A physical model from the mass empirics of two-particle Baryon resonance states and a postulation of medium and low strong interactions

K. L. Nalayana and S. B. Patil
Physics Department, Shivaji Univeroty, Kolhapur

(Received 29 Oclober 1975)

Abstract

Hmpirical mass formula $M^{*}=A+B \sqrt{ } \bar{L}(\bar{L}+1)+C L(L+1)$ with L being the relative orbital angular monentum is found to hold good for the tiwo particle $N . \Lambda, \Delta$ sybtems of (πN) and $N_{K}{ }^{-}$rosonancess. Tho ostimated parameters from exporimental mass datn are suggested to interpret a plysical model of the two paride sesoment states and that oarch state to possess a predommantly single particle character admixed with a low possibility of rigid rotator or Bohr type structures Utilizing the universal findamental Iength concept of Anastansor, Sinha and Sivaram furthor it, has beon established that the different N, Λ, Δ states involve an additive nedium strong and a subtractive lowstrong interactions giving rise to to resonance charge" or the usual cesonance coupling constant for cach resonant state.

1. Introduction

Attompts at doriving omporical rolations from knowin exporimental data, for obtainng observed masses of stable particles and resonances ase rouorted carher by a number of invortigators.

Two approaches to this end are, one those which make use of the (inherent) symmetry models and the othes which consists in fittug cortam linear on nonlinear relations by computational procedures Asexamples of the first approach mention may be made of the works by Oneda et al (1974), Budh Ram (196i), Gerald Rosen (1972), Carruthers et al (1967), Jowa (1973), Lee ct al (1974a. 1974b) But this approach, in the words of Carruthers et al, should not be constructed as evidonce that the later approach of conventional mothods as mferior In the secoul catugory we mention specifically of the investigations by Sarma (1963), Regge (1960), Sternheimer (1968), Agarwal (1971), Maglie (1966), French et al (1967), Bathachanjee (1970, 1971, 1974), Narayana et al (1976)

In referonce to the resonance systems considored in tho present work, following Sarma (1963) it is convenient to classify the resonance k as belong to specffic pair of particles L and N, if the dominant mode of decay of κ is given by

$$
\begin{equation*}
\kappa \rightarrow L+N \tag{1}
\end{equation*}
$$

The omprical regularity of such two particle resonance systems has been suggosted by him to satisfy the relation

$$
\begin{equation*}
b=\frac{\sqrt{ } L(L+1)}{q} \tag{2}
\end{equation*}
$$

where q is the centre of mass momentum and L is the relative angular momentum.
The mass of resonance state according to hum is given by the relation

$$
\begin{equation*}
M^{*}=\sqrt{q^{2}}+m_{1}^{2}+\sqrt{q^{2}+} n_{2}^{2} \tag{3}
\end{equation*}
$$

which on ditferentration with respect $\beta=-\left(L-\left\lvert\, \frac{1}{2}\right.\right)^{2}$ leads to tho Regge's formula viz

$$
\begin{equation*}
\frac{d L}{d \beta}=-\frac{1}{R^{2}} \tag{4}
\end{equation*}
$$

Horo R is interpreted by Regge (1960), Chew (1962) to be the effective size of the compound sysiem. But the prosumption the pasameter b is constant, we find by utilsing the recent mass data as not correct and hence justifying a fresh look at this hypothesis.

Semi-theorotical fommata given by Gerald Rosen (1972) as extensions of Schwinger's formulae (Schwinger 1963) for batyon octuplet and baryon resonance docuplet, (which adopt the fractional hyper charge and iso-spin etc quantum numbers) are found to be of considerable success in explaining the mass sphtifings, but thoy make no emphasis or reference to the nature of docay modos of the differont resonant, states.

