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Abstract: For the Tlrst time the concept of fractal geometry Is
Introduced to characterize backscattered discrete ultrasonic time domain 
signals Trom Aluminium. These signals possess unique fractal dimensions 
and remain Invariant with the change in sampling rate of signal 
capturing. The fractal dimension of these signals evaluated by both the 
box counting method and the power spectrum method were found to be equal. 
The cause of similarity in the fractal dimensions of these signals
obtained from the above two methods >have been discussed.

Keywords: Fractal dimension. Ultrasonic Backscattered Signal, Aluminium

PACS No.: 43.60

I.* Introduction

Materials were characterized for a long time by the measurement of ultrasonic
1 2velocity and attenuation ’ . These measurements usually require the transit 

time between two successive back wall echoes and their respective amplitudes 
in plane parallel specimens. Variation of amplitude of these successive back 
wall echoes are essentially due to the cumulative attenuating effect of the
entire thickness of the sample. The intrinsic Information of the scattered 
signals during the course of propagation of acoustic pulse Inside the specimen 
is not taken care In these measurements. Several attempts were made to

3
characterize materials by processing signals in this back scattered region . 
However no definite universal results were obtained. In this paper for the 
Tirst time an attempt has been made to characterize the ultrasonic signals
(including the back scattered region) from -polycrystalline metal like 
Aluminium (Al) with the help of fractal geometry.

When the scattered ultrasonic signals from Al were viewed on the 
oscilloscope, It appeared to us that these signal profiles could be a 
"fractal" and thus may possess an unique fractal drmension. If these time 
domain signals could be quantified using fractal geometry, a different 
understanding would be provided for Interpreting these signals, it Is this 
objective that motivated us to investigate the fractal characterization of the
scattered ultrasonic signals from this material.
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A significant concept which is associated with the geometrical properties 
of an object Is fractal geometry, which was introduced by Mandelbrot . Complex 
physical phenomena are better described by fractal geometry than by Euclidean 
geometry. So fractal concepts are finding applications In various frontiers of 

science and technology^.

2. Estimation of fractal dimension of a time domain signal

There are a number of techniques for evaluating the fractal dimension of a 
signal. Here we consider the box counting method and the power spectral method 
to evaluate the fractal dimension of the signal. \

Box counting method uses boxes to measure the length of a curve by 
covering It with square boxes of same size. The number of these same sized 
boxes needed to cover the line Is counted. This Is repeated for a series or 
different sized square boxes. The results are then plotted as the number of 
boxes (y-axls) versus I/(length of square box ) on a log-log plot. The fractal 
dimension D is equal to the slope of the plot. A computer algorithm has been 
developed to find the fractal dimension of captured back scattered ultrasonic 
signals by this box counting method.

Fast Fourier Transform (FFT) are carried out on the ultrasonic time 
domain signals In order to evaluate the fractal dimension of these time domain 
signals by the power spectral method. Power spectral density vs frequency are 
plotted on a log-log plot. A straight line fitted to this plot evaluates the 
fractal dimension D from the slope S of this plot^ by the relation

D « ( 5 - S )/2......... (1)
Along with fractal dimension, concepts like self-similarity and 

self-affinity are also Important parameters of fractal geometry. Profiles of 
the fractal structure can be seir-similar or self-afflne. A self-similar 
object Is composed of N (where N Is any large Integral number) copies of 
itself (with possible translations and rotations) each of which is scaled down 
by the ratio r in all Euclidian E co-ordinates Trom the whole l.e. a 
magnification of a certain portion of the object resembles In all respects the 
entire object. On the other hand, a self-afflne object Is composed of N copies 
or Itself, each of which Is scaled down by a different ratio ( r ^ .......r£ ).

For self-similar fractal structures, fractal dimension remains invariant 
with the change in the method of estimation. Unlike seir-simllarlty, different 
methods of estimating the fractal dimension of a self-afflne structure may
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give different values^.

