%), where { > 1.

2.2.3. Conductance Fluctuations and its Universality: Fluctuations (standard
deviation; sd) in macroscopic systems usually decay as square-root of the system-size
(volume) since observing different parts (for a static property) of a large system is
equivalent to observing many realizations of a small-sized system, ie., since ergodicily
property holds. A disordered system at low temperature is however strongly non-ergodic
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mamly because of the breakdown (an outcome of quantum mterference) of the Central limit
theorem for the distribution of conductances (g). Fluctuations show anomalously large
values More interestingly, however, sd g assumes universal values 1 the mesoscopic
regume (¢, <L < £, and/ or &) independent of the Fermi energy, strength of disorder, size of
the system etc. and dependent only on the dimensionality. It was found!! that for the two-
probe conductance (in units of 2e%/h, for electrons of two spin-variety): sd g = 0.544 in 3D,
sd g =0.4311n 2D and sd g = 0.365 1n quasi-1D. Because & is completely dependent on £, (¢
- 4¢¢ ) m 1D. 1t was believed for a long time that this universality cannot exist in exact 1D
unbl recently when we discovered!? that there is stll a quasi-diffusive regime mn 1D where

the probability distribution of g is iinusually broad and the universal sd g= 0.3
1.3 Moving Away from Random Disorder*

2.3 1 Randomness with short-range correlation: random n-mers- Here 1 discuss
the effect of short-range correlation in the randomness (disorder). One of the simplest such
models 1s a Random Dimer Model (RDM), which seems to have some relevance in the
study of lughly enhanced conductwity (by the order of about 11) of polyaniline upon
increasing levels of protonation!?. In the RDM, there are two species of atoms, say, A and B
twith site-encrgies €, and ey respectively) and they are thrown randomly only as a pair AA
or BB on nearest neighbor lattice sites (1D). It was clamed by Dunlap, Wu and Phillips'?
that there was absence of localization in this 1D disordered chamn. Detailed study on this
model by us!* showed that qualitatively nothing unusual happens here and that almost all
slaics are exponentally localized Note that in a purely (uncorrelated) random system, there
15 a set of discrete, configuration-dependent (and hence generally unpredictable) stochastic
resonance (e.g., Azbel resonances'®) energies, whose total measure, or contribution to the
integrated density of states, in the infinite volume limit is zero because their widths decay
exponentially with length. In contrast, a RDM has correlated (shortest range) disorder and
Wo interesting things happen. (i) Apart from the stochastic resonances, there are two
configuration-independent, deterministic energies E = ¢, and ey where very broad
Tesonances (extended states) occur; and (i) The peak structure around each of these very
broad resonances at €, OT €5 s found to be quite comphcated wih external fragmentation
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regions where the resonances are Azbel-like and an oscillating (conductance) core whose
width in energy decays algebraically N7, but the number of extended or nearly extended
states within which increases as N!7. Indeed, these increasing number of algebraically
decaying (without any particular length scale) resonances are at the heart of the ‘apparently
superdiffusive' behaviour (Dunlap, Wu and Phillips'®) of an electron released at some point
in the chain at time t = 0 But our scaling analysis'? indicates that localization effects finally
win and that the localization length (implying exponental localization for very large systems
studied by us) diverges as & ~ (E - £5)2, where S = A or B. That there are only these two
extended states may be seen by using the followmng general idea!s. Take the transfer
matrix'? product of one of the dimers of the RDM, and find for which energy does 1t
become + I (identity matnx). If such an energy exists for one type, say A, then the chain
behaves like a perfect chain of B atoms at that energy (and hence gives rise to an extended
state) and vice versa. For the RDM, one gets only two such extended states E =¢, or ey

Simularly in the case of a random trimer model (RTM) made ouf of random AAA
or BBB clusters on threc neighbouring sites in a chain, the condition of unity (+ I) imposed
on the product of three random matrices of A or B atoms gives rise to exactly four extended
states (E = €, + V or g5 + V) which behave like very broad resonances with algebraically
decaying widths for finite size chams For the general case of a random n-mer made out of
A or B atoms, where n is of the form n = 2P, one gets exactly (n - 1) extended states for each

species It tuns out that there are (2n - 2) real roots!6:

where V 15 the hopping energy between nearest neighbours only (irrespective of AA, BB or
AB), m is the set of all integers from 0 to (p - 1), and S = A or B. It may be noted that i a
random n-mer, the range of correlation (in the biased binomial probability distribution) has
increased to n-lattice sites and the effect shows up by increasing the number of extended
states to 2n - 2 (inside the spectrum). One further notices that if n tends to infinity, not only
the number of extended states become infinite, but also the spectrum of these extended
states range from (as found using the ubove formula) eg = 2V to eg + 2V, which also
happens to be the extent of the band states in this case. Even though it has not been shown
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whether these infinite number of extended (resonance) states are dense (in a mathematcal
sense) or not, the method at least indicates qualitatively the right type of crossover from
exponentially localized states, for purely random distribution, to extended (band) states, for
a random distribution with infinite range of correlation.

