Indian J. Phys. 678 (1), 15-22 (1993)

Exact solutions of Schroedinger equation for a
linearly kicked harmonic oscillator

A K Sikri, S C Gupta and M L Narchal
Depanment of Physics, Punjabi Umiversity, Pauala-147 002, India

Received 26 August 1992 , acepted 23 October 1992

Abstract : The ume-dependent Schrocedinger equation for a one dimensional harmonic
oscillator subject 10 a sequence of arbitrarily ume spaccd lincar kicks is solved exactly. The wave
function alter a kicks is used 10 calculate the cxpectation valucs of observables such position,
momentum and cnergy. Explicit results arc prescnted for an oscillator kicked periodically and
quasi-periodically.
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1. Introduction

The study of classical and quantum systems subject Lo time periodic potentials has attracted
much attcntion in recent years in the context of classical and quantum chaos [1-10]. The
simplest time periodic potential is a sequence ol 8 kicks cqually spaced in time. A number
of rcstarch papers have appcarced in litcrature on periodically kicked classical systems. Some
general rcsults have also been discusscd on the quantum behaviour of systems subject to
time periodic potentials. One of the principal results in this connection is the theorem on
quantum recurrence given by Hogg and Hubcrman [3]. This theorem rules out the
occurrence of quantum chaos in boundcd systems characterised by a point spectrum and
subject to time periodic poientials.

The question as to whether recurrent behaviour accurs in quasiperiadically kicked
systems or in systems subject to other forms of time dependent potentials is still open and
requires further study. Whether or not quantum rccurrence occurs can be indicated either by
the time bchaviour of the autocorrelation of the statc vector of the system or by the time
behaviour of autocorrelation of the cxpectation valuc of position vector. These corrclations
functions can be evaluated if the exact form of the time dependent wave function of the
system is known. This would rcquirc the cxact solution of the time dependent Schroedinger
equation for the system. There arc hardly any exact solutions available to even the simplest
of systems.

In this paper we present an exact solution of Schrocdinger equation for a quantum
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harmonic oscillator subject to a serics of kicks arbitrarily spaced in time. The outline of the
paper is as follows : In Section (2) we obtain the general solution for an arbitrarily kicked
harmonic oscillator. In Scction (3) these solutions have been utilised to calculate the
expectation values of position, momentum and Hamiltonian operators. Results are dissused

in Section (4).

2. Quantum mapping and the general solution to wave equation

Consider a onc dimensional harmonic oscillator of unit mass described by the Hamiltonian

n
H=u,+ YK(1,,x) -1, 60}
m=1
where /1o is the usual harmonic oscillator Hamiltonian Ho = he a’a. The second term
describes a system of & kicks at imes 7, 7o ... 1, . K(1,, x) is the kick amp\ilude for the
m-th kick which 1s a functionof kicking tume and the instantancous position of the
oscillator. For a system of lincar kicks
K(t,.x) = K(T,)x. ?)
The wave function of the system described by Hamultonian // is a function of time whose
development in between the kicks is governed by the Hamiltonian /,, and its development

during the m-th kick is described by the Hamiltonian
llluck = K(Tm) x 5(’ - Tm)- (3)

The ume development of the wave function in between the times immediately after the (m-
1’ th kick and immediatcly before m-th kick is given by the operator

U(t, + 1, )=cxp [ ill.,(rm - Tm.a)] @

where the symbols + and - after the ume 1, stand for immediatcly after and immediately
before hick.

The development of the sysiem during the m-th kick operating at ime 1,, is given
by

UG = e[ - pK@x | ©

The ordered product of operators given by ¢q. (4) and ¢q. (5) gives the total development of

the system in between times immediately after the (m - 1)-th kick to immediately after the
m-th kick. 1f we designate this operator as T, we have

T, = cxp [ - é’K(‘r,,,)x ] CxXp [— ,L;II,, (Tm - ‘r,,,-.)]. ©)

> be the initial wave function of the oscillator, Then its wave function after n kicks
is given by

Let ly,
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Wa>=T,Tpo_;...... Ty, >. @)