French et al have classified about 12 sequencos each charactorising a partscular decay mode, but they include both the stange and non-strango particles and considor only a linear mass relation of the lype $M=s+\operatorname{tn}(n-\mid-1)$, with s, t as constants and n an integral quantum number. However, they advocate a rigid rotator or Bohr-type model, consistent with the earlior findings of Maglic (1966) for baryon masses, and do not montion the possibility of a dependence of M directly on n

Linear mass relations of soveral types have also boon oxamined by Stornheimer (1968) adoptung the gonoral formula $p m+r i n=M$ and generated by varous values of p and r Agarwal (1971) who adopts this formula for just throos sequences of partucles and resonances draws an malogy with the Thomson's plum-pudding model of the atom to interpret the p and r paramotors. Ho points out however the possible non-linoar character of the graphs of mass values and fails to commont anything about the significance of different decay modes of the masses. On the other hand, though Battaoharjee (1974) adopts a polynomial equation to interpret the masses, he mixes up all the elementary particlos with no classification at all.

The object of present work is therefore to seok an inherent physical model of the two-partiele baryon resonance systeme and to discuss the non-linear chararter of their mass relations We also indioate a possible connectivity of the work with the unitary symmetry models of baryon resonances. Implication of our mass formula, utilizing the universal fundamental length concept of Anastassov (1974) Sinha \& Sivaram (1974) has been given, leading to the postulation of medium-strong and low-strong interactions involved in the formation of resonant staten.

2. Meihod and Resulis

In the table 1 listed are the varous two particle resonance states, their masses, spin, parity assignmonts and predominant modes of decaly

Table 1 Particle data used, in the present, work

Resonancea	System	Orbital Angular momentum	Spm	Praity	('entre ol mass momentum	$\begin{gathered} \text { Mass (Mov) } \\ (\exp) \end{gathered}$
πN Resouancon	N	J	1/2	$3 / 2-$	456	1520
		2	1/2	$5 / 2+$	572	1688
		3	1/2	7/2-	888	2190
		4	1/2	$9 / 2-1$	905	2220
		6	1/2	$13 / 2^{+}$	1154	2650
		8	1/2	17/2 ${ }^{1}$	1366	3030
πN Regonances	Δ	2	3/2	7/2+	7411	1950
		4	3/2	$11 / 2^{+}$	1023	2420
		6	3/2	15/2+	1260	2850
		8	3/2	19/2+	1475	3230
$N_{\text {K }}-$ Resonances	Λ	1	2/2	3/2-	429	1650
		2	1/2	6/2 ${ }^{+}$	542	1814
		3	1/2	7/2-	913	2350
		4	1/2	9/2+	-	2312*
		6	1/2	13/2+	-	2712*
		8	1/2	17/2 ${ }^{1}$	-	3071*

Since nō dofinite exp. values are avalable, we used values given by Gerald Rosen (1972).

First we did a study of the dependence of centre of mass momentum on $\sqrt{L}(\overline{L+1})$ with L berng the relative orbital angular momentum, for the following two curves.

Care I. πN-resonance, N-systom of spin. $S^{-1}=1$ with $L=1,2,3,4,6,8$.
Case II • πN-resonance. Δ-system of spms. $S=\frac{3}{2}$ with $L=2 \quad 4,6,8$
Two curver result in the case I and only one for the Case II and these are shown in figure I. Since these graphs are not linear we are to take that the relation given

Fig 1. Graph of the contse of mass momentum q versus the factor $\sqrt{L}(1+1)$ for the N. systam (odd L), Δ-syatem (oven L) and N-systenn (even L).
by Sarma viz eq (2) as inadequate to deseribe the centre of mass-momentum dopondence on the relative orbital angulan momentum. Our modified relation is,

$$
\begin{equation*}
q=f+g \sqrt{L(L+1})+h L(L+1) \tag{5}
\end{equation*}
$$

where f, g, h constants are determined by a statustical fit. The obtained values for these constants are listed in table 2.

Tablo 2. Calculated constants for the q-rolation

Fig 2. Graph of the mass values M versus the factor $\sqrt{ } L(L+1)$ for the N-syatem (odd L), N-system (oven L), Δ-system (oven L), Λ-system (odd L) and Λ-systom (even L)

Figure 2 gives the curves representing the relation

$$
M^{*}=A+B \sqrt{L}(L+\overline{1})+C L(L+1)
$$

for both the above cases I and II, and in addition for the experımentally observed
masses the $N K^{-}$resonance Λ-systems, with both the possibilities L odd and L even The evaluated values for constants A, B, C are listed in table 3.

