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A b stra c t : The renormalized hypervirial perturbation method is used to compute the energy 
levels for a spiked harmonic oscillator V(jc) = where a  is a real positive parameter
Results are produced for a wide range o f  parameters a  , (10 < A ^ 10^) and o f  state numbers. 
Numerical results are compared for the special cases a  -  | ,  5/2
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1. Introduction

The study of the spiked harmonic oscillator (SHO) has evoked much interest because of its 
varied applications in chemical physics, nuclear physics and particles physics [1-6]. The 
literature available on the spiked harmonic oscillator is rather limited, when compared with 
that for the anharmonic oscillator of the type

/ /  = - + N = 2 ,3 (1)

The spiked harmonic oscillator system is defined by the quantum Hamiltonian

/ /  = -
dx^

2 . -1 -Of+ jr + ^ (2)

defined in the one-dimensional half space fO, «>J, the eigenfunctions obeying Dirichlet 
boundary conditions [7, 8]. The Hamiltonian is characterized by means of two parameters,
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A which plays the role of a coupling constant, and a  > 0 which controls the type of 
singularity of the potential at the origin [9].

The Hamiltonian given by eq. (2) has been the subject of intensive study in the last 
two decades. In the literature, a variety of techniques have been used to investigate the 
eigenvalues and other properties of the SHO. Nearly all previous calculations have been 
limited to a few excited states; for instance Detwiler and Klauder [1] made variational studies 
of the ground state of the spiked harmonic oscillator and found upper bounds for the 
eigenvalue corrections which are proportional to A In A when a  = 3, and proportional to 
A vvhen a>  3. Afterwards, Harrell [2] developed a special perturbation theory called 
singular perturbation theory, and obtained the first terms of the small A expansion, which 
turned out to be a nonpower series expansion. Aguilera-Navarro er al [7] have applied a 
variational procedure and a large coupling perturbative calculation for the ground state energy. 
A perturbative study was carried out by the workers [8] in the two extremes of weak and 
strong coupling. Employing the Rayleigh-Ritz large-order perturbative expansions, Aguilera- 
Navarro etal [9] have been able to analyze the problem around the three regions A —>
A 0, A —> -  oo, for the ground state of the nonsingular spiked harmonic oscillator, for the 
case a  =1, More recently Miller [10] has applied a nonperturbative algorithm (iterative 
technique) for obtaining the eigenvalue for (SHO). Est^vez-Bretdn and Est^vez-Bretdn [11] 
have derived an exact analytical ground state solution valid for the special case a  = 2 .

In different context, the Hamiltonian given by eq. (2) has been investigated by 
Killingbeck [12] who used numerical algorithms to integrate the Schrodinger equation, based 
on finite differences to compute the ground state energy for small values of A, for two values 
of a  = 4, 6 . Also Korsch and Laurent [13] used the Milne method to find the energy for the 
case a  = 4, 6 .

In the present work, we wish to point out that the hypervirial perturbation theory is 
used to study and calculate energy eigenvalues of the spiked oscillator for small and large 
values of A, for a wide range of values of a.

Our calculation deal with several values of a , since the method used makes this 
extension easy to perform. Our main object is to demonstrate that the hypervirial approach is 
able to work and produce results even for large values of A, a  and the state number n . For 
purposes of clarity, this paper is divided into three sections. Section 2 gives the theory, 
Section 3 describes the formalism of the renormalized series method, and Section 4 gives the 
numerical results and their discussion.

2. Theory

To calculate energy eigenvalues for the (SHO), we considered the Schrodinger equation

j2

dx
+ + Xx~“ I v (̂jt) = Eyf(x). (3)
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The shape of the interaction potential for large values of A is very different from the shape in 
the case of small A values. Instead of having just a spike very close to the origin, the potential 
for large A resembles a wide valley extending from x = 0 to jc = oo with a minimum in the
middle.

For the special case a  = 2, the Schrodinger eqation (3) may be solved exactly [14], 

= + 3 + 2/

where A = /(/ + 1).

