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A bstract : Wc make use of an ansatz for the eigenfunction to obtain an exact analytic 
solution of the Schrddmgcr wave equation for a class of noncentral (NC) exponential potentials in 
two-dimensions on the lines described earlier [Ann Rhys^ 206 90 (1991)] Several interesting 
special cases of the derived NC exponential potential of very general nature, are investigated In 
particular, a Morse-class of NC potentials is obtained
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1. Introduction
Theoretical understanding of several newly discovered phenomena [IJ in physics and 
chemistry now requires a study of noncentral (NC) and anharmonic potentials in both 
classical and quantum mechanics. Some attempts [2] have already been made in this direction 
lo obtain an exact solution to the Schrddinger wave equation lor a certain type of NC 
potentials. In spite of the fact that the Schrddinger equation for all NC anharmonic potentials 
remains linear (unlike the corre,sponding classical equation of motion), a simple analysis has 
shown [3] that it does not admit the solution for all such systems^

Earlier, using a simple method [4 ), we have studied [3J the solvability of the 
Schrodinger equation for a variety of central and NC potentials in two dimensions. For the

NC potentials of the type Vfjc.y) = ^ >’ (* + 7 -  ^  J zero
,.J = 0

simultaneously) with N = 2 and 4, wc have found that a normalizable solution to the wave
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equation with nonzero eigenvalues is not possible* unless some inverse harmonic terms
{b j x^  + b^/y^)  and/or cross terms of the type (b  ̂ x/y + b̂  y/jc),..... are added to
V(x, y). Also, for central potential of exponential-type (namely Morse potential [5]) an exact 
solution to the wave equation is obtained without demanding any additional constraint on the 
potential parameters, which normally is the case with other potentials.

As far as the study of exponential potentials in quantum mechanics is concerned not 
many cases are found to be of physical interest. Again, among those which are of physical 
interest, an exact solution of the wave equation has not been possible for all. More often, the 
potentials studied are either one-dimensional or three-dimensional with radial symmetry. The 
Morse potential, in its central form, studied in a variety of problems [6] in physics and 
chemistry,, is sometimes used for testing [7] the elegance of the underlying mathematical 
technique. On the other hand, if the solution of the wave equation with Morse (or Morse- 
type) potential in its NC form becomes available, it will naturally add to the domain of 
applicability of this important potential.

In the present work, we use the eigenfunction-ansatz-method to study a class of NC 
exponential potentials in two-dimensions. In particular, a NC exponential potential of very 
general form which admits the solution of the wave equation, is derived in the next section. In 
Section 3, we discuss some special cases of this generalized form. The Morse-class of NC 
potentials obtained in Section 3, is studied in detail in Section 4. Finally, the results are 
discussed and summarized in Section 5. In the Appendix wc investigate the classical 
integrability (in the sense of Whittaker [8]) of the derived NC exponential potential by way of 
constructing the second invariant for this system.

2. General form of the noncentral exponential potential

We consider the solution to the Schrodingcr wave equation

^xx v̂v + -  v(x,y)] (p(x,y) = 0 , (1)

where v(x,y) = 2 ^V{x,y)!fi. Here, we slightly depart from our standard method
followed earlier [3] in the sense that instead of starting with a known form of the potential in 
advance, we shall determine the potential itself that can provide a solution to the wave eq. ( 1). 
For the eigenfunction ), we make an ansatz [3]

<p(x, y) = e\pig(x, y)). (2)

*lt may be mentioned that an inadvertent error has crept in, in Ref. (. )̂. In fact, there in all those NC power potentials 
containing the terms either with odd powers o f  x  or o f y or o f  both, it should occur \x I and ly I (in place o f  x  and y) 
and with the .same odd powers. This w ill, however, not affect the results and conclusions o f  earlier work except for 
confirming the normalizability o f the corresponding eigenfunction. The author wishes to thank Dr. A V Turbiner for 
bringing this error to his notice.
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where g(x, y) is now set in the form

g(x,y) = fi^x + P^y + Pyexp[a^x)  + ^ ^explajv)

+ P^e x p [ a ^x  + a^y),  O)

to give

^xx  +  fvv = + ^ 2 ) •cxp(2a,jr) + p l a \  e x p { 2 a ^ y )

+ /^4«2(2^2

■•■ a 4) exp(2(or3.r + a^v))

+ /3j(2)3,a3 + 2/32 «4 + «3 + aiyexp{a^x + a^j)

+ ‘exp'Î OTi ~\~cĉ x̂ + 0 4̂3̂ ^

+ i p ^ P ^ a ^ a ^  ■ e x p ^ a ^ x  + ( « 2  + a 4 )>’}] <P(x,y).

