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Abstract : We make use of an ansatz for the eigenfunction to obtain an exact analytic
solution of the Schrodinger wave equation for a class of noncentral (NC) exponential potentials in
two-dimensions on the lines descnibed earlier [Ann Phys, 206 90 (1991)] Several interesting
special cases of the dernived NC exponential potential of very general nature, are investigated In
particular, a Morse-class of NC potentials 1s obtained
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1. Introduction

Theoretical understanding of several newly discovered phenomena [1] in physics and
chemistry now requires a study of noncentral (NC) and anharmonic potentials in both
classical and quantum mechanics. Some attempts [2] have already been made in this direction
1o obtain an exact solution to the Schrodinger wave equation for a certain type of NC
potentials. In spite of the fact that the Schrodinger equation for all NC anharmonic potentials
remains linear (unlike the corresponding classical equation of motion), a simple analysis has
shown [3] that it does not admit the solution for all such systems/.

Earlier, using a simple mecthod [4], we have studied [3] the solvability of the
Schrédinger equation for a variety of central and NC potentials in two dimensions. For the

N ..
NC potentials of the type V(x,y) = I bux’).'(i +j £ N and i, j are not zero
=0

simultaneously) with N =2 and 4, wc have found that a normalizable solution to the wave
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equation with nonzero eigenvalues is not possible* unless some inverse harmonic terms
(b, /x2 + b, / y2) and/or cross terms of the type (b; x/y + b, y/x),..... are added to
V(x, y). Also, for central potential of exponential-type (namcly Morse potential [S]) an exact
solution to the wave equatibn is obtained without demanding any additional constraint on the

potential parameters, which normally is the case with other potentials.

As far as the study of exponential potentials in quantum mechanics is concerned not
many cases are found to be of physical interest. Again, among those which are of physical
interest, an exact solution of the wave equation has not been possible. for all. More often, the
potentials studied are either one-dimensional or three-dimensional with radial symmetry. The
Morse potential, in its central form, studied in a variety of problems [6] in physics and
chemistry, is sometimes used for testing [7] the elegance of the underlying mathematical
technique. On the other hand, if the solution of the wave cquation with Morse (or Morse -
type) potential in its NC form becomes available, it will naturally add (o the domain of

applicability of this important potential.

In the present work, we use the eigenfunction-ansatz-method to study a class of NC
exponential potentials in two-dimensions. In particular, a NC exponential potential of very
general form which admits the solution of the wave equation, is derived in the next section. In
Section 3, we discuss some special cases of this generalized form. The Morse-class of NC
potentials obtained in Section 3, is studied in detail in Section 4. Finally, the rcsults are
discussed and summarized in Section 5. In the Appendix we investigate the classical
integrability (in the sense of Whittaker [8]) of the derived NC exponential potential by way of
constructing the second invariant for this system.

2. General form of the noncentral exponential potential

We consider the solution to the Schrédinger wave equation
O + ¢, + [A - v(x, )] O(x,y) = 0, Q)

where A=2uEM?, v(x,y) =2 uV(x,y)/h. Here, we slightly depart from our standard method
followed earlier [3] in the sense that instead of starting with a known form of the potential in
advance, we shall determine the potential itself that can provide a solution to the wave eq. (1).
For the eigenfunction ¢(x,y), we make an ansatz [3]

ox, y) =exp(g(x, y)), @

"It may be mentioned that an inadvertent error has crept in, in Ref. (3). In fact. there n all those NC power potentials
containing the terms either with odd powers of x or of y or of both, 1t should occur lx1and Iy | (in place of x and )
and with the same odd powers. This will, however, not affect the results and conclusions of earlier work except for
confirming the normalizability of the corresponding eigenfunction. The author wishes to thank Dr. A V Turbiner for

bringing this error to his notice.
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where g(x, y) is now set in the form
g(x,y) = Bx + B,y + BJ-exp(alx) + B4~exp(a2y)
+ B 'exp(a3x + a4_v), (©)