Table 3. Calculated constants of the M^{*} relation

C'onstants	Relation: $M^{*}=A \neq B^{\prime} L(L+1)+C L(L-1 \mathrm{~J})$				
	(for oven L)			(for odd L)	
	N-syatem	Δ-systom	Λ-systern	N-system	Λ-system
A	957.9939	1338.6805	1125.0000	1200	1380
B	321-43503	259.8656	303.0129	335	350
0	-9.13316	-4.0767	-8.66282	0	0

3. Disoussion and Conclusions

At first it must be pointed out that the simple relation given Sarma (1963) viz eq. (2) (with $n / l=c=1$), has an analogy with DeBroghs's rolation $\lambda=h / p$, for the wave length λ associated with a particle of momentum p. The analogy however fails in that tho rolation of Sarma mvolves in the numerator a multiple of the relative orbital angular momentum of the state, though that both the relations agree as far the dimensions are examined. Again from the curves of figure 1 for the πN-Resonance, Δ-system and N-system (L even) states, ut is clear that a simple linear relation may not be eorect. The L odd states which imply the linear relation, aro inadequate as only two non-ambiguous experimenta] values could be usod, in each sequonco.
‘The plysical significance of tho deviations from a linear rolation whle in vien of the aualogy with the DeBrogle's relation may be mentioned, that instead of a single parameter, such as the Quantum wavelength associated with a particle, tho rosonance state requires a description in terms of more number of characteristic parameters.

The set of parameters from the suggested relation in our work boing (f, g, h) or (A, B, C) respectively as one uses either the contro of mass momentum or the experimentally observed mass of the any choson resonance state.

A constant term, as it occurs in the relation

$$
\begin{equation*}
M^{*}=\sqrt{\frac{L(L+1)}{b^{2}}+m_{1}^{2}}+\sqrt{\frac{\overline{L(L+1)}+m_{2}^{2}}{b^{2}}} \tag{6}
\end{equation*}
$$

obviously refers to the rest mass energy of the resonance system. While in simple relation

$$
\begin{equation*}
\left.M^{*}=A+B \sqrt{L(L+1}\right)+C L(L+1) \tag{7}
\end{equation*}
$$

the constant term A though may be daken to represent the rest mass energy of the system, it is to be recognized as being the sume for a number of distmet states differing in their total angular momentum. It may also be tompting to identify the constant torm ' j ' of the M, with the mass of $L=0$ particles of the systom, as has been dono by Gerald Rosen (1972) in his formulation following Schwinger (1963) of a fraction hypercharge and isospin ote semi-theorotical mass formula for Baryon mass spectra. But we piefer to retain the $L=0$ massers mferred from the values of f (or alternatively from the intercept on the ordinate of the graphs) as a charactoristre mass of the resonance systom. 'Thene mass values donoted by $M_{i, t}$ are compared with those of $L=0$ partole mass values denoted by $M_{e_{x} p}$ in table 4 The $M_{i n t}-M_{e^{\prime} p}$ for the Δ-system of πN resonances alpears

Table 4 Comparison of the $M_{i_{n} t}$ with $M_{\text {exp }}$

Resunances	Systom	$\begin{gathered} M_{\text {nut }} \\ \operatorname{In}(\mathrm{Arcoph} \\ (\mathrm{Mev}) \end{gathered}$	Expl	$\mathbf{N a}_{\text {r }}$ r mast for $L_{1}=(1$ (Mev)	$\begin{gathered} M_{1 n t}-M_{1,2} \\ \text { (Mov) } \end{gathered}$
πN Resumance	$\begin{aligned} & N \\ & \Delta \end{aligned}$	$\begin{array}{r} 957.9939 \\ 133 \times 0805 \end{array}$		$\begin{gathered} 930 \cdot 6 \\ 1230-1236 \end{gathered}$	$\begin{gathered} 18 \cdot 3939 \\ (108 \cdot 6706-1036805) \end{gathered}$
$\mathrm{N}_{\mathrm{K}}-$ Resonance	Λ	1125		11150	0.4

to bo anarmonsly large. This suggestr that, $L-0, \Delta$-resomant state munt be distinguished from the $L=0, \Delta$-partiele state (Vasavadil al al 1966, Kim at al 1972). The reasom for clistnguishing between $M_{i n t}$ and $M_{e_{a, p}}$ valucs (or the particle $L=0$ and the $L=0$ rosonant states) in gencral therefore is that we prosume essentadly different stiengthe of stiong meteration as may be responsible for the lormation of $L=0$ resontant states or the $L=\mathbf{0}$ pattides Thes would become cloarly ostablished at subsequent stage of this paper

