Indian J. Phys., 50, 1018-1022 (1976)

Temperature variation of the lattice constant and the coefficient of thermal expansion of ammonium chloride

V. K. SRINIVASA AND B. K. BANERJEE

Planning & Development Division, The Fertilizer Corporation of India Limited, Sindri, Bihar

(Received 29 December 1975, revised 19 June 1976)

Using an extrapolation technique as well as Cohens least square method, precision determination of the lattice constant of ammonium Chloride has been made at different temperatures between $20-245^{\circ}$ C. From these, by a graphical treatment, the coefficients of thermal expansion at various temperatures have been evaluated. The transformation characteristic of ammonium chloride from $\alpha-\beta$ form around 185° C has been studied by high temperature X-ray diffraction techniques.

] INTRODUCTION

The offect of temperature of ammonium chloride has been the subject of numerous discussions. According to Wallace (1910) there is a marked change in the heat effect of ammonium chloride (NH₄Cl) at 159°C. Scheffer (1916) finds that Wallace's result is too low, for the transition temperature is 184·5°C. Hachmeister (1919) gave 174°C for the transition temperature of NH₄Cl from $\alpha \rightarrow \beta$ and Bridgman (1916) gave 184·3°C. Wegscheider (1908, 1911) postulated that NH₄Cl is stable and is transformed at 184·5°C into β NH₄Cl in the presence of moisture but that sometimes a labile α' form is produced which evaporated without dissociation. In view of the discriptencies in these results an accurate redetermination of transition temperature was thought to be worthwhile.

Ammonium chloride belongs to the cubic system. Further, NBS circular (1953) reported the length of the unit cell of NH_4Cl as 3.8756 Å at 26°C. Bartlett & Langmur (1921) gave the lattice constant as 6.533 Å at 250°C. Data on the linear coefficient of thermal expansion of this salt has been reported by Fizeau (1867) as $62\cdot546 \times 10^{-6}$ at 40°C. Nevertheless, extensive X-ray determination of the coefficient of thermal expansion over a wide range of temperature has not so far been reported. The present paper reports an accurate redetermination of the transition temperature of NH_4Cl from $\alpha \rightarrow \beta$ form and the coefficient of thermal expansion over the range of temperature such as investigation might throw some light on the physical characteristics such as caking, of the complex mixed fertilizers containing NH_4Cl .

2. EXPERIMENTAL

Transition temperature

Phase transformation studies of NH_4Cl has been done over the range of temperature 20-245°C, by X-ray powder diffraction method in Guinier-Lenne High Temperature X-ray Camera. The special feature of this camera is that by means of a synchronously moving film cassette with continuous monitoring of the temperature, structural changes of a system are invostigated by recording the characteristic X-ray diffraction lines

From the X-ray diffraction pattern obtained by the above technique, it has been found that the transformation of NH_4Cl from α to β form takes place around 185°C. This corroborates the results obtained by Scheffer (1916) and Smith *et al* (1915, 1919) who reported that the transformation α - β form occurs at this temperature. However, in one of the diffraction photographs (Figure 1) taken in Gumier-Lenne High Temperature X-ray Camera, the sample being kept under vacuum and heated from room temperature to 250°C, it has been observed that α NH₄Cl did not transform to β form. Instead, an additional phase started appearing at 50°C and the formation of this new phase completed at 125°C with the disappearance of α -NH₄Cl (X-ray data is given in table 1). According to

αNH₄Cl		βNH ₄ Cl		α'NH₄Cl	
dA	1	dA	I	dA	1
3 876	8	3.285	vs	2.48	w
2.747	VS	2.319	я	2.24	шs
1.93	m	1.98	7118	$2 \cdot 20$	m
1.724	mw	1.896	m	1 935	m
1.577	ms	1.643	vvw	1.78	w
1 365	w	1.508	vvw	1.64	vw
1.284	vw	1.45	w	1.375	เทพ
1.222	mw	1.343	vw	1.175	m
1.116	vvw	1.263	vvw		
1.0723	vvw	1.176	1		
1.0334	m	etc			
0.9384	vvw				
etc					

Table 1. X-ray diffraction data for α , β and supposed α' forms of ammonium chloride

Wegscheider (1908, 1911) ordinary α -NH₄Cl being a labile form which changes to α' -NH₄Cl at a higher temperature in the presence of moisture, and it is the transition α' - to β -NH₄Cl which occurs at 184.5°C, while dry α -NH₄Cl does not change. Further, he also postulated that possibly α -NH₄Cl is stable and is transformed at 184.5°C into NH₄Cl, but that sometimes a labile α' -form is produced in the preparation of the salt, and it is this form which evaporates with-

Phase	Temperature	a(A)	
	20°C	3.8756	
	40°C	3.8776	
	65°C	3-8793	
α	85°()	3 8849	
	105°C	3-9889	
	125°C	3.8965	
	145°(3 9030	
	165°C	3.9096	
	_	_	
	200"C	6.5375	
ß	225°C	6.5423	
•	245°('	6-5485	

Table 2. Lattice Constant of NH₄Cl at various temperatures

out dissociation. The present experimental evidence for the existence of this unknown phase may be the only proof which can be ascribed to the assumed α' -NH₄Cl because repeated experiments on heating the sample both under vacuum as well as in atmosphere (allowing the sample to absorb moisture) did not give any consistent results. The exact conditions of formation or preparation of this compound is yet to be probed.

