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Abstract : Ultra-sound velocity, density and viscosity of magnesium, calcium and barium
chloride 1n 10, 20 and 30% of 1.4-dioxane in |,4-dioxane-water mixtures have been measured at
various concentrations of salt and temperatures. The derived parameters namely adiabatic
compressibility ( 8,4), apparent molar compressibility (@) and apparent molar volume (®,) have
been calcul(:,ncd from the experimental data. The himiting molar compressibility (q'). limiting molar
volume (®,) and the experimental slope S and S, have also been obtained from the plots of &,
and @, versus concentration. The results have been interpreted in terms of structure making

characteristics of the salts.
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1. Introduction

Acoustical measurements in mixcd electrolytic solutions provide valuable information about
the arrangement of matter in aqueous solutions. The study of adiabatic compressibility and
other related properties of aqueous solutions of electrolytes has proved to be very useful in
obtaining information regarding the state of affairs in a solution. These determinations involve
accurate measurement of ultrasonic velocity and density. Such measurements in binary
electrolytes have been extensively made by several workers [1,2]. However, little work has
been done on ternary electrolytes [3-5]. Moreover, physico-chemical studies on ternary
electrolytes are gaining importance, since it is some times difficult to arrive'at a definite
conclusion regarding structure and properties of solutions from the study of binary system
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alone. Such an investigation would lead to the possible deduction of general laws with regard
to the acoustic and molecular properties in aqueous solutions.

These considerations lead us to undertake the present work of determining the
acoustical parameters for magnesium, calcium and barium chloride in 10, 20 and 30% of
1,4-dioxane in 1,4-dioxane-water mixtures from ultrasonic velocity measurements at various
salt concentrations and temperatures. From the knowledge of these parameters structural
changes around the ion and effect of the solvent have been discussed. The 1,4-dioxane-water
mixture is of particular interest, since 1,4-dioxane is miscible freely with water at all
proportions and has identical density. The physical properties and the nature of interaction
between the two liquids are readily available [6-8].

2. Experimental

The ultrasonic velocities of magnesium, calcium and barium chloride in 10, 20 and 30% of
1,4-dioxane in 1,4-dioxane-water mixtures are measured for various salt concentrations at the
temperatures 303.15, 308.15, 313.15, 318.15 and 323.15 K using pulse-echo overlap [9]
intervalometer (UTI 101, India) operating at a frequency of 3 MHz. The accuracy of velocity
measurements is 2 parts in 10*. The density of the solutions at these temperatures are
measured using a specific gravity bottle and the accuracy of the measurements is +0.1 Kgm 2.
The electrolytes used in the present investigation are of extra pure quality (E. Merk). Fresh
double distilled water was used for preparing the binary solutions. The binary mixtures of
varying composition as well as the solutions of electrolytes are made by weight and the
molalities are converted into molarities using the standard expressions [10].

3. Theory and calculation

The adiabatic and apparent molar compressibilities of the systems have been calculated using
the relations

ﬁad = U‘z P (l)
1000 BL
P, = E’;(r [B,dpo - ﬁ,f,’p] + ::o (€))

where B, p and ﬂado, p° are the adiabatic compressibility and density of the solution
and solvent respectively. C is the molar concentration and M the molecular weight of the
solute. @, is a function of C obtained by Gucker [1 1] from Debye-Hiickel theory [12] and is

given by
0 12
D, =P +S5C ©))
where <, ° is the limiting apparent molar compressibility at infinite dilution and S, is a
constant.
The apparent molar volume [13] of a solute have been obtained as,

1000 0 M
= — - + —=. @
vy P -p P
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The apparent molar volume has been found to vary with concentration in conformity
with the Masson’s empirical relation [14] as,

= a° 1/]
¢‘,—¢v+ SVC R (5)

where dj‘) is the limiting apparent molar volume at infinite dilution and S, is a constant.