to give

.+ 9, = [(Bf + Bzz) + B_faf-cxp(Za,x) + ﬁfa§~exp(2a2y)
+ Bya, (zﬁl + al)'e"p(alx) + 1&%(232 +ag)'exp(az)’)
+ ﬂsz(a§ + af)-exp(2(a3x + a4,v))
+ ﬁ5(2ﬁ|a3 + 2B,a, + a:f + ai)-exp(azx + a4y)
+ 2B,B. a4 ‘exp{(a, +a3)x + a4y}
+ 2B,Bsa,x, -exp{a3x + (o, + )y}] o(x, ). @)
A comparison of eq. (4) with eq. (1) yields an expression
A= - (B} +B;) (5)
for the eigenvalues, and an expression for the potential :
vix,y) = B:falz -exp(2a,x) + ﬁfa;~exp(2a2y)
+ Byo, (2B, + @, )-exp(oyx) + P40, (2B, + 0, )-exp(et,¥)
+ ﬁg(af + af)-exp(Z(asx + a,y))
+ /35(2[31053 + 2B,a, + a_f + af)~exp(aqx + a,y)
+ 2B,Ba,a, -exp[(a, + o)x + a4y](
+ 2B, Bso,a, -explagx + (0, + @,)y], 6)

which admits the solution to eq. (1). As far as the normalization of the eigenfunction @x,y) is

concerned it can be carried out from

[ [locxyf axay =1, ™
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by setting B,'s in (3) in such a way that the integral in (7) remains a proper integral. In the
next section, we discuss some interesting special cases of potential (6).

3. Some special cases

Here, we discuss two classes of potentials as special cases of (6). One corresponds to the
choice when some of the B,'s and/or a,'s become zero (cases (1), (2) and (4) below)
and other corresponds to the situation when some of the B,'s and q;'s are mutually related

(case (3) below).

Case (1) :
When either a3 = o, = 0 or 5 = 0, the potential (6) takes the form

vix,y) = ﬁaai[ﬁ_zal -exp(oyx) + ZB, + a,]-cxp(a,x)
+ ﬁ4a2[ﬂ4az exp(a,y) + 2B, + az]-exp(az_\*)’ (8)
for which the cigenvalue A is given by (5) and the eigenfunction becomes
o(x.y) = N.exp[ﬂ,x + B,y + By-exp(ayx) + B, ~cxp(a2y)],
where the normalization constant, N, can be determined from (7).

Case (2) :
When either a; = o =0 or 83 = B4 =0, the potential (6) becomes

v(x,y) = ﬁ_f(a_f + af)-exp{Z(an + a4)v)}
+ﬁ5(2ﬁ,a3 + 2B, + a§ + af)~exp(a3x + ay), ©)
for which the eigenvalue A is again given by (5) and the cigenfunction now takes the form
o(x,y) = N-exp[ﬁlx + B,y + B, -exp(ax + a,‘y)].

Case (3) :
When B, = -,/2, B, = -a,/2; a,= 03, &y = 0y, the potential (6) reduces to the form

2
vix,y) = af[ﬂ3-exp(a,x) + B5~exp(a,x + ap’)]
+ oz;[ﬁ“ -exp(e,y) + Bg-exp(ox + Otzy)]z. (10

and the corresponding eigenvalue and eigenfunction are given by

A= -(af +a)/4, (10a)
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¢(x,y) = N- CXP[—(I/z)alx = (112)a,y + B, - exp( a,.x)

+ B, exp(a,y) + ﬁs exp(ax + azy)]. (10b)

However, for the choice &) =—aa, o = - ay, potential (6) takes the form

Il

v(x,y) a,z [,63 -exp(a;x) — Bg-exp(—ax — Otzy)]2

+ a22 [ﬂ4 -CXp(az)’) - Bs -cxp(—alx - a}y)]z

+

2ﬁ5(oc,2 + ai’)cxp(—a,x - a,y). (1)

While the eigenvalue A4 is again given by (10a), ¢(x,y) can be obtained from (2) as before.
Similarly, the potentials along with corresponding eigenvalues and eigenfunctions can be
derived for scveral other choices of B, B., Bz and @,'s. However, these cases are not of

much physical interest in the present context.