Substituting eq. (6) in eq. (7) we obtain
1

exp iHor,]lw,,>= chp[ %Ho‘t,,,]

m=n

exp L —K(t,,,)x] cxp[ =, T, ]Iy/n

exp | —Il T, ]Iv/>- ]']I’ ly, > ®)

m=n

where

m=cxp[—ll T ]cxp[—éK(t,,,)x]cxp[—éHon ] ®

Using the operator theorem

exp [Al1Bexp (- EA) = B+ £[A B) Y 52 A, A, B] + ...... 10)
wc can write operator P, as
P, = exp [ - IK(;"’) x cos (T,) + g-) sin (wr,,,))]. 11
Using the operator thcorem which says that [11]
I 1[A,[A,B]] = [B,[A,B]] =
then
exp |A + B] = exp (A) cxp (B) exp ( - é (A, B)). (12)

the expression for the operator P, takes the [orm

P, =cxp| - ;;K(‘r,,,) X COs ((ot,,,)] x
[ i K(t,) .
exp L - é (w ) B m)]
Y
exp %%ﬂl sin (20T, (13)

Thus the mapping which gives the wave function immediatcly after the a-th kick in terms
of the starting wave function ly, > is given by

exp [ hH T, ] ly, > = ﬂ exp ( k(‘l’m)st (w‘tm))
=n
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2
cxp ( p sin (wt,,,)) X exp( %Kiz;") sin (Zwt,.)) ly, > (14)

The operator product on the right hand sidc of cq. (14) contains an exponential position
operator followed by an exponential momcntum opcrator and so on. We can make repeated

usc of eq. (12) and collect all the position operators togcther and all the momentum
operators together. Thus eq. (14) simplifics to the form

cxp[ %H., T, ] y,> = cxp[ L ZK(T..) sin (mr,.)]

@ o= :
: n
exp| - ‘7f )3 K (5 cos (anm)] \‘
i n
exp| -+— Y > K(t,) K(1,) sin (w1,) X%
L hao =1 r=m

n
cos (o1,) - - Y Kz, sin Qot) | v, > (15)
m =1

This may be written in the short form as

(,xp[—ll T, ]IW,,> = cxp(—é(xnp)x
exp(—éﬂ,x)x
i
exp (— s ) o >

(16)
where
1 n
a, = 45 X K(1,)sin (w1,,) a1”
m=1
= ¥ K(t,) cos (wt,,), (18)
m=1

K(tn) K(1,) sin (wt,,) cos (wt,)
m=1 =

n
- > KX, sin Qur,). (19)
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The operator exp (— ‘;;an P) ) =cxp ( -a, % ) is the translation operator and we

can write eq. (16) as
exp [ ‘%Ho T, ] Iy, > = exp [— ;,;(r. - B. a.)] x

exp [- %,B,, x ] ly, (x - a,) >. (20)

This is an important result of this paper. Eq. (20) cssentially gives the wave function after
n kicks in terms of starting wave function ly, >.

3. Expectation values of observables

If O is an operator then its expectation valuc after n kicks is given by
<0>, = <y,101y,>

<0>, = <y, cxp(-é 1, Tn)lcxp(% 1, 1) 0

exp (= 1o Ta) XD ;. 1,7) > @1

Thus the expectation value of the opcrator O is given by the expectation value of the
operator exp ( i H,t,) Oexp (- i H, t,) in the state ly,> given by

exp [— ;—(7, - Pa a,.)] exp (- %ﬁ, x ) Iy, (x - a,)> Thus the required

expectation value is given by

-

<0>! = I Vo‘ (I - au) exp (!ﬁ ﬁ,.X)x

[cxp( éllo T, ) O cxp (— ;;II,, T, ) ]x
exp(—%ﬁ,x) W, (x-a,)dx. 22)

The operator in the square bracket can be calculated using eq. (12). For position and
momentum operators

exp( %Ho T, )xcxp (- élln T, ) = X COS (an,,)+%sin(an,) (23)

exp( %ll., Ta )chp (— %”o T ) = pcos (@1,) - ax sin (w1,) (24)
Using eq. (23) and eq. (24) we obtain [rom cq. (22)

w =5 )'flx (Ta) S0 @ (T - T,), @)
m=
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<p>, = - iK (Tn) €08 @ (Tp = Ta). (26)
m=1

The expectation value of H, after n kicks is

n n
.=% Y K@K (t)cosw(tn-1T,)+E, 27
g=1 m=1
Eq. (25) to eq. (27) represent gencral results which are applicable to a sequence of arbitrarily
time separated kicks. The two special cases of primary interest are the periodically and
quasi-periodically kicked oscillators. For a periodically kicked oscillator we substitue

1, = m1, K(t,) = K (28)
The expectation values given by egs. (25), (26) and (27) then takc the form

\
\

_ K sin (no1) - sin (n- Nwt -sin @7 k29)
=20 1 -cos @7 ’ {
K cos (nwt) + cos (2n + 1)wT — cos (2nwT) - cos (n + l)wrl (30)
P> =3 1 -coswt
K? sin® (nwt /2)
=E+5 T3 . 31
Er= Loty ol 3D

Eq. (31) agrces with the result given by Hogg and Huberman [3].

