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Abstract : The iime-dcpcndeni Schroedinger equation for a one dimensional harmonic 
osdllalor subject to a sequence of aii)iirariiy lime spaced linear kicks is solved cxaaly. The wave 
function after n kicks is used to calculate the expectation values of observables such position, 
momentum and energy. Explicit results arc presented for an oscillator kicked periodically and 
quasi-period ically.
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1 . Introduction

The study of classical and quantum systems subject to time periodic potentials has attracted 
much attention in recent years in the context of classical and quantum chaos [1-10]. The 
simplest lime periodic potential is a sci|uciu'c of S kicks equally spaced in time. A number 
of research papers have appeared in literature on periodically kicked classical systems. Some 
general results have also been discussed on the quantum behaviour of systems subject to 
time periodic potentials. One of the principal results in this connection is the theorem on 
quantum recurrence given by Hogg and Huberman [3]. This theorem rules out the 
occurrence of quantum chaos in bounded systems characterised by a point spectrum and 
subject to time periodic potentials.

The question as to whether recurrent behaviour occurs in quasipcriodically kicked 
systems or in systems subject to other forms of Lime dependent potentials is still open and 

requires further study. Whether or not quantum recurrence occurs can be indicated either by 
the time behaviour of the autocorrelation of the state vector of the system or by the time 
behaviour of autocorrelation of the expectation value of position vector. These correlations 
functions can be evaluated if the exact form of the time dependent wave function of the 
system is known. This would require die exact solution of the lime dependent Schroedinger 
equation for the system. There arc hardly any exact solutions available to even the simplest 
of systems.

In this paper we present an exact solution of Schroedinger equation for a quantum
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harmonic oscillator subject to a series of kicks arbitrarily spaced in time. The outline of the 
paper is as follows : In Section (2) we obtain the general solution for an arbitrarily kicked 
harmonic oscillator. In Section (3) these solutions have been utilised to calculate the 
expectation values of position, momentum and Hamiltonian operators. Results arc dtssused 
in Section (4).

7.. Quantum mapping and the general solution to wave equation

Consider a one dimensional harmonic o.scillator of unit mass described by the Hamiltonian

II = / /„ +  . *) 5(( -  T j
m = 1

( 1)

where Ua is the usual harmonic o.scillator Hamiltonian //o=  h(Oa*a. The second term
dc.scnbcs a system of 5 kicks at times Ti, Tt .......z„ . K(z„, x) is the kick amp'litude for the
m-th kick which is a functionol kicking time and the instantaneous position of the
o.scillator. For a system of linear kicks

= K{xjx.  (2)

The wave function of the system described by Hamiltonian // is a function of time whose 
development in between the kicks is governed by the Hamiltonian U„ and its development 
during the m-ih kick is described by the Hamiltonian

/A.ck = , (3)

The time development of the wave function in between the times immediately after the (m- 
I'f th kick and immediately before m-ih kick is given by the operator

G (T„ + ) = exp ^ //„  (T„ -  . ; )  j (4)

where ihc symbols + and -  after the lime stand for immediately after and immediately 
before kick.

by
The development of the system during the m-ih kick operating at time is given

U(TJ  = exp [̂  -  ~ K ( r J x  J . (5)

71)c ordered product ol operators given by cq. (4) and eq. (5) gives the total development of 
the system in between times immediately alter the (m -  l)-th kick to immediately after the 
m-ih kick. If we designate this opcraior as we have

= « P  [  -  I K U j ,  ]  exp [ -  i  / , ,  ( r .  -  t .  _ , ) ] . m

Let li//o > be the initial wave function ol the oscillator. Then its wave function after n kicks 
is given by



IV'n> = ....... T'l Vo>.

Substituling cq. (6 ) in eq. (7) we obtain
1

exp [  T, ]  lv^„> = r i c x p  [  T„ ]
m = n

exp -  j K{t„)x J  exp ^ J  \\f/„ >

exp [  ^ /7„ T„ J  lvA„ > = n
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'V'o >
tn = n

whcrc

Pm = exp T„ ]  exp [  -  j^K{T„)x ]  exp [  -  t„ J .