A comparison of eq. (4) with eq. (1) yields an expression 

A = -  -f

for the eigenvalues, and an expression for the potential :

v(jc,y) = P ^ ay e x p ( 2 a^x) + p la ^  exp(2 a 2 y)

+ p^a^[2p^ + a )̂■ expia^x) + P^U2 {2 P  ̂+ a ^ ) e x p i a ^ y )

+ P lia ]  + a 4 )e x p (2(a 3jr + a 4v))

+ ^,(2/3,«3 + 2^2«4 + “ 3 a4) exp(a3X + a^y)

+ ip^^a^a .^exp \{a^ + a ,)^  + a^y],

+ 2 P^P^aj,a^ exp[a^x + (a^ + 0:4 ) y ] .

(4)

(5)

(6)

which admits the solution to eq. (1). As far as the normalization of the eigenfunction 0(x,y) is 

concerned it can be carried out from

J y)p dx.dy  == 1. (7)
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by setting j3/s in (3) in such a way that the integral in (7) remains a proper integral. In the 
next section, we discuss some interesting special cases of potential (6).

3 . Some special cases

Here, we discuss two classes of potentials as special cases of (6). One corresponds to the 
choice when some of the p^s and/or a /s  become zero (cases (1), (2) and (4) below) 
and other corresponds to the situation when some of the )3/s and o;'s are mutually related 
(case (3) below).

Case(l) :

When either «3 = = 0 or ^5 = 0, the potential (6) takes the forni

v(jc,y) = -h 2/J, + a,] exp(a,jc)

+ + 2/32 + Oj] expCajV)- (8)

for which the eigenvalue A is given by (5) and the eigenfunction becomes

<P{x,y) = A'.exp[^,x + + /3, • cxp(a,jr) + P  ̂■ c \p (a^y)\

where the normalization constant, /V, can be determined from (7).

Case (2):

When either ttj = = 0 or /J3 = p4 = 0, the potential (6) becomes

v(x,y) = + a iy e \p { 2 (aj.x + a 4>’)}

+ + 2/32«4 + + a 4 )exp(o;,Ar + a^y), (9)

for which the eigenvalue A is again given by (5) and the eigenfunction now takes the form 

<t>(x,y) = A^exp[^,j: + P^y + P ^e \p (a ^x  + C(^y)\

Case (3):

When /3, = P^ = ai = a^, = ccj, the potential (6) reduces to the form

v(x,>-) = af[p^■exp(a^x)  + P ^exp ia ^x  +

+ aj[/34 expCajy) + /3j exp(a,x + a j y l f , 

and the corresponding eigenvalue and eigenfunction are given by

A =  - ( a f  +  aiy4.

( 10)

(10a)



<t>{x,y) = /V exp[-(l/2 )a,jf -  (l/2 )a ,y  + cxp(a,.v)

+ /Ĵ  exp(a2.v) + /Jj exp(a,jr + a,y)]. (lOb)

However, for the choice 0C\ = — (Xn = — 0!4, potential (6 ) lakes the Ibmi 

v(jf,.v) = a f  [^3 -exp(a,x) -  cxp(-a,jr -  aj.v)]'

^ 2  [^4 cxpCaj.v) -  cxp(-a,j: -  a .̂v)]^

2 ^ 5 + a j )  exp(-a,jr -  a^y) . ( 11)

While the eigenvalue /I is again given by (lOa), 0(.v,y) can be obtained from (2) as before. 
Similarly, the potentials along with corresponding eigenvalues and eigenfunctions can be 
derived for several other choices of )3|, /Sj, and a,'s. However, these cases arc not of 
much physical interest in the present context.

Case (4) :

When = /?2 = 0, it can be seen from (5) that the eigenvalue A turns out to be zero for the 
potential,

cxp(or,jc) [/33 exp(aj.Y) -f l] + ^xpia^.v)

X ^p^cxp(a^y)  l] + + or4 )exp(OT3A' + a^y)

X ^P^cxpiUyX + a^y) + l], (12)

with the eigenfunction

<p(x,y) = A'cxp[j83exp(a,jr) + l}_^c\p(a^y) + expfa^A + a^y)] , (13)

representing a zero-energy solution to eq. ( 1).