/1 + 4A -1

(4)

(5)

If we insert / = in eq. (4), we get the following form for the energy.

= 2  + 4n + 2VAn

11 + 8A 128A  ̂ " 1024A  ̂ 32768A“ 262144A*

21

4194304A” -] A > —. 
4

(6)

In the absence of other reported results, we have devised some internal checks on the 
reliability of our results; for example the closed forms above for the energy provide checks on 
our calculations for the case a  = 2.

Reviews of various numerical perturbative and non-perturbative calculations for the 
(SHO) can be found in references [7-9] which suggested use of variational and perturbative 
methods for the (SHO) by expanding the potential about its minimum to calculate the energy 
eigenvalues. Here we treat more general (SHO) problems, by considering higher power
indices (a  = 3/2, 5/2 , 7 /2 ........), higher values of the state number n and higher A values
(5 < A £ 10*). We expand V(x) around its minimum. Let x„ and V (x„) be the values of x 
and Hx), respectively, at the minimum.

Let y = X -  x„; the expansion of V(x) around y = 0 can be written as a Taylor series.
2 2 y

V(y) = V(x„) + (a  + 2)y  ̂ + (-1)' —(a ) ,P '' —
/=3

where ( a)i is the Pochhammcr symbol and
1

P = — ■

(7)

(8)

The coefficients given by eq. (7) alternate in sign; the coefficients take (+ s.gn) for even /  
values, and ( -  sign) for odd I values. We have expanded the potenUal as given by fcq. (7) to 
the limit in which any term beyond that limit makes no difference to our results. For our
calculations, this limit was reached for (/ = 20).

68B-(7)
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The central idea of this work is to expand the potential V(x) in a Taylor series about its 
minimum value, and solve the resulting perturbed oscillator problem by hypervirial 
perturbation theory. The potential is expanded around the right-hand minimum, while the new 
coordinate y - x - x „  covers the full real axis. When A is large, the potential minimum occurs 
at a large value of x, so that the wave function centered at x„ does not penetrate far into the 
left-hand potential peaks; obviously this is not the case for small X. The highest power of y 
appearing in the potential is 20. The expanded potential V(y) of eq. (7) is of mixed parity 
type. It is clear from eq. (7) that we can regard the first two terms as the unperturbed terms 
and the other terms as the perturbation.

3. Formulation of the problem

The hamiltonian for the potential described by eq. (2) is

H  = + V(y).
dy

(9)

Here we use units m = 1. The potential V(y) given by (7) can be rewritten in terms of the 
perturbation parameto’ A as

20

V(y)= 2 (10)
7=0

20

with the coefficients given by eq. (7). The sum > (-1) —(a ), —  is replaced by
/=o ®

AV(/). Starting from the hamiltonian given by eq. (9) and using the basic relations for 
commutators

f d  1 dV
"J "

= j { N - l ) y ^ - ^  + Ny^-^

[ / j  d  1 w dV N N 7 d MJ t
r  "J = " V  ^ ^  2 N y ^ - \ V - H ) ,

( 11)

( 12)

(13)

the diagonal hypervirial requirement that < 

eq. (7) lead to the result.

2E{N + \ ^ y " )  -  ^  XV{I) (2N + 2 + I) )

> shall vanish for the eigenstates of

20

7=0
(14)



The Hellmann-Feynman theorem provides a further relationships between the energy E  and 
the expectation-values <y^>. Let us assume that the energy E and expectation values <y'^> 
can be expanded in power series of the perturbation parameter A as

E='LE{J)

<y^> = Z R{N,

H ypervirial perturbation calculations fo r  a spiked osciUator 5 , 9

(15)

(16)

In order to improve the convergence proporties of the perturbation series, we use a 
rearrangement of terms in the potential given by (7). To illustrate this technique, it is 
necessary to write the potential t4)pearing in eq. (7) in renormalized form

20
Vly) = V{x„) + \ p - XK]y ^+  A ^ V ( l ) y ‘ ,

/=3
where // is given the numerical value 

/X = (a  + 2) + ^  .