Case (4) :
When B, = 3, =0, it can be scen from (5) that the cigenvaluc A turns out to be zero for the
potential,

vix,y) = ﬂjaf cxp(alx)~[ﬂ3-cxp(alx) + l] + ﬁ4a§ exp(a,y)
x [ﬁq exp(a,y) + 1] + ﬁs(ai + ai)cxp(ajx + a,y)
x B explayx + ayy) + 1) (12)

with the eigenfunction

o(x,y) = chp[li3 exp(a,x) + Byexp(a,y) + B cxp(alx-i-a‘,y)], (13)

representing a zero-energy solution to eq. (1).

Although the basic structure of potentials discussed above (cf. cases (1) — (4)) is fixed
by way of obtaining them as special cases of potential (6), yet their generalized character can
be noticed in terms of the remaining parameters. While cases (1) and (2) will be analyzed in
detail in the next section, it is intcresting to note that the potentials obtained in case (3) inspite
of having a bound and normalizable state, do not possess a local minimum in the finite xy-
domain. This perhaps could be a case of the bound states in the continuum [9]; or else these
rather unusual bound states may correspond to some mctastable state in the two-dimensional
potential which dissociate immediately through the phenomenon of tunnelling [10] along one
of the dimensions. Inspite of the fact that Toda potential [11] as such could not be
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accommodated in the structure (6), three-term Toda-type potentials (cf. case (3)) which admit
the solution to eq. (1), can easily be derived.

4. Morse-class of potentials in two-dimensions

From the point of view of understanding much more complex crystalline systems, the studies
of one- and two-dimensional models are of substantial pedagogical value. In this context,
while one dimensional models would demand much more idealistic situation, the two-
dimensional models could indeed be of somewhat more practical use. Inspite of its
complicated form, the Morse potential [5] has been in use for a long time not only in
explaining thc molccular spectra [6] and deuteron problem [12] but also in describing some of
the crystalline substances. A Morse pair-wise potential has been used [13] to describe the
properties of an infinite array of atoms. It may mentioned that in most of the applications the
Morse potential with radial symmetry has been used mainly because of the difficulties in
dealing with the noncentral Morse function. The cases (1) and (2), discussed in Section 3,
clearly offer examples of Morse-type potentials in two dimensions.

" If we define, X =exp(@,x), Y =exp(a,y), then it can be seen that the potential (8)

has a minimum at

X=X, = —(2B,+O(,)/(2B301l rY=Y, = —(2B2+az)/(2ﬁ4a2) (14)
with the minimum value of v(x, y) as

V(xg¥g) = —(/4) [2B + @)’ + (2B, +a,)]. (15)

On the other hand, it can be noticed that in order to have the minimum point of (8) in the finite
xy-domain X, and Y, in (14) should be positive definite. As a result either 33 should be
negative for positive B, and a;, or clsc if o¢; <0, then B3 should be positive such that 2 8, >
Ia, I Also, either B4 should be ncgative for positive B, and a,, or else if &, < 0, then B,
should be positive such that 23, > |a2 |

A similar analysis can be carried out for the case (2) (cf. potential (9)). In this case,
however, the possibilitics of extremum point exist only with respect to the product XY (note
that, here X = exp(asx), Y = exp(a,y) at the point characterized by

(2ﬁ|013 + 2B,a, + a_f + af)

284(e} + }) ' (19

XY = XY, = -

with the extremum value of v(x,y) as

2
1 (2B, + 28,0, + &} + af)
WX Yy) = — - = . a7
4 (oz3 + a4)
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Again note that here for the positive definite value of the product X, Y, in (16). Bs should be
negative.

Now, by defining B,'s as By = —b; = — exp(~ayxy); Bs= - by = — exp(-anyy); Bs =
—bs = —exp(-03xg — &gyp), it is not difficult 1o express the potentials (8) and (9) in the
forms,
vix,y) = a12 exp{Zal(x—x” )} - otl(2[3l +q)) cxp{a](.r—-xo)}
2
+a; exp{20,(y-yp)} - @, (2B, +a,) expla,(y-y)}  (18)

and v(x,y) = (Ot,2 + ozf) exp{2&3(x—x()) + 2&4(y—y0)}

~ (28,03 +2B, 0, + @] + ) exp{o,(x—xp)+ a (v -y} (19)

respectively. Further, for the case when B, = «,/2, B, = a,/2. the form (18) reduces to
vi(x,y) = 0(,2 [exp{Za,(x—xO)} - Zexp{al(x—xo)}]