4. Results and discussion

The experimental values of sound velocity, density and viscosity for magnesium, calcium and
barium chloride in 10, 20 and 30% of 1,4-dioxane in 1,4-dioxane-water mixtures at various
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Figure 1(a). Adiabatic compressibility as a function of concentration of salt in 10% of
1,4-dioxane 1n 1,4-dioxane-water mixture.
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Figure 1(b). Adiabatic compressibility as a function of concentration of salt in 20% of
1,4-dioxane in 1,4-dioxane-water mixture.
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Figure 1(c). Adiabatic compressibility as a function of concentration
of salt in 30% of 1,4-dioxane in 1,4-dioxane-water mixture.
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Figure 2(a). Apparent molar compressibility as a function of concentration of
saltin 10% of 1,4-dioxane’in 1,4-dioxane-water mixture.

salt concentrations and temperatures are presented in Tables 1-3. The variation of derived
parameters namely adiabatic compressibility, apparent molar compressibility and apparent
molar volume with concentration of salt in various 1,4-dioxane content at 303.15 K for all the
salts are depicted in Figures 1, 2 and 3 respectively. While the limiting apparent molar
compressibility and apparent molar volume are presented in Figures 4 and 6, and the same for
the constants S, and S, for all the salts at different temperatures in Figures 5 and 7.
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From Figure 1, it is inferred that for all the salts in 10% of 1,4-dioxane in 1.4

fjnoxane-water mixtures, the adiabatic compressibility decreases and ultrasonic velocit

increase (Tables 1-3) with increase in salt concentration. In the aqueous solutions of thesz
salts the ions of opposite charges are dissociated due to the interaction between lh.e ions ar;d
solvent and there will be a cloud of ions of positive and negative charges around a S()I;/aled
finite charged ion in the solution [14]. The cations Mgz*, Ca® and Ba?* solvatc themselves

-80
- L]
z * ——
E /
—_ — MgCl.
~ 1307 e CaCl,
3 — BaCl,
-3

-180 - - . .

0 0.2 0.4 0.6 0.8 1.0

CONCENTRATION (molar) ——»

Figure 2(b). Apparent molar compressibility as a function of
concentration of salt in 20% of 1,4-dioxane in 1,4-dioxane-water mixture
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Figure 2(c). Apparent molar compressibility as a function of
concentration of salt in 30% of 1,4-dioxane n 1.4-dioxane-water mixture.
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with water molecules and also with the complex of 1,4-dioxane-water molecules [15]
resulting in increase in ultrasonic velocity and hence decrease in combressibility. The trend is

same in 20 and 30% 1,4-dioxane mixtures for all the salts. Further, in all the cases,

there is

no pronounced variation in ultrasound velocity and compressibility with temperatures.
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Figure 3(a). Apparent molar volume as a function of concentration of salt 1in

10% of | ,4-dioxane 1n |,4-dioxane-water mixture.

.65 3
— !
'/:', ‘f:-\I
- o !
=) i
(S
£
- — MgCl
S -127.51 e CaCl |
- ~— BﬂCl: |
> !
-
l L3 L) .‘ 7
-
-190. + -+ v v -
1] 0.2 0.4 0.6 0.8 1.0

CONCENTRATION (molar) —»

Figure 3(b). Apparent molar volume as a function of concentration of salt in

20% of 1,4-dioxane in 1,4-dioxane-water mixture.

A gradual increase in ultrasonic velocity with increase in 1,4

solvent mixtures for all the salt solutions is observed. This is may be
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formation between water and 1,4-dioxane molecules. As 1,4-dioxane content is increased
more and more hydrogen bonded 1,4-dioxane-water molecules are formed, resulting in an
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Figure 3(c). Apparent molar volume as a function of concentration of salt in
30% of 1,4-dioxane in 1,4-dioxane-water mixtures.
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Figure 4. Variation of limiting molar compressibility of salt vs percentage of 1,4-dioxane
(0—e 303.15 K, m—= 308.15K, a—a 313.15 K, «+—+ 318.15 K and % —» 323.15 K).
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increase in velocity and hence decrease in compressibility. The increase in ultrasonic velocit