3. The experiment

A broad band ultrasonic probe with central frequency of 5 MHz and or crystal 
diameter of 12.5 mm was used. The probe was excited by a pulser receiver unit 
and was used for both transmitting as well as receiving ultrasonic signals. 
Ultrasonic backwall echoes were obtained Trom the specimen of dimension 50mm 
x 50mm x 9.92mm by placing the probe at a fixed location. Enormous care was 
taken to maintain the plane parallfty of the specimens used for this 
investigation. The time domain signals from the specimen were sampled at a 
sampling rate of 10 ns. Signals were Initially captured on a digital
oscilloscope and then the data was loaded on a personal computer through RS 
232 Interface To evaluate the power spectrum of these time domain data, FFT 
was carried out on these time domain ultra^bnic signals.

The number of sampling points were chosen to be equal to 4500 for all the 
captured signals. This was large enough to give an accurate estimation or
fractal dimension, while at the same time reasonable enough that the 
computational time does not become prohibitively long. The box counting method 
was utilized to calculate the fractal dimension of the stored time domain

scattered signals. To Judge the invariance of the fractal dimension, the
sampling rate or the captured signals were changed to 20 ns and only 2700
sampling points were taken for the evaluation of the fractal dimension.

4. Results and discussions

A simple examination of the temporal evolution of the back scattered
ultrasonic signals (Fig 1) does not provide much Information except for its
seemingly random behavior. When observed closely, the signals seem to have 
either a self similar profile or a self affine one.

For the box counting method the fractal dimension was evaluated from the 
slope of the plot of log ( Number or square boxes needed to cover the signal ) 
against -log ( length of the squared box used ). The length of the square box 
varied between 0.1 to 0.01 by making the total span of the entire signal of 
unit length. Fig. 2 shows such a plot for Al. The slope of this curve is
estimate to be 1.5798 which Is the fractal dimension.

In the power spectral method the fractal dimension Is estimated from the 
plot (linear part) of power spectral density against frequency on a log-log
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plot with help of equation (I). Fig 3 shows such a plot with fractal dimension

1.5809.

Fig.I Time domain ultrasonic signal from polycrystalline 
Aluminium captured at a sampling rate of 10 ns.

It Is observed that the fractal dimension ol tne time domain signals 
estimated by the above two different methods remains Invariant for Al. The 
above result can be justified on the basis of a careful examination or the 
temporal evolution of the scattered signals obtained from Aluminium. The time 
domain signal of Al seems to possess a sufficient amount of back scattered 
noise sandwiched in between two back wall echoes. This characteristic 
scattering in Al renders a self similar profile to the time domain scattered 
signal, which Is reflected by the fact that the estimation of fractal 
dimension by the two methods remains the same^. The acoustic wave scattering 
Is closely related to the microstructure, so estimation of fractal dimension 
will give more information about the microstructure If the exact scattering 
mechanism Is investigated.

Fractal dimension estimated with sampling rate of 10 ns ( with 4500 data 
points) and with sampling rate of 20 ns (with 2700 data points ) are round to 
be Identical by box counting method. This observation Is In harmony with the
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theoretical fact that fractal dimension is Independent of the time resolution

Fig.2 Plot of Log^CNo. of square boxes needed to cover the 
signal) against -Log|Q(Length of square box) for time 
domain ultrasonic signal from Aluminium.

F re q u e n c y  ( H z )
Fig.3 Power spectrum of the time domain ultrasonic signal from 

Aluminium.
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4of the signal .

5. Conclusion

The use of fractal geometry to Interpret the time domain scattered signals 
from Aluminium shows that It can be used to characterize the different
scattering mechanism present In various materials. Since these signals possess 
the characteristics of fractal, they can be very well used to explain various

i
physical properties of materials. They can also be used fĉ r the 
mlcrostructural analysis of various materials. ^

i
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