As regards the second parameter of our work it is convenient to consider $q=f+g \sqrt{ } L(L+1)+L(L-1)$ Here if f and h vamsh, we note that $g=1 / b$ given by Sarma (1963) and thus smuply corresponds to a single paramoter of a fundaneental length-associated with the state as dofined by him This parimeter also gives the direct dopendence on the relatsve orbital angular momentum of either q or M^{\prime} in our relations. From the values givon in table 2 it is noteworthy that f and h are small compared to g excepting in the case of Δ systom. The If values for the different systoms considered approximately are of the same order of magnitude, which is perhaps the roason why Sarma could obtam a characteristic b paramoter

The occurrence of $L(L+1)$ in the empirical mass formulae has been previously interprotod by Fronch ct al (1967) and Maglic (1966) as indicative of a rigidrotator or Buhr-type physical modal for baryon resonancos of both strange and non-strange character. But in view that the data by that procedure does not
reproduce the acerpted values of angular momenta, French el al (1967) interpret in terms of a classical picture of the pion fiold coupled to the nucleon sourco though a non-relativistic Imit of the rolativistic γ_{n} interaction, $g(\sigma \Delta \phi)$. Thun they suggest one can consider an moduced moment of inortia in the nucleon to oxplan tho observed baryon masses reasonably and with the accoptod values of theor angular momenta.

Contrary to this ptoposition of Bohn-type or rigid rotator model we got a negative value for the coefficient h or C of $L(L \dashv 1)$ term in our relations, excoptmg in the cases of L odd but where these Vanish. The negative sign we suggest to interpret, as an opposed nature of the resonance system to exist as a rigid rotator. The subtrative tendency in the energy camot be argued as the possibility of minimuzation in cmergy and hence towards a stable rigid rotator model of resomanee system bectuse the onder of negative energies involved (withm the mass limits consulered) are very small. The positsee contribution is relatively compared to the contributions from a rigid rotator type structure (j.e., from the third term involving the factor $L(L+1)$)

Next by extending the conerpt of fundamental length mitroduced by Anastassov (1974), Shuraram \& Sinhat (1974) as one of the universal constants. to hold good also for the resonance systems, we derive the resperetive couphing eonstants assoceated with each mass value of the systems. For example, if the mass of the N-rowname state of orbtal angular momentum $L=2$, with the predonmant πN mode of decay is chosen then,

$$
\begin{equation*}
\frac{y_{r}^{2}}{\hbar c}=\frac{m_{r} l_{0} c}{\hbar}-\frac{1690 l_{0} c}{\hbar} \tag{8}
\end{equation*}
$$

m_{r} is the resonance mass obtaned from eq. (6) I_{0} is the fundamental longth and $g_{r}{ }^{2} / \hbar c$ is coupling constant

Utilasug the value of l_{0} given by Sivaram id Smha (1974) $l_{0}=2.8 \times 10^{-13}$ cms. wo get,

$$
\begin{equation*}
\frac{y_{r}^{2}}{\hbar c}-23 \cdot 971 \tag{9}
\end{equation*}
$$

For this case It is note-wrothy that thas vilue sis about twice that for the strong interactom of clemontary patielso Wo define thorefore g_{r} as some kiud of a resonance charge, smilat in the batyonic or nuclear charge. Interesting further, is we got

$$
\begin{equation*}
\frac{g r^{2}}{\hbar c}-A^{1}-B^{1} \sqrt{ } L(L \mid-1)+C^{1} J(L+1) \tag{10}
\end{equation*}
$$