Using ihe operator theorem

exp [|A1 B exp [- |AJ = 6  + [A. B] + [A, [A, B]] + .......

wc can write operator P„ as

(7)
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(8)

(9)

(10)

Pm = exp 1 ;j ~ (  J: eos (WT^) + ^  sin ( tW T j)] . (1 1 )

Using the operator theorem which says that 1111 

If [A.IA.B]] = [B,[A.BJJ = 0

then

exp [A B] = exp (A) exp (B) exp ( -  ^ U . BJ). ( 1 2 )

the expression for the operator P„ uikes the form

Pm = exp 1

exp 1[ -  ;i P sin (o it j ]

exp| (13)

Thus the mapping which gives the wave function immediately after the n-th kick in terms 
of the starting wave function > is given by

exp [  T, ]  lvr„> = n  exp (  -  j ^ H tJ x c o s  (w t j )  x
m = n
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c x p (  - ^ ^ p s i n ( a > T „ ) ) x e x p  sin (2w rj] \y f„  >. (14)

The operator product on the right hand side of eq. (14) contains an exponential position 
operator followed by an exponential momentum operator and so on. We can make repeated 
use of eq. (12) and collect all the position operators together and all the momentum 
operators together. Thus eq. (14) simplifies to the fomi

exp ^/7„ T, J lv ,̂> = exp sin (o)T jh(0 m = 1

exp

exp

-  ‘f  I  K{xJ  cos (fi)T„)
m -  \

-  ^  L  Z  K ( X r )  sin (tOTj X
m = 1 r = m 

n
cos { ( O X , )  -  ^  ^  k \ xJ  sin (2(ox„)

m = 1

This may be written in the short fonn as

]  lv^„> = exp ( -  ^ a „ / j )  X

exp ( -  ^ j 9 . j c )  X

exp ( -  ^  y - )  •V'o

where

1 '*
^  Z ^ ( O s in ( c D T j ,  

m=l

Iv̂ o >. (15)

(16)

(17)

Pn = L K { X „ ) C 0 S { ( 0 X „ ) ,  
/M=l

I /I n
1'- = w X X K (x„)  K{Xr) sin {(ox„) cos {(ox,) 

/w=l r=m
n

S * ’̂ Tm)sin(2 o>Tj.

(18)

(19)



The operator exp p ^ )  = exp ^ -  a ,  ^  ^ is the translation operator and we

can write eq. (16) as

exp [  ]  lr»> = exp [ -  ^ (7„ a j ]  x

exp [ -  ft )8 " •* ]  •V'o (x -  a«) >■ (2 0 )

This is an important result of this paper. Eq. (20) essentially gives the wave function after 
n kicks in terms of starting wave function >.

3 . Expectation values of observables 

If O is an operator then its expectation value after n kicks is given by 

<0 >„ = < I O I >

< 0 > , = < n  exp ( -  ^ //., T„) I exp ( ^ //„ T j  O
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exp ( -  ^J/„  r„) I exp ( - //„ T,) % > (21)

Thus the expectation value of the operator O is given by the expectation value of the 

operator exp ( ^ f/o  T„) O exp ( -   ̂ //o  x,) in the state lvr„> given by

exp [ - ft()« exp (x -  a„)>. Thus the required

expectation value is given by

<0>, = J v̂ o* (x -  o«) exp (^ ) X

[exp (  j / l o  )  O exp ( -  )  ]  X

e x p ( -  j p ,  X )  \i/„(x-a„)dx. (22)

The operator in the square bracket can be calculated using eq. (12). For position and 
momentum operators

exp (  J //„ T, )  X exp ( -  J ff o T, )  = X cos (carj + ^sin (o)tJ  (23)

exp (  ^ //„ T, )  p exp ( -  J //o T, ^ = p cos (CUT.) -  fitt sin (tOTj (24)

Using eq. (23) and eq. (24) we obtain from cq. (22)

1 ^
<x>» “  ^  (Tm) Sin 0) (T„ -  T , ) ,

m=l
(25)



20 A K Sikri, S C  Gupta and M L Narchal

<P>n = -  I  ^  (̂ in) COS o; (T  ̂ -  T j .  (26)
m=l

The expectation value after n kicks is

= 1  I ̂  K i' q̂) cos ( o ( T ^ - r ^ ) ^  £o (27)
<7=1 m=\

Eq. (25) to eq. (27) represent general rcsulLs which arc applicable to a sequence of arbitrarily 
time separated kicks. The two special cases of primary interest are the periodically and 
quasi-periodically kicked oscillators. For a periodically kicked oscillator we substitue

= mi, K (Tj = K (28)

The expectation values given by eqs. (25), (26) and (27) then take the form ^

K sin {nm) -  sin (n- \)(OT -  sin coz
1 -  cos C O T

<P>. = 2

£. =

K cos {n(OT) -I- cos (2n + \)(or -  cos {2n(OX) -  cos (n + l)faT
1 -  COSCtfT

^  sin  ̂(fUUT /2 )
2 sin  ̂(COT /2) '

(30)

(31)

Eq. (31) agrees with the result given by Hogg and Huberman [3].