and decrease in compressibility with increase in 1,4-dioxane content clearly indical(::tlhy
increasi.ng trend of intermolecular association between 1,4-dioxane and water [15] Th:
further increase in velocity with increase in concentration of salt at a particular 1 4-;ii;»xanc
content in all three salt solutions, may be attributed due to the formation of imermo];:cular ion-
diople bonds between the cations and solvent molecules. As a result the solutions becomes
harder to compress, resulting in increase in velocity and hence a further reduction in

compressibility.
/r‘\‘-
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14 ot t *
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[ ]
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.
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Figure 5. Plot of S of salt vs percentage of 1,4-dioxane (e—e 303.15 K,
= —a 308.15 K, A—a 313.15K, x—* 318.15K and % —x* 323.15 K).

The ultrasonic velocity decreases (increase in compressibility) as the cationic (Mg ® <

(a2 < Ba?*) radius increases in all the aqueous solutions of magnesium, calcium and
barium chloride salts. The smaller rate of variations in ultrasound velocity with concentrations
of salt in all the solutions may be due to the slight tendency of forming hydrogen-bond with

water molecules.

From Figure 2, it is evident that the apparent molar compressibilities are negative for
all the three electrolytic solutions over the entire range of salt concentration at all the

temperatures studied (a sample plot is given at 303.15 K). The values of &, increase with the

increasing concentration of salt in all the electrolytic solutions studied; however at higher



536 V Rajendran and AN Kannappan

concentration, the same are found to decrease. This behaviour of the solution at higher
concentration of the salt is due to pair formation and the presence of undissociated solute
particles [16].
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=
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Figure 6. Variation of limiting molar volume of salt vs percentage of 1,4-
dioxane (@—® 303.15 K, m—m 308.15 K, a—a 313.15 K, #—= 318.15K
and *— 323.15 K).

The limiting apparent molar compressibility ¢2 and &, for each of the electrolytic
solutions have been evaluated by least square method using the relation due to Masson [14].
It is evident from Figure 4 that ¢2. which is a measure of the protection against compression
on water exerted by solute molecules is negative and its magnitude decreases in all the cases
with the increase in 1,4-dioxane content and temperature. The slope S, (Figure 5) is a
measure of solute-solvent interaction [17-19], which is positive and decreases with increase
in temperature and 1,4-dioxane content.

The apparent molar volume behaves in a similar fashion (Figure 3) as that of
apparent motar compressibility in all the solutions. From Figure 6, it is inferred that at all
temperatures db? is negative for all the three electrolytic solutions indicating thereby the
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pr'esepce of interactions between the ions and solvent [4]. It is also found that d?

with increase in .cz'ationic radii. The values of S, (Figure 7), the measure of ion-ion in:::::lize:
[4,20], are positive in all the electrolytes and show similar variation with incr i
temperature and 1,4-dioxane content, as that of S,. However, in the case of bariu :llse':ln
alone in 20% 1,4-dioxane content, the &, values are negative over the entir::n r(;non ef
temperature. The negative values at 20% dioxane content indicate that the structure mgaii:g
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Figure 7. Plotof S, of salt vs percentage of 1,4-dioxane (—@ 303.15 K,
m—m308.15K, a—aA313.15K, #—* 318.15 K and % —# 323.15 K).

effect is less predominant in Ba?* ion than with ions carrying/greater charge density (Mg 2,
Ca?*). Since the larger radius (smaller charge density) carries smaller electrolytic force
between the ions of salts of Ba?*, it results in the smaller structure making effect when
compared to Mg2* and Ca? ions. A similar behaviour in the viscosity B-coefficient for the
above three salts at 20% 1,4-dioxane content has also been reported [22]. The structure
making effect is, therefore, more predominant in ions with greater charge than with ions
carrying Jower charge and hence the order of structure forming should be Mg > Ca >

Ba?.
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5. Conclusion

In the present investigation, it is evident that the presence of solute-solute and solute-solvent
interactions resulting in attractive forces, promote the structure making characteristics of the
salts. This interaction becomes weaker with increase in temperature. These conclusions are in
good agreement with those drawn from other studies [21,22] like free volume, internal
pressure, viscosity B-coefficient and PMR spin-lattice relaxation time.
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