(17)

(18)

The use of the renormalization parameter K is helpful in improving convergence. If we use 
the perturbation expansions (15) and (16) in the hypervirial relation given by eq. (14), we 
obtain the recurrence relation

M A/
{2N + 2) E{J)R{N, M-J)  = -  — \n ^ R ( N -2 ,  M) -  {2N + 4)

O
20

[pR(N-\-2,M) -  KR{N + 2, M - 1 ) ] + ' ^  K{7) (2)V + 2 + /)
/=3

(19)

(20)

R ( N ^ l , M - \ ) .

Applying the Hellmann-Feynman theorem in the form

dE l d H \  I dV^
dX ~ \ d X /  ~ \ d X / '

we obtain a recurrence relation for the energy coefficients of the form

20

(M+l)E(M+l)  = 2 ]  V(l)E(l,M) -  KR(2,M).
/=3

The unperturbed energy corresponding to the SHO can be expressed as

E(0) =  V ( j c J  + (2rt +1) V/i in - 0 ,  1 ,2 ...........).

The zero-order contribution to £  is given by the fust term in eq. (22) and next con^bution 
comes from the harmonic oscillator term, the second term in (22). The SHO senes have

(21)

(22)
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even and odd powers of the perturbation parameter A. The actual series for the energy has 
the form

E(K) = E(0) + ^ ( 1 )  + X^E(2) + X^E(3) + A^£(4) (23)

From the recurrence relations (19) and (21) together with the unperturbed energy (22) and the 
initial coefficient value /?(0 , 0) = 1, we can calculate sequentially the perturbation series for 
the <y^> and the energy.

4* Results and Discussion

The renormalized series method has been used for calculating the eigenvalues of the (SHO) 
given by eq. (2). Eigenvalues for different values of A, a  and state number n are listed in 
Tables (1-^).

T a b le  1. Ground state energy eigenvalues o f  the spiked harmonic oscillator for a  =  1, 5/2.
For comparison* the second lines in the first and second colum ns display the energies 
corresponding to R efs. 9 and 8, resp ectively . The em pty spaces mean that the 
corresponding eigenvalues are not be reported.

^a*t M ^ttMS/2 M

0.5

2
3

4

5

8

10

25

50

75

100

150

200
300

4 0 0

500

750

1000

3.3

4.1

4.fl57?Q6
4.94

5.86

6.63

7.377

7J84Q31741
9.377  

10.577  

10 7̂748343 
17.9283 

27.40514  

35.360350  

42.46291809

55.09654352325

66.37422526412

88.43224389401

104.33633594703

120.79206109643

157.74209512062

190.72330743978

10
9  

11 
11

14

10

15

15 

14 

12

13

19

17

18

17

18

16

14

15

14

12
8
10

10

8

8

5

3

1

1
1
1
8

1
1

3.6

4.3

4Ji73Ii
4.9

5.53

5.92

6.295

6.296472

7.222

7.735

7,733111
10.4886

13.4724

15.6989

17.541989

lL3dl£82
20.575833

23.086306

27.2179594

30.63609298

33.605710885

39.8172869302

44.9554847996

10

8

12

15 

14 

18

16 

18

17

16

13

16

17

17

33

38

46

68
52

27

26

22

21.5

19

20

17.5 

15

10

8.2
7

5.4  

4

3.5

8 
8

10
12
8



In Table I numerical results are compared for two special cases a  = 1, 5/2 for the 
ground state energy eigenvalues for several values of X, (0.5  ̂ A < 10̂ ). It is clear from 
the Table 1 that there is some agreement between our results and the previous published 
results [7,9].