It is useful to examine the behaviour of auKx;orrelation function of position with the 
number of kicks. The autocorrelation function is defined as

1 ^c(m )= limit -  X >n + „
N "  n= 0

(32)

Using eq. (29) it takes the form
1 r  2 Cm(or\ (m + l)tuT (m -  1)<UT 1

[  cos )  + cos ----- ------ cos '------—  J .  (3 3 )c(m) o 2
8 ® sin Y

This correlation function does not decay irrespective of the fact whether car is rational or 
irrational.

If an oscillator is quasiperiodically kicked then wc may write [6 ]
K(tJ  = K cos (m w 'T )  (3 4 )

where <o is the angular frequency defining the periodic variation in kick amplitude. For 
quasiperiodic kicking we require co to be incommensurate with the kicking frequency i.e. 
®'rmust be an irrational number. If we define

e =
( 0 ) +  CO')T

0 =
(® -  ®')t

(35)
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We obtain for a quasiperiodically kicked oscillaior '
K<x>„ = [sin(/i©T) + sin fto 'r- (n-l)(WT) -  sin{(/i+l)a)'T+ 0 )t) + sin(na)'T)]

K. Y~ [sin(no>T) -  sin(<B’T+ (n-l)(UT) + sin{(/i+l)a>'r- <UT) -  sin(n©'T)] (36) 
s(0 sin <p

<p>  ̂= - . 2 „ [cos(«(Ut) -  cos{(n+l)(MT+ (o't] + cos{(2«+1)®t + (n+l)fl)T ) 
o Sin u

-co s [2nm+ nco'x]] +

------2“  [cos(na)T)-cos((ai+J)(ut- co'r] + cos((2«+1)^/)t +(/H-l)<y'x )
8 sin 0

-cos [ 2 n m -  nCD'z]\

E 8
sin^nfl sin^n^i 2 sin(/i0) sin(/i(l)) cos((n + 1 )(0 - 0)) 
sin^0 sin^0 sin0sin0

The correlation function for quasi-pcrioclic kicking turns out to be 

1C{m) =
16oJ?

cos(/7i0) cos(/n0) cos(m0)cos0 
2 "1" 2 

Sin U sin 0

CQs(m0 -  0) co${mO + 0) cos(mg -  0) cos(m0 + 0)
sin0 sin0  ^ sin0 sin0  J  ^

4 . C onclusions

The exact wave functions for one dimensional harmonic oscillator subject to arbitrary kicks 
have been obtained. These wave functions have been used to evaluate the expectation values of 
various observables such as position, momentum and energy. The expression for energy of 
periodically kicked oscillator agrees with that given by Hogg and Hubermann [3], who have 
investigated the response of oscillator to periodic kicking by invoking Ehrenfest’s theorem. 
The phenomenon of quantum recurrence occurs as expected. The system is exactly periodic 
if CUT is a rational multiple of 2n. For cut = 2iz/q, the expectation phase plot will consist of 
just q discrete points. It cur is an irrational multiple of 2n, the system is not periodic but 
comes arbitrarily close to its initial state infinitely often. The cxpcciation phase trajectory 
will be a closed curve and the system is quasipcriodic.

In quasipcriodically kicked oscillator we deal with three frequencies namely ( 1 ) the 

natural frequency of oscillator (cu), (2) the kicking frequency cu" = ^ and (3) frequency cu'

with’which the kick amplitude is modulated. If cu' / cu" is a rational multiple of 2;r, the 
energy of the oscillator would exactly rccurr. In case cu7 tu" is an irrational multiple of 2n, 
the energy will come arbitrarily close to its initial value.

We also present explicit expression for auUKorrclalion function of expectation value 
of position operator. The behaviour of this function is oscillatory for both rational and
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irrational values of a '/ a " .  Thus it appears that a quasi-pcriodically kicked ncfiiipf/fr 
show quantum recurrence, and the theorem on quantum recurrence is o f more general 
applicability than implied in reference (3). The inethotW escribed in this paper is sufficiently 
general and can be applied whenever the exponential operators involved can be handled in 
terms o f well known theorems [11],
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