Although the basic structure of potentials discussed above (cf. cases (1) -  (4)) is fixed 
by way of obtaining them as special cases of potential (6), yet their generalized character can 
be noticed in terms of the remaining parameters. While cases ( I) and (2) will be analyzed in 
detail in the next section, it is interesting to note that the potentials obtained in case (3) inspite 
of having a bound and normalizable stale, do not possess a local minimum in the finite xy- 
domain. This perhaps could be a case of the bound states in the continuum [9], or else these 
rather unusual bound states may correspond to some mctastabic state in the two-dimensional 
potential which dissociate immediately through the phenomenon of tunnelling [ 10] along one 
of the dimensions. Inspile of the fact that Toda potential [11] as such could not be

Quantum mechanics o f  a class o f  noncentral exponential potentials etc 4 1 3
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accommodated in the structure (6), three-term Toda-type potentials (cf. case (3)) which admit 
the solution to eq. (I), can easily be derived.

4. Morse-class of potentials in two-dimensions

From the point of view of understanding much more complex crystalline systems, the studies 
of one- and two-dimensional models are of substantial pedagogical value. In this context, 
while one dimensional models would demand much more idealistic situation, the two- 
dimensional models could indeed be of somewhat more practical use. Inspite of its 
complicated form, the Morse potential f5] has been in use for a long time not only in 
explaining the molecular spectra [6] and dcuteron problem [12] but also in describing some of 
the crystalline substances. A Morse pair-wise potential has been used [13] to describe the 
properties of an infinite array of atoms. It may mentioned that in most of the applications the 
Morse potential with radial symmetry has been used mainly because of the difficulties in 
dealing with the noncentral Morse function. The cases (1) and (2), discussed in Section 3, 
clearly offer examples of Morse-type potentials in two dimensions.

* If we define, X = exp(orj;c), Y = cxp(a2 y)y then it can be seen that the potential (8) 
has a minimum at

X S = -(2p,+a^) / (20,a,y,  Y ^  = ~{2p^ +a^)/{2fi^a^)  (14)

with the minimum value of v(jr,3 ) as

v(^0’>’o) = - d /4 )  [(2 /3 ,+ a ,)' + (2^2+«2)^]- (15)

On the other hand, it can be noticed that in order to have the minimum point of (8) in the finite 
jcy-domain Xq and Yq in (14) should be positive definite. As a result either should be 
negative for positive p\ and a |, or else if a\ < 0, then /J3 should be positive such that iPi  > 
|a, |. Also, either P4 should be negative for positive P2 and or olse if «2 < Ihen P4  
should be positive such that 2 P2 > \oc2 [

A similar analysis can be carried out for the case (2) (cf. potential (9)). In this case, 
however, the possibilities of extremum point exist only with respect to the product XY  (note 
that, here X = exp(a>x), Y = exp(a4y) at the point characterized by

XY s  XoKo =
[2p^a^ + 2p^a^ + + a^)

2^5 («3 + «4)
(16)

with the extremum value of v(x,y) as

1 (2)3,«3 + 2P^a^ + a , +
(17)
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Again note that here for the positive definite value of the product XoYo in ( 16). /?, should be 
negative.

Now, by defining jS/s as ^3 = -b^ = -  exp(-a,xo); = -  cxp(-Qy o): Ps =
-* 5  = -  exp(-a>Xo -  « 4yo)- is not difficult to express the potentials (8) and (9) in the 
forms,

vU ,y) = a f  exp{2a ,(x -jc„ )}  -  a ,(2 )3 ,+ a ,)  cxp{a,(.v-jr„)}

+ a \  exp{2 a j(y -y o )}  -  a^ (2p^  + a ^ ) exp{«2(>’-.Vo)} (18)

and v(x,y) = (a j + exp{2 fe3( j c - at̂ ,) +

-  ( 2 ) 3 , +  2 8̂ 3 + «3 +a^'j  exp{a,(j:-.V o)+a^(y-y„)}, (19) 

respectively. Further, for the case when )3, = a J 2 ,  = a 2/^ ’

v,(j:,y) = [exp{2 a,(jf-jr^)} -  2 exp|a,(A:-Ar„)}]