3 THERMAL EXPENSION

Lattice constants at room temperature and at elevated temperatures were obtained with the help of 19 cm, dia. cylindrical camera (Unicam) The films recorded six well resolved $\alpha_1 \alpha_2$ doublets with CuK_x radiation (Radon House X-ray Unit, 30 KV 16 mA rating). The films were measured on a Philips Comparator with an accuracy of 0.005 cms. Random errors were minimized by repeated measurements. Precision determination of lattice constants were done by Cohens least square method as well as by extrapolation against $\cos^2\theta/\sin \theta + \cos^2\theta/\theta$. The differences in the values obtained by these two different methods were within the experimental errors Table 2 gives the values of the lattice constants obtained at different temperatures for α -NH₄Cl and its variation corresponding to different temperature is shown in figure 2. From the graph of temperature vs lattice constant. values of a were read at regular intervals of 20°C. From these, the coefficients of expansion at the mean temperature of the interval were derived using the definition

$$\alpha_{20} = \frac{1}{a_{20}} \quad \frac{(\Delta a)}{(\Delta T)}$$

By a least squares treatment of the data obtained the following equation was derived for the curve giving the temperature variation of the coefficients of expansion over the range $20-165^{\circ}$ C.

$$\alpha_T = 15.47 \times 10^{-6} + 8.243 \times 10^{-8} T + 14.77 \times 10^{-10} T^2 \qquad \dots \qquad (1)$$

The values of the coefficient of expansion obtained by using the above equation are compared with the values derived using the definition (Table 3). The uncertainties in the evaluation of coefficients of expansion (α_T) is very much reduced in the higher range of temperature.

Fig. 1. Guinier-Lenne High temperature X-ray Photograph of ammonium chloride.

Fig. 2. Plot of lattice constant against temperature.

Temperature °C	z from the definition	a from equation (1)	%Δα	
40	20.63 × 10 ^{−0}	20-13×10-0	+2.42	
60	24.48×10^{-6}	$25 \cdot 13 \times 10^{-8}$	-2.66	
80	$32.51 imes 10^{-6}$	31.52×10^{-6}	+3.35	
100	39.22×10^{-6}	38.48×10^{-6}	-i 1-87	
120	48.27×10^{-6}	46.63×10^{-6}	- -3-39	
140	$55.96 imes 10^{-6}$	55 96 \times 10 ⁻⁶		
160	65.77×10^{-6}	66.47×10^{-6}	1.06	

Table 3. Coefficient of expansion of NH4Cl at various temperatures

Lattice constants obtained at different temperatures varies from 3.8756Å at 20°C to 3.9096Å at 165°C for α -NH₄Cl and in the case of β -NH₄Cl it varies from 6.5375Å at 200°C to 6.5485Å at 245°C. By inspection of X-ray diffraction data (table 1) it is easily recognizable that α -phase is simple cubic lattice and β -phase is FCC. The measured values for the linear coefficient of expansion for β -phase (FCC) in the range 200–245°C is 37.33×10^{-6} per °C. A rough check of the values of lattice expansion (table 2) shows that the lattice expansion is comparatively greater in β -phase than α -phase suggesting that m a general way, the weakening of the binding forces with the rise of temperature. Further, the fact that expansion coefficient of α -phase is smaller than the expansion coefficient of β -phase may also be understood in terms of the strong intralayer binding in α -phase.

REFERENCES

Bartlett G. & Langmur 1921 Journ. Amer. Chem. Soc 43, 84.
Bridgman P. W. 1916 Proc Amer. Acad. 52, 89
Fizcau H 1867 Compt. Rend 64, 314.
Hachmoister K. 1919 Zest. Anorg. Chem. 109, 145.
NBS Circular 539, 1953 (ASTM. 7-7) I, 59
Schoffor F. E. C. 1916, Proc Akad. Amsterdam I8, 446, 1498.
Smith A. & Lombard R. H 1915 Journ Amer. Chem. Soc. 37, 48.
Smith A. & Easblack H & Scatchard G. 1919 Journ. Amer. Chem. Soc. 41, 1961.
Wallace R. C. 1910 Centr Min 33.
Wegscheider R. 1908 Zeit Phys Chem. 65, 97.
Wegscheider R. 1911 Zeit. Phys. Chem. 75, 269.