+ a; [exp{2(x2(y—y0)} - 2exp{az(,v—_vo )}] (20)

with the minimum value v(x,,y,) = - (al2 + ag ) at the point (xq.y). Similarly, for 8=

a,/2, B, = a,/2, the potential (19) takes the form

v2(x,y) = (af + af) [cxp{2a3(x—x0) + 2a4(y—y0)}

2 exp{a3(x—x0) + a4(y—y0)}]. 21
with the minimum value v(x,.y,) = —(a§ + ai), at the point characterized by the

product XY, = exp(Qsxo + 04yo). The eigenvalue and the ei genfunction corresponding to the
potentials (20) and (21) (labelled as 1 and 2) now become

A = -4 (af + &) (22a)

v, N, exp[(l/Z) ax + (1/2) o,y = exp{a](x—xo)}

(22b)

cxp{az2 (y=Yo )}]

and A, = —(y4) (af + ay), (23a)
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v, =N, exp[(l/Z) o, x + (1/2) ayy - cxp{a3(x—x0)}

- cxp{a4()7—y0)}] (23b)
respectively.

It can be seen that the forms (20) and (21) arc more akin to the standard Morse
potential. For a highly simplificd case when

o =a,=1x5=y,=landa; = a, =1, (24)

the plots of the potentials (20) and (21) are shown in Figures 1 and 2 and the behaviour of the
corresponding eigenfunctions is depicted in Figures 3 and 4, respectively. Normalizations of

Vil x,y)

4.0

3.0

2.0

y=1.5 1.0

=
1 A L
— —0.5 2.5

=10 y.05 Y05

y=0.0
y:-05 o=kl
-2.0

Figure 1. Two-dimensional Morse potential (20) for some typical values of the parameters
given 1n eq. (24)

the eigenfunctions (22b) and (23b) can be carried out [14] using (7). For example, for (22b)
N, turns out to be

N, = [0 a,0,]".

where G = 2 exp(-yxg), G, = 2 exp(—0,yp). However, for the case (24) N, reduces to a
very simple form N, =2 ¢! withe = 2.7182.
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Vo (X,Y)

4.0

2.0

Figure 2. Two-dimensional Morse potential (21) for some typical values of the parameters given
in eq. (24).

5. Discussion and summary

Using a simple-minded ansatz for the solution of the Schrodinger wave equation a very
general form of the NC exponential potential (cf. eq. (6)) in two dimensions is derived.
Interestingly, two wellknown classes of exponential potentials (namely, Morse- and Toda-
type potentials) turn out to be special cases of this gencral form (6). While the Morse-class of
potentials is found to admit an ideal quantum-bound-state problem, the Toda-class somchow
does not do that. Further, two explicit forms of the Morse potential in two dimensions are
investigated in detail.

Markworth [13] studied the properties of an infinitc lipcar array of rcgularly-spaced
atoms using a Morse pair-wisc interaction bcetween the necarest ncighbours. From the
computed equilibrium value of the lattice parameter (agp) for b.c.c. iron, the information is
obtained [15] regarding the stability of the one-dimensional crystal. In an analogous manncr
the stability of two-dimensional monatomic or one-dimensional diatomic crystals can be
studied using the two-dimensional Morse potentials derived in the present work.

Regarding the classical integrability of potential (6) it may be mentioned that only a
restricted class of this potential i.e. the form (9), admits the second order (in momenta)

invariant (cf. Appendix) which can be expressed as

68B (5) §
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I=2)& + (a7 + af) w&),

where & = o,x + a,y, is some preferred direction in the xy-plane. Thus, /, while
expressible in the Hamiltonian form, is structurally different from the Hamiltonian itself.
Following the method of Holt [16] we have also checked that there does not exist a third
order invariant for the system (6). In fact, potential (9) offers one more example of a system
which is classically integrable as well as quantum solvable [17].

L
0.6

“l’,( X,y)

0.2

0.1

0.5
-0

T

Figure 3. Behaviour of the eigenfunction (not normalized) corresponding to the potential shown
in Figure 1

It may'be mentioned that Toda-type potentials derived here (cf. case (3) of Section 3)
are of somewhat different nature from that of the conventional one [11] in the sense that they
are not classically integrable and they exhibit somewhat peculiar behaviour as far as the
quantum-bound-state problem is concerned (cf. Section 3). Whereas the standard periodic
Toda potential is an integrable system and exhibits [18] several salient features at the quantum
level. While the present Toda-type potentials require further investigations, there exists”
another Toda-class of potentials which, in fact is classically integrable and admits second

order invariants.