Table 2. The energy for the ground and excited states of the spiked oscillator for four values of 
a, over a wide range values of A. The empty spaces mean that the corresponding eigenvalues 
cannot be calculated by our technique.
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5
10
100
1000
5000

a = l/2 a= 3 /2 a=5/2 a=7/2

7.93
12.19
67.25660691

415.88978565801
1502.98720233231

6.96
9.37

29.3971
104.4102238S4
259.0784470059

6.29
7.74

17.5422
44.9554847996
89.69174923454

6.1
7.2

12.67
26.108849
44.9890390239

icr* 2165.68031939241 384.07821353971 121.282856042479 57.20834699402
10* 16495 4300708630 1426.57990603771 333.685605689407 129.071238218737
10* 104070.732071571 5312.60615971726 924.715125454449 295.092262512018
5 11.2
10 15.52
100 70.447816
1000 419.056597675
5000 1506.15072948168
10* 2618.84331453422
10* 16498.59246220739
10* 104073.8943672486

10.7
13.13
33.156557 

108.15657318 
262.8219865100 
387.82113922046 

1430.32190436784 
5316.34790861919

10.5
11.9
21.764
49.1863749
93.928518942

125.5211584788
337.92667180376
928.957198239358

10.5
11.4
17.31
30.7322
49.64028525
61.867940951

133.74797411045
299.776690735924

5
10
100
1000
5000
Id*
10*

10*

510
100
1000
5000
10*

10*

10*

5
10
100
1000
5000
10*
10*

10*

19.2
73.666548

422.22790766514
1509.31550336201
2622.00702624843

16501.7549672131
104077.056680942

76.92
425.4038

1512.48152
2625.171454072

16504.91758586865
104080.21901265201

17.2
36.936

119.0743425
266.567378827
391.56531985602

1434.06424267388
5320.08974896653

40.74
115.663
270.31461
395.31074436

1437.80692014302
5323.83168070048

80.19 
428.584 

1515.6488 
2628.336598 

16508.08031816236 
104083.38136237757

44.52 
119.425 
274.0637 
399.05741 

1441.54993596524 
5327.57370376231

16.2
26.06
53.40675614
98.159734395

129.75529689958
342.166186613224
933.198706164038

30.14
57.621

102.38567
133.985422
346/404170972921
937.439651994369

34.29 
61.83 

106.6066 
138.21168 
350.64064531398 
941.68003847566

15.6
22.5
35.30463
54.257196
66.49974191

138.411643985016
304.455250571815

26.4
39.84
58.8437
71.10623

143.06279166
309.128051709891

31.3
44.34
63.4037
75.6896

147.70192735
313.7952007643
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Table 2. (Coni'd).
n X a = l /2 a=3/2 a=5/2 a ^ m

5
10
100 83.5 48.4 38.7 35,6
1000 431.768636674 123.185569 66.0191 49.16

3 5000 1518.81729130003 277.8144331 110.822637 67.94402
10^ 2631.50245619404 402.80528129976 142.4341902319 80.252022
10* 16511.2431640827 1445.29328933321 354.875629655027 152.3295303566
10^ 104086.5437301188 5331.31581809333 945.919868332854 318.456801386269

Table 3. The energy for the ground and excited states of the spiked oscillator for four values of a, over a wide range values of X. The empty spaces mean that die corresponding eigenvalues cannot be calculated by our technique.
a A Eo El E2 £ 3

10 7.249 11.63 16.4 22.33 100 14.6414 19.045 23.382 28.69500 25.7990039 30.22795 34.6252 39.024
1000 33.31676152 37.7554906 42.166094 46.5542
10 6.64 11.52 16.2 22.44 100 11.276 16.11 21.58 24.9500 17.4764 22.2455 26.98 31.97
1000 21.369519 26.15539 30.886 35.651
10 6.29 11.4 15.9 21.65 100 9.469 15.09 2 1.1 28.4500 13.422 18.54 23.92 29.82
1000 15.7647 20.834 26.017 31.523
10 5.9

6 100 8.46 14.4 2 1 .1 28.9500 11.151 16.94 23.31 27.3
1000 12.724 18.19 24.21 30.81

In Tables 2 and 3, we have calculated the energy eigenvalues for the ground stale and 
many excited states for several values of a  ^ a  ̂  6) over a wide range values of X (5 ^ 
X £ 10̂ ). The most studied (SHO) is a  = 5/2 for ground state only [7,10]. Our calculations 
deal with several values of a  and many excited states, since the method used makes this 
extension easy to perform.