. . . . . ’. . .
It is uscful to examinc the behaviour of autocorrelation function of position with the
number of kicks. The autocorrclation funcuon is defined as

N
c(m) = limi llv LX>, X >um (32)
N 5w n=0
Using eq. (29) it takes the form
l 01 -lwt
- [ () s peng per]
8(0 sin

This correlation function does not decay irrespective of the fact whether wr is rational or
irrational.
If an oscillator is quasiperiodically kicked then we may write 6]
K(t,) = K cos (mw't) (34)

where @" is the angular frequency def ining the periodic variation in kick amplitude. For

quasiperiodic kicking we require @’ o be incommensurate with the kicking frequency i.c.
@7 must be an 1rrational number. If we define

(0 + 0)7 (-
R 35)
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We obtain for a quasiperiodically kicked oscillator !

<>, = h—a—)ﬁ}—o [sin(nwt) + sin{ @'t - (n-1)wT) - sin{(r+1)w'T + @1} + sin(nw'7)]

+ —_rs(;)’s(in Py [sin(nwt) - sin[@'T + (n-1)w1) + sin{(n+1)w’T - @) - sin(nw't)] (36)

<p>, = gﬁ [cos(nwT) - cos{(n+1)wT + @'t} + cos{(2n+1)@T + (n+1) 7T )

—cos (2nwt+ nw't)] +

m sl'(nztp [cos(nwt) — cos{(n+1)@T - @'T) + cos((2n+1)@T + (n+1)@'t )
i

—~cos (2nwt - nw't}]

K? [ sin“n@  sin’ng , 2.8in(n0) sin(n9) cos((n + 1)(6 - ¢))

Env=g | Snle * sine sind sing

The correlation function for quasi-periodic kicking turns out 1o be

_ 1 cos(m@) cos(mgp) cos(mB) cos¢g
Clm = 160 sin’6 ¥ sm2¢
cos(m¢ — 8) cos(mO + @) cos(m@ - ¢) cos(mo + 6) 39
sinf sin¢g * sin@ sin¢ 9

4. Conclusions

The exact wave functions for onc dimensional harmonic oscillator subject to arbitrary kicks
have been oblained. These wavce functions have been uscd to evaluatg the expectation values of
various obscrvables such as position, momentum and cnergy. The expression for energy of
periodically kicked oscillator agrecs with that given by Hogg and Hubermann [3], who have
investigated the responsc of oscillator 1o peniodic kicking by invoking Ehrenfest’s theorem.

The phcnomenon of quantum recurrence occurs as expected. The system is exactly periodic
il w7 is a rational multiple of 27. For wT = 27/q, the expectation phase plot will consist of

just ¢ discrete points. It @7 is an irrational multiple of 27, the system is not periodic but
comes arbitrarily closc to its initial §tate infinitcly oficn. The expectation phase trajectory
will be a closed curve and the system is quasiperiodic.

In quasiperiodically kicked oscillator we dcal with three frequencies namely (1) the
natural frequency of oscillator (), (2) the kicking frequency @” =% and (3) frequency @’
with’ which the kick amplitude is modulated. Il @’/ @” is a rational multiple of 27, the
encrgy of the oscillator would exactly rccurr. In casc @'/ w” is an irrational multiple of 27,
the energy will come arbitrarily closc Lo its initial valuc.

We also present explicit expression for autocorrelation function of expectation valuc
of position operator. The behaviour of this function is oscillatory for both rational and
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irrational valucs of @’/ @". Thus it appears that a quasi-periodically kicked oscillator will
show quantum recurrence, and the thcorcm on quantum recurrence is of more general
applicability than implied in reference (3). The method-described in this paper is sufficiently
general and can be applicd whencver the exponcntial operators involved can be handled in
terms of well known theorems [11].
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