*see, Kaushal and Mishra in Ref. [20).
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In the present work, while we have restricted to the simple ansatz (2) for the
eigenfunction, a much deeper study of the NC exponential potentials is possible by
considering (see Taylor and Leach in Ref. [2]) the form ¢(x,y) = Jx,y) exp(g(x,y)), where
Ax.y) is a polynomial. However, the exercise as a whole, in this case, turns out -to be very
complicated particularly for the exponential potentials as compared to their utility. Moreover,
we have obtained here only one eigenstate and that too only for some permissible potentials.
Even these results can offer a check on the efficieacy of numerical algorithms (such as finite
difference or perturbation expansions) and provide a complete sct of eigenstates for these
potentials.

T

Y2 14

1.2

Figure 4. Behaviour of the eigenfunction (not normalized) corresponding to the potential shown
in Figure 2.

Ve

To summarize, we mention that the classical and quantum mechanics of a class of NC
exponential potentials in two dimensions is studied. We have not only obtained an exact
normalizable solution to the Schrodinger wave equation for these potentials but also
established the classical integrability by way of constructing the second invariant. Quantum
solutions are exact in the sense that there are no restrictions on the parameters of the derived
potential unlike the cases studied [3] earlier. While some of the cases discussed here could be
useful in molecular chemistry and solid state physics, the methodology can be applied in

solving exactly the problem [19] of planar and diffused channel waveguides.
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Appendix

Here we investigate the classical integrability of the system (6) by way of constructing the
second invariant for it. Let this system admits an invariant of the form

I=a,+ (28,5 +a,xy+ (12 ayy’, (AD)
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where a; and a,, are the functions of x and y. The potential v(x,y) must satisfy a 'potential’
equation [11,16,20]

(3/2) (eyy+¢;) (9v/ax) = (3/2) (c;x+c,) (Iv/y)
= (I/2) (e)xy + cx + ¢,y - 2¢,) ((32v/8x2) - (azv/axz))

+[2) (667 =) + &y = eyx + 5 - o)| (*v/axy) = 0, A

where the coefficient functions g, and a,, are expressed in terms of the arbitrary constants ¢,'s.
This equation can be derived readily from the set of six equations obtained from

dijdt = [I.H]p = O, (A3)

using X = —dv/dx, y = —dv/dy. Here, H is the Hamiltonian. We use the form (6) in eq.
(A2) and as a result of the rationalization of the latter equation one obtains

a,=0,=0, andalsoc;=c;=¢4=0. (A4)
Subsequently, one also obtains the relation

cé(af - af) + (¢ - ¢5) aza, = 0, (AS5)

which fixes the values of the remaining arbitrary constants as
= a’; ¢, = a’, ande, = A, (A6)
€5 = &y 3 = U3, Co = (3C4-
Thus, the coefficient functions a,'s in (A1) turn out to be

2, — o~ = 2. - -
ay = €3 = 035 Gy = Cg = 04 A = 6 = O30, (AT)

A unique expression for ag in (Al) can be obtained from the integration of the

equations [20]
da,[ox = a,,(dv/dx) + a,(dv/dy); day[dy = a,,(v/dx) + ay,(dv/dy)

s

in the form as

a, = ﬁs(a32 + af) [[35(0532 + af)-exp{2(a3x + a4y)}

+ (2Bj0; + 2By, + 03 + o} )-exp(ayx + a4y)].

Finally, for the potential which turns out to be the same as discussed in case (2) above (cf.

Section 3, eq. (9)), the invariant (A1) takes the form
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1= (0 + o) [Bi{ad + ) enfa{a + o))

+ (2[3,0:3 + 28,0, + a32 + af)-exp(a_,fc + 0‘45’)]

2

+ (|/2).(a3j + a4)'v) (A8)

As a check it is not difficult to verify that the invariant (A8) is in conformity with (A3) for the
potential (9).