Currently there are no other eigenvalue-results available by any other method for the 
cases such as A = 500, 1000 and a  = 7/2; consequently, it is not possible to infer the 
accuracy of the full set of our present results by direct comparison. However, for some 
special cases, it is possible to check our calculations; for example at a  s  2, the results w oe  
checked to high accuracy against those obtained by exact solution (6). Table 4 presents a 
selected set of energies for several sets of the perturbation parameter X (10 ^ X ̂  10̂ ) for four 
energy levels E q, E \, E^, E y  The agreement between the numerical and exact results is seen to



be good. Especially for larger values of X. the difference between the numerical and exact 
results decreases i.e.

H ypervirial perturbation calculations fo r  a spiked oscillator 5 2 3

'^numerical ^enactl ~  ^

as is clear from the listed results in Table 4.

(24)

Tabic 4. The comparison of the renormalized series numerical calculation with exact calculation 
from eq. (6). The values of the renormalization parameter K  are given. M  is the order of the 
perturbation expansion with which we obtaip convergence.

n A ^numerical M K \e  -  e  It num  exa |

10 8.49 10 18 8.4031242374 0.8687576260CM)1
50 16.1780 30 24 16.1774468788 0.55312120000-03

0 100 22.0249 45 18 22.0249843945 0.84394500000-04
250 33.63858441 64 16 33.6385840391 0.37089999690-06
500 46.732538504 60 15 46.7325384927 0.11299995610-07
1000 65.2534584038 58 12 65.2534584035 0.29999114300-09

10 12.8 8 20 12.4031242374 0.48008797140+00
50 20.197 26 15 20.1774468788 0.19683971210-01

1 100 26.0261 20 10 26.0249843945 0.11175757280-02

250 36.6386001 23 7 37.6385840391 0.I725318712I>O4
500 50.732538925 37 6 50.7325384927 0.43252258010-06

1000 69.2534584155 34 5 69.2534584035 0.12152881370-07

10 17.2 9 40 16.4031242374 0.79687576260+00

50 24.18 16 12 24.1774468788 0.57612144440-01

2 100 30.0254 19 20 30.0249843945 0.11415605500-01

250 41.63888 54 11 41.6385840391 0.29596090000-03

500 54.732546486 54 12 54.7325384927 0.79932999950-05

1000 73.253458612 54 10 73.2534584035 0.20849999770-06

10 21.2 10 20 20.4031242374 0.85444753370+00

50 28.19 16 15 24.1774468788 0.20645562480-01

100 34.08 15 20 34.0249843945 0.55015605500-01

250 45.6411 33 18 45.6385840391 0.25159609000-02

3 500 58.732629 55 14 58.7325384927 0.90507300000-04

1000 77.2534608 50 10 77.2534584035 0.23964999940-05

Our results for the spiked harmonic oscillator have the following consequences :

First the renormalized series method works very well even for higher values of A, a  

and state number n.
Second, the renbrmalized series converges well (with a proper value of K)  for high 

values of X, but not for low values of X. Our work indicates the great importance of a good 
choice of the renormalization parameter K in order to get the best convergence. To select the 
correct convergence energy, we require stability against the various values of renormalization
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parameter K.  The general consideration that governs our choice is that as X increases the 
values o fd ecrea se s.

Third, our numerical investigations of the spiked oscillator show that applicability of 
the renormalized series method is limited to large values of X; this behavior is clear from our 
results in Tables 1-4. When applicable, the renormalized series approach has been shown to 
be veiy effective and more simple than standard matrix diagonalization, which woiild require 
the computation of standard matrix elements of the various powers of x^.  The hypervirial 
method gives the < y ^ >  and E  values for a selected state directiy.
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