+ «2 [exp{2a2(>’-> ’o)} “ 2exp{a2(y-y„)}], (20)

with the minimum value v(jCq,>’q) = -  (tz,̂  + a^j, at the point (xq-Vo)-Similarly, lor ^1 = 

a^ /2 , /?2 = <̂ 4/ 2 , the potential (19) takes the form

V2(x,y) = ( «3 + a^)  [exp{2a3U-ATo) + 2a 4(y- Vo)}

_2 exp{ tt3 (AC -  jc„) + «4 (y -  y„)} j. (21)

with the minimum value v(ACQ,yQ) = -(otj + “ 4 )' *1̂*̂ point characterized by the
product XqFo = exp(aT^Xo+ The eigenvalue and the eigenfunction corresponding to the

potentials (20) and (21) (labelled as 1 and 2) now become

and

A, = — (1/4) (or, + ot2 j,

\ff̂  = yv, exp|(l/2) a,A: + (1/2) a 2.v -  exp|a,(Ac-Ar„)}

-  exp{a2(y -y o l} ]

A2 = -d /4 )  («3 + ccl).

(22a)

(22b)

(23a)



416

exp[(l/2 ) a^x + ( 1/ 2 ) a^y -  c x p ja ^ jr -^ o )}

-  cxp{tt^(y->>p)}]

R S K a u sh a l

(23b)

respectively.
It can be seen that the forms (20) and (21) arc more akin to the standard Morse 

potential. For a highly simplified case when
a, = = 1, = Vq = 1 and f  (24)

the plots of the potentials (20) and (21) are shown in Figures 1 and 2 and the behaviour of the 
corresponding eigenfunctions is depicted in Figures 3 and 4, respectively. Normalizations of

F igu re 1. Two-dimensional Morse potential (20) for some typical values o f  the parameters 

given in eq. (24)

the eigenfunctions (22b) and (23b) can be carried out [14] using (7). For example, for (22b) 
Ni turns out to be

yv, = [a,cT,

where CTi = 2 cxp(-aix:o), 0 2  = 2 exp(-Oiyo). However, for the case (24) N  i reduces to a 
very simple form N\=2 e~' with e = 2.7182.
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Figure 2. Two-dimenMonal Morse potential (21) for some typical values of the parameters given 
in eq. (24).

5. Discussion and sum m ary
Using a simple-minded ansalz for the solution of the Schrddingcr wave equation a very 
general form of the NC exponential potential (cf. cq. (6)) in two dimensions is derived. 
Interestingly, two wellknown classes of exponential potentials (namely, Morse- and Toda- 
type potentials) turn out to be special cases of this general form (6). While the Morse-class of 
pc^tentials is found to admit an ideal quantum-bound-state problem, the Toda-class somehow 
does not do that. Further, two explicit forms of the Morse potential in two dimensions are 
investigated in detail.

Markworth [13] studied the properties ol' an infinite linear array of rcgularly-spaccd 
atoms using a Morse pair-wise interaction between the nearest neighbours. From tbe 
computed equilibrium value of the lattice parameter (ciq) lor b.c.c. iron, the information is 
obtained [15] regarding the stability of the one-dimensional crystal. In an analogous manner 
the stability of two-dimensional monatomic or one-dimensional diatomic crystals can be 
studied using the two-dimensional Morse potentials derived in the present work.

Regarding the classical integrability of potential (6) it may be mentioned that only a 
restricted class of this potential i.e. the form (9), admits the second order (in momenta) 
invariant (cf. Appendix) which can be expressed as

6 8B (5) 5
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^  ( a ] +

where  ̂ + a^y,  is some preferred direction in the jcy-plane. Thus, /, while
expressible in the Hamiltonian form, is structurally different from the Hamiltonian itself. 
Following the method of Holt [16] we have also checked that there does not exist a third 
order invariant for the system (6). In fact, potential (9) offers one more example of a system 
which is classically integrable as well as quantum solvable [17].

F igure 3. Behaviour o f the eigenfunction (not normalized) corresponding to the potential shown  
in Figure 1

It may be mentioned that Toda-type potentials derived here (cf. case (3) of Section 3) 
are of somewhat different nature from that of the conventional one [11 ] in the sense that they 
are not classically integrable and they exhibit somewhat peculiar behaviour as far as the 
quantum-bound'-state problem is concerned (cf. Section 3). Whereas the standard periodic 
Toda potential is an integrable system and exhibits [18] several salient features at the quantum 
level. While the present Toda-type potentials require further investigations, there exists* 
another Toda-class of potentials which, in fact is classically integrable and admits second 
order invariants.

see, Kaushal and Mishra in Ref. [20].