with $A^{1}=A l_{0} C$ etc. and similar expression for B^{1} and C^{1}. The ovaluated
coupling constants associated with the difforent resonanco masses ane listod in table 5 and table 6 shows the values $A^{1}, B^{1}, C^{1} \quad$ The lists of coupling constants are usoful for studies of the unitary symmtery models. Further the relation givon above imples that every fow beasic couphug constants, A^{1}, B^{1}, C^{11} are enough to gonerate the resonant states of a given resonance system and that theso various states arises only as a consequonce of then relative orbital angular momontum values. We state that the constants A^{1}, B^{1}, C^{1} represent physically the strong interaction, the modium-strong interaction and low-strong miteractions respectively of a two particle resonancer systom The low-strong interactions however is opposed to both the medium-strong and strong interactions. With incroasing resonance mass this postulation results in a dominant low-sitrong. mteraction contribution. Beyond the limit of mass values considered hore, recont expermential finding has been found to have an exponential increase This shows that for that range the low-strong intoractions may becomo additive and luther meolve higho order torms. Rxtension of our rolation may bo attemptod as and when unanbiguous lugher expermental resonance mass data becomes available

Table 5. The calculated intoriction strengths using the relation

	$\frac{y_{r}}{\hbar c}=\frac{m_{r}^{+} l_{0} c}{\hbar}$		
Orbital	πN	aronances	$\boldsymbol{n \kappa}$-Resonances
Momontum	N-symum	Δ-systiom	A-syatem
1	21-55*	-	23.96*
2	23.971	27.66141	25.74]03
3	31-05*	-	32.66*
1	31-37758	354035	32.71427
f	3768358	$40 \cdot 43651$	$38 \cdot 64566$
8	42.93503	46.08822	43-57005

[^0]Table 6. Calculatod constants A^{1}, B^{1} and C^{1} adopting the rolations

$$
A^{1}=\frac{A l_{0} C}{\hbar} \text { etc. }
$$

Constants	$\frac{g_{r}^{2}}{h C^{\prime}}=A^{1}+B^{1} \sqrt{\bar{L}(L+\overline{1})}+C^{1} L(L+1)$		
	N-syatem	Δ-syatem	Λ-system
A^{1}	13-58415	18.98221	15.95227
B^{1}	1.55788	3.68484	4-29679
C^{1}	-0.12950	-0.05779	-0.12269

Referenoes

```
Agarwal B. א. 1971 Ind. J fhys 45, 406
Anastasgov A. H. 1974 Niovo Cimento 218, 641.
Bhattacharjoe B J. 1970 /mlıaи J. Phys 44, 60; 1974 1bud., 48, 1075.
Bhatlachaijoe B. J 1971 Proc. 58th Ind Sc Cong. Part 1/I, Se. III, 81.
Judh Ram 196f Nuouo Cimento. Nerio X. 43. 721
```



```
Chew G. F' 1962 Rev. Mot. Hhys. 34, 379
Fionch J. 1)., Lamb, W H \& Mowat J D. 1967 Phys. Ricv. 163, 1754.
Gorald Rosen 197! Ihys Rey D5. 1100.
Hagestron \(\mathbf{1 k} 1970\) Nucl. Phys B24, 9:3
lowas A spectoseopy of Baryon States (I'ropmint).
Kım Y S. \& Vasavada K. V. 1972 Phys Rev. D5, 1002.
Loo T. Y. \& Uhen-Tнан C. T 1974a Phys, Rev. D10, 3110.
Loo T Y \& Chon-Tsat \(\mathcal{C}\) T 1974 Jhys. Rev. D10, 2960
Maghe B. ©. 1966 N uovo Cramento 45A, 949.
Narayana K 1. d Sharad Navaic 1976 Nuove Cimuerto 33A, 641
Onedas. \& Takusugi E. 1974 Phys Rev. D10, \(\mathbf{3 1 1 3 .}\)
Regge 'T. 1960 Nuovo Camento 18, 947.
Sarma K. V L 1963 II Nuovo Cimento s'ctec \(X\), 30. 28
Schwinger I 1963 Phys. Rer, Letters 18, 797.
Sivaram (!. \& Sinha K 1' 1974 Rhyчues News 5, 146.
Sternhemer R. M. 1908 गhysteal Reviru170, 1267.
Vesavada K V. \& Kim Y. S 1966 Physual Revicu 152, 1250.
```


[^0]: * Experimontal mass valuc is used to caloulate the intor action strength