2.3.2. Strength/ Width of disorder (randomness) decreasing towards zero as the
system size increases: Let us consider a 1D lattice with site energies chosen from a
uruformly distributed disorder whose width decay algebraically as: W(L) = AL™®. For a =0,
one knows that almost all states are purely exponentially localized. Intuitively, for a > 0, one
expects the effects of disorder to become smaller (e.g., localization length becomes larger)
as the length L increases. Indeed, localization other than pure exponential [e.g., sub-
localization with resistance R(L) ~ exp(yLX®)} 0 < p(a) < 1] may appear here. The
following is a summary of results (See Sec. 2.7 of Ref. 2 and references therein):

() For a > 1/2, the spectrum is absolutely continuous, and has extended states.

(ii) For 0 < a < 1/2, the spectrum is pure-point, and one has p(a) = (1 — 2a) and
thus 1s clearly stretched exponential localization.

(i) For a = 1/2, for large enough disorder strength (A > some A, ), one has power-
law localization with R(L) ~ L?, where v = v(A,E).

2.4 No Impurities (i.e., No Disorder): but Loss of Crystalline Symmetry

These are typically incommensurate (or, quasi-penodic) systems, or systems which have
inhomogeneity in some characteristics at different lengths. Indeed, we did already consider
mhomogeneous systems above (Sec.2.3.2), but the system was disordered in that case.

2.4.1. Fibonacci Sequences: Let the sites on a 1D lattice be generated from the left
end using two species of atoms A and B, and a pair of rules, e.g., (i) an A is replaced by B,
and (i) a B is replaced by AB. Solution of Schrodinger equation on such quasi-periodic
Fibonacci sequences was first attempted upon by two groups!” It was found that the
Spectrum is singularly continuous, i.e., all the states are critical. In the case of a tight binding
hamiltonian, ore may apply the rules individually to the site-energies or the hopping terms.
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But, if the hopping energies are correlated to the nearest neighbour site energies'®, or if the

site-energics tend to cluster'S, extended states may appear.

2 4.2 Incommensurate Systems (Harper model) The quasi-penodicity in this 1D
model appears in the sitc-energy €, = A cos (270Q + @), where Q is an irrational number
The nearest neighbour hopping energy V is held constant. Here A plays the role of 'disorde; .
If Q 15 not ton closely approximated by a rational (e.g., Liouville numbers) there is a metal-
insulator transihon 1 thus model at A = 2V. Aubry and Andre!¥ denved a duality [lf{ropcn)'
and showed that all states are extended for A < 2V, exponentially localized for A > 2V, and
cntical for A, = 2V A multifractal analysis®® showed that for A close to A, , the extended
states start with a sub-diffusive (critical-like) behaviour for finite-size chams and has a fiute
resistance which could be quute larpe, but as the length increases towards mnfimty th-
subdiffusive behaviour slowly crosses over to an extended behaviour but with a lage

resistance This 1s consistent with the behaviour eof manty expenmental quasipenodic metals
L4

243 Systems with periods varving (increasing) with distance. If the sit
energies are given by e/ = A cos (2m*Q + @), where 0 << v < 1 and Q 1s any real number,
then the penod keeps increasing and the potential becomes locally flat at very large lengths.
The case v -+ 1 where the peniod keeps decreasing 1s not very mteresting since intwitively 1t 1
clear that all states become localized For v < 1, it was shown by Das Sarma er a/ 2! that
there 15 a metal-insulator transiton wath mobility edges at +E. (E; = |2t - A|) separating
extended states for [E} - E. and cxponennally localized states for [E| > E.. Since this is an
inhomogeneous systern, we? undertook a transfer matrix study of the conductance
alongwith finite-size scaling analysis (numerical) and our study indicates presence of

sublocalized states in the vicinity of |2t - A] More work needs to be done in this area.
3.1 Random Matrices, Level Spacing Distribution and Quantum Chaos

Wigner and Dyson® had ongnally apphed the theory of random matnces in the study of
the stastics of level spectra (considering them as random) of complex nuclei. Because of
the universality of the Wigner-Dyson (W-D) statistics, it is relevant for various quantumn
systems In the case of a quantum particle 1n a random potential, the energy levels ar¢
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random and so are the energy-level spacings (5) between two consecutive levels. Obviously
for the band states, the energy levels are perfectly correlated in the entire spectrum. In the
other extreme of localized states (insulating regyme), they are totally uncorrelated and one
expects the probability p(s) to be Poissonian. In the case of weakly disordered metallic
regume, the effective hamiltonian for the ensemble of energy levels has a Coulomb gas form
(plus some attrachve interaction) and thus there 15 a finiie range of comrelation (level
repulsion) in the energy domain and p(s) = s®exp[-a(f)s?], the W-D statistics, where p = 1, 2
ot 4 for orthogonal, unitary or symplectic symimetnes respectively M may be menuoned
here that while chaos in classical systems is reasonably well-understood, it is not so for
quantum systems?® People believe that quantum chaotic systems are those which are
classically chaotic, if such a classical limit cxists.‘As one would mntuitively expect, quantal
effects tend to suppress classical chaos (because of the uncertamnty relation in phase space)
They suppress classical chaos and diffusion by a mechamsm sumlar to Anderson
locahzation. The W-D statistics plays a central role 1n the classification of quantum chaotic
systems. Currently it serves as one defimtion of quantum chaos. But very recently strong
deviation from both the Poisson statistics 1n the insulatmg regime and the W-D statistics in
the metallic regime has been found?® close to the mobility edge for d > 2. Similarly, for the
Harper model (see above) at criticality, level atirachon?® instead of repulsion was observed

for small values of s, i.e., p(s) ~ 8, where -2 < B < -1. Thus field is developing very fast.
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