In the present work, while we have restricted to the simple ansaiz (2) for the 
eigenfunction, a much deeper study of the NC exponential potentials is possible by 
considering (see Taylor and Leach in Ref. [2]) the form <(>{x,y) = f{x,y) exp(g(x,y)), where 
f[x,y) is a polynomial. However, the exercise as a whole, in this case, turns out to be very 
complicated particularly for the exponential potentials as compared to their utility. Moreover, 
we have obtained here only one eigenstate and that too only for some permissible potentials. 
Even these results can offer a check on the efficiency of numerical algorithms (such as finite 
difference or perturbation expansions) and provide a complete set of eigenstates for these 
potentials.
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F igu re 4. Behaviour o f  th® eigenfunction (not normalized) corresponding to the potential shown 
in Figure 2. ^

To summarize, we mention that the classical and quantum mechanics of a class of NC 
exponential potentials in two dimensions is studied. We have not only obtained an exact 
normalizable solution to the Schrodinger wave equation for these potentials but also 
established the classical integrability by way of constructing the second invariant. Quantum 
solutions are exact in the sense that there are no restrictions on the parameters of the derived 
potential unlike the cases studied [3] earlier. While some of the cases discussed, here could be 
useful in molecular chemistry and solid state physics, the methodology can be applied in 
solving exactly the problem [19] of planar and diffused channel waveguides.
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Appendix

Here we investigate the classical iniegrability of the system (6) by way of constructing the 
second invariant for it. Let this system admits an invariant of the form

/  =  flo + (1/2) a ,, +  a j j i y  +  (M l)  a .^ y
•2 (AI)
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where a^ and afj are the functions of x and y. The potential v(x^y) must satisfy a 'potential' 
equation [11,16,20]

(3/2) (c,y + C2> {dv/dx) -  (3/2) {c^x + c^) {dv/dy)

-  (1/ 2) (c^xy + c^x + c^y -  2c^) -  {d^v/dx^'^

+ [ (̂1/2) (c,(y^ -jc^) + c^y -  c^x + C3 -  Cj)] [d^vfdxdy'^ = 0, (A2)

where the coefficient functions a^ and a,j are expressed in terms of the arbitrary constants c/s. 
This equation can be derived readily from the set of six equations obtained from

dljdt = [ /.//]p 3 = 0 , (A3)

using i  = -  dv/dx, y = -  dv/dy. Here, H is the Hamiltonian. We use the form (6) in eq. 
(A2) and as a result of the rationalization of the latter equation one obtains

aj = 052 = 0 , and also Cj = C2 = C4 = 0 .

Subsequently, one also obtains the relation

^ 6 (« 4  -  « 3 )  +  (^3 -  ^5 ) « 3 « 4  =  0 ’

which fixes the values o f the remaining arbitrary constants as 

c , =  Cj =  0 3 , andCg = a ^ a ^ .

Thus, the coefficient functions a,/s in (Al) turn out to be

flj, = Cj — (Xy; (̂ 22 = fs = or̂ ; 0 ^ 2  — ~ ®3®4‘

(A4)

(A5)

(A6)

(A7)

A unique expression for ciq in (A l) can be obtained from the integration of the 

equations [20]

da^/dx = a^^(dv/dx) + a,2 (dv/dy); da^/dy = a|j(<?v/<3r) + 022(‘̂ / ^ )  

in the form as

«o = /^5(«3 + " 4 ) + « 4 )  exp{2(a33C + «43')}

+  ( 2 ^ ,« 3  +  2/32^4 +  « 3  +  « 4 )  ®*p (® 3'' ®4>')] ‘

Finally, for the potential which turns out to be the same as discussed in case (2) above (cf. 

Section 3, eq. (9)), the invariant (A 1) takes the form
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= + a^) + â )̂ exp{2(a3jr + a^y)}

+ (2^,03 + + aj + a^jexp(ajx + â j )̂]

+ (1/2)-(a^i + a ^ y f . (A8)

As a check it is not difficult to verify that the invariant (A8) is in conformity with (A3) for the 